tugas ikatan kimia

Upload: anita-hernawati-simbolon

Post on 20-Jul-2015

188 views

Category:

Documents


0 download

TRANSCRIPT

TUGAS IKATAN KIMIATEORI MOLEKUL ORBITAL

Kelompok V Anita H Simbolon (06091010023) Luciana Mentari (06091010033) Dika Fajriani (060910100) Melia Love Yanti (060910100)

Dosen pengasuh

: Drs. Hadeli, M.si

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAWA 2012

TEORI ORBITAL MOLEKUL Teori Ikatan Valensi mampu secara kualitatif menjelaskan kestabilan ikatan kovalen sebagai akibat tumpang-tindih orbital-orbital atom. Dengan konsep hibridisasi pun dapat dijelaskan geometri molekul sebagaimana yang diramalkan dalam teori VSEPR, tetapi sayangnya dalam beberapa kasus, teori ikatan valensi tidak dapat menjelaskan sifat-sifat molekul yang tramati secara memuaskan. Contohnya adalah molekul oksigen, yang struktur Lewisnya sebagai berikut.

Menurut gambaran struktur Lewis Oksigen di atas, semua elektron pada O2 berpasangan dan molekulnya seharusnya bersifat diamagnetik, namun kenyataanya, menurut hasil percobaan diketahui bahwa Oksigen bersifat paramagnetik dengan dua elektron tidak berpasangan. Temuan ini membuktikan adanya kekurangan mendasar dalam teori ikatan valensi. Sifat magnet dan sifat-sifat molekul yang lain dapat dijelaskan lebih baik dengan menggunakan pendekatan mekanika kuantum yang lain yang disebut sebagai teori orbital molekul (OM), yang menggambarkan ikatan kovalen melalui istilah orbital molekul yang dihasilkan dari interaksi orbital-orbital atom dari atom-atom yang berikatan dan yang terkait dengan molekul secara keseluruhan. Teori orbital molekul (Bahasa Inggris: Molecular orbital tehory), disingkat MO, menggunakan kombinasi linear orbital-orbital atom untuk membentuk orbital-orbital molekul yang merangkumi seluruh molekul. Semuanya ini seringkali dibagi menjadi orbital ikat, orbital antiikat, dan orbital bukan-ikatan. Orbital molekul hanyalah sebuah orbital Schrdinger yang melibatkan beberapa inti atom. Jika orbital ini merupakan tipe orbital yang elektron-elektronnya memiliki kebolehjadian lebih tinggi berada di antara dua inti daripada di lokasi lainnya, maka orbital ini adalah orbital ikat dan akan cenderung menjaga kedua inti bersama. Jika elektron-elektron cenderung berada di orbital molekul yang berada di lokasi lainnya, maka orbital ini adalah orbital antiikat dan akan melemahkan ikatan. Elektronelektron yang berada pada orbital bukan-ikatan cenderung berada pada orbital yang paling dalam (hampir sama dengan orbital atom), dan diasosiasikan secara keseluruhan pada satu inti. Elektron-elektron ini tidak menguatkan maupun melemahkan kekuatan ikatan.

Menurut teori OM, tumpang tindih orbital 1s dua atom hidrogen mengarah pada pembentukan dua orbital molekul, satu orbital molekul ikatan dan satu orbital molekul antiikatan. Orbital molekul ikatan memilikienergi yang lebih rendah dan kestabilan yang lebih besar dibandingkan dengan orbital atom pembentuknya.Orbital molekul

antiikatan memiliki energi yang lebih besar dan kestabilan yang lebih rendah dibandingkan dengan orbital atom pembentuknya. Penempatan elektron dalam orbital molekul ikatan menghasilkan ikatan kovalen yang stabil, sedangkan penempatan elektron dalam orbital molekul antiikatan menghasilkan ikatan kovalen yang tidak stabil. Dalam orbital molekul ikatan kerapatan elektron lebh besar di antara inti atom yang berikatan. Sementara, dalam orbital molekul antiikatan, kerapatan elektron mendekati nol diantara inti. Perbedaa ini dapat dipahami bila kita mengingat sifat gelombang pada elektron. Gelombang dapat berinteraksi sedemikian rupa dengan gelombang lain membentuk interferensi konstruktif yang memperbesar amplitudo, dan juga interferensi destruktif yang meniadakan amplitudo. Pembentukan orbital molekul ikatan berkaitan dengan interferensi konstruktif, sementara pembentukan orbital molekul antiikatan berkaitan dengan interferensi destruktif. Jadi, interaksi konstruktif dan interaksi destruktif antara dua orbital 1s dalam molekul H2 mengarah pada pembentukan ikatan sigma (1s) dan pembentukan antiikatan sigma (*1s).

a

b Gambar (a) interaksi konstruktif yang menghasilkan orbital molekul ikatan sigma (b) interaksi destruktif yang menghasilkan orbital molekul antiikatan sigma.

Pada gambar diatas dapat dilihat bahwa pada orbital molekul antiikatan sigma terdapat simpul (node) yang menyatakan kerapatan elektron nol, sehingga kedua inti positif saling tolak-menolak.

Gambar Tingkat energi orbital molekul ikatan dan antiikatan molekul H2 Penggunaan teori orbital molekul ini dapat diterapkan pada molekul-molekul lain selain molekul H2. Hanya saja, jika dalam molekul H2 kita hanya perlu memikirkan orbital 1s saja, maka pada molekul lain akan lebih rumit karena kita perlu memikirkan orbital atom lainnya juga. Untuk orbital p, prosesnya akan lebih rumit karena orbital ini dapat berinteraksi satu sama lain dengan cara yang berbeda. Misalnya, dua orbital 2p dapat saling mendekat satu sama lain ujung-ke-ujung untuk menghasilkan sebuah orbital molekul ikatan sigma dan orbital molekul antiikatan sigma. Selain itu, kedua orbital p dapat saling tumpang tindih secara menyimpang untuk menghasilkan orbital molekul pi (2p) dan orbital molekul antiikatan pi (*2p).

a

b Gambar (a) pembentukan satu orital molekul ikatan sigma dan satu orbital molekul antiikatan sigma ketika orbital p saling tumpang tindih ujung-ke-ujung. (b) ketika orbital p saling tumpang tindih menyamping, terbentuk suatu orbital molekul pi dan suatu orbital molekul antiikatan pi.

Perbandingan Antara Teori Ikatan Valensi Dengan Teori Ikatan Orbital Molekul Pada beberapa bidang, teori ikatan valensi lebih baik daripada teori orbital molekul. Ketika diaplikasikan pada molekul berelektron dua, H2, teori ikatan valensi, bahkan dengan pendekatan Heitler-London yang paling sederhana, memberikan pendekatan energi ikatan yang lebih dekat dan representasi yang lebih akurat pada tingkah laku elektron ketika ikatan kimia terbentuk dan terputus. Sebaliknya, teori orbital molekul memprediksikan bahwa molekul hidrogen akan berdisosiasi menjadi superposisi linear dari hidrogen atom dan ion hidrogen positif dan negatif. Prediksi ini tidak sesuai dengan gambaran fisik. Hal ini secara sebagian menjelaskan mengapa kurva energi total terhadap jarak antar atom pada metode ikatan valensi berada di atas kurva yang menggunakan metode orbital molekul. Situasi ini terjadi pada semua molekul diatomik homonuklir dan tampak dengan jelas pada F2 ketika energi minimum pada kurva yang menggunakan teori orbital molekul masih lebih tinggi dari energi dua atom F.

Konsep hibridisasi sangatlah berguna dan variabilitas pada ikatan di kebanyakan senyawa organik sangatlah rendah, menyebabkan teori ini masih menjadi bagian yang tak terpisahkan dari kimia organik. Namun, hasil kerja Friedrich Hund,Robert Mulliken, dan Gerhard Herzberg menunjukkan bahwa teori orbital molekul memberikan deskripsi yang lebih tepat pada spektrokopi, ionisasi, dan sifat-sifat magnetik molekul. Kekurangan teori ikatan valensi menjadi lebih jelas pada molekul yang berhipervalensi (contohnya PF5) ketika molekul ini dijelaskan tanpa menggunakan orbital-orbital d yang sangat krusial dalam hibridisasi ikatan yang diajukan oleh Pauling. Logam kompleks dan senyawa yang kurang elektron(seperti diborana) dijelaskan dengan sangat baik oleh teori orbital molekul, walaupun penjelasan yang menggunakan teori ikatan valensi juga telah dibuat. Pada tahun 1930, dua metode ini saling bersaing sampai disadari bahwa keduanya hanyalah merupakan pendekatan pada teori yang lebih baik. Jika kita mengambil struktur ikatan valensi yang sederhana dan menggabungkan semua struktur kovalen dan ion yang dimungkinkan pada sekelompok orbital atom, kita mendapatkan apa yang disebut sebagai fungsi gelombang interaksi konfigurasi penuh. Jika kita mengambil deskripsi orbital molekul sederhana pada keadaan dasar dan mengkombinasikan fungsi tersebut dengan fungsi-fungsi yang mendeskripsikan keseluruhan kemungkinan keadaan tereksitasi yang menggunakan orbital tak terisi dari sekelompok orbital atom yang sama, kita juga mendapatkan fungsi gelombang interaksi konfigurasi penuh. Terlihatlah bahwa pendekatan orbital molekul yang sederhana terlalu menitikberatkan pada struktur ion, sedangkan pendekatan teori valensi ikatan yang sederhana terlalu sedikit menitikberatkan pada struktur ion. Dapat kita katakan bahwa pendekatan orbital molekul terlalu ter-delokalisasi, sedangkan pendekatan ikatan valensi terlalu ter-lokalisasi. Sekarang kedua pendekatan tersebut dianggap sebagai saling memenuhi, masingmasing memberikan pandangannya sendiri terhadap masalah-masalah pada ikatan kimia. Perhitungan modern pada kimia kuantum biasanya dimulai dari (namun pada akhirnya menjauh) pendekatan orbital molekul daripada pendekatan ikatan valensi. Ini bukanlah karena pendekatan orbital molekul lebih akurat dari pendekatan teori ikatan valensi, melainkan karena pendekatan orbital molekul lebih memudahkan untuk diubah menjadi perhitungan numeris. Namun program-progam ikatan valensi yang lebih baik juga tersedia.

Elektron Pada Ikatan Kimia Banyak senyawa-senyawa sederhana yang melibatkan ikatan-ikatan kovalen. Molekul-molekul ini memiliki struktur yang dapat diprediksi dengan menggunakan teori ikatan valensi, dan sifat-sfiat atom yang terlibat dapat dipahami menggunakan konsep bilangan oksidasi. Senyawa lain yang mempunyai struktur ion dapat dipahami dengan menggunakan teori-teori fisika klasik. Pada kasus ikatan ion, elektron pada umumnya terlokalisasi pada atom tertentu, dan elektron-elektron todal bergerak bebas di antara atom-atom. Setiap atom ditandai dengan muatan listrik keseluruhan untuk membantu pemahaman kita atas konsep distribusi orbital molekul. Gaya antara atom-atom secara garis besar dikarakterisasikan dengan potensial elektrostatik kontinum (malaran) isotropik. Sebaliknya pada ikatan kovalen, rapatan elektron pada sebuah ikatan tidak ditandai pada atom individual, namun terdelokalisasikan pada MO di antara atom-atom. Teori kombinasi linear orbital yang diterima secara umum membantu menjelaskan struktur orbital dan energi-energinya berdasarkan orbtial-orbital dari atom-atom molekul. Tidak seperti ikatan ion, ikatan kovalen bisa memiliki sifat-sifat anisotropik, dan masing-masing memiliki nama-nama tersendiri sepertiikatan sigma dan ikatan pi. Atom-atom juga dapat membentuk ikatan-ikatan yang memiliki sifat-sifat antara ikatan ion dan kovalen. Hal ini bisa terjadi karena definisi didasari pada delokalisasi elektron. Elektron-elektron dapat secara parsial terdelokalisasi di antara atom-atom. Ikatan sejenis ini biasanya disebut sebagai ikatan polar kovalen. Lihat pula elektronegativitas. Oleh karena itu, elektron-elektron pada orbital molekul dapat dikatakan menjadi terlokalisasi pada atom-atom tertentu atau terdelokalisasi di antara dua atau lebih atom. Jenis ikatan antara dua tom ditentukan dari seberapa besara rapatan elektron tersebut terlokalisasi ataupun terdelokalisasi pada ikatan antar atom

Teori Orbital Molekul Kompleks Logam Transisi Karakteristik ikatan logam transisiligan menjadi jelas dengan analisis orbital molekul dari logam 3d yang dikoordinasi oleh enam ligan yang identik, dalam kompleks [ML6]. Akibat interaksi antara logam dan ligan terbentuk orbital molekul ikatan, non-ikatan dan anti-ikatan. Umumnya, tingkat energi orbital ligans lebih rendah dari tingkat energi orbital logam, orbital ikatan memiliki karakter ligan lebih besar dan orbital non-ikatan dan anti-ikatan lebih memiliki karakter logam. Proses pembentukan orbital molekul dan dideskripsikan tahap demi tahap berikut ini. Orbital Pertama perhatikan ikatan M-L dan interaksi orbital s, p, d atom pusat dan orbital ligan dengan mengasumsikan logamnya di pusat koordinat dan ligan di sumbu-sumbu koordinat. Karena ikatan tidak memiliki simpul sepanjang sumbu ikatannya, orbital s logam (a1g, tidak terdegenerasi) orbital px, py, pz (t1u, terdegenerasi rangkap tiga) dan orbital dx2y2, dz2 (eg, terdegenerasi rangkap dua) akan cocok dengan simetri (tanda +,-) dan bentuk orbital ligan (Gambar 6.9). Bila orbitals ligan adalah 1 dan 2 di sumbu x, 3 dan 4 di sumbu y,

dan 5 dan 6 di sumbu z. Gambar 6.5, enam orbital atomik ligan dikelompokkan dengan mengkombinasikan linear sesuai dengan simetri orbital logamnya. Maka orbital yang cocok dengan orbital logam a1g adalah a1g ligan (1+2+3+4+5+6), yang cocok dengan orbital logam t1u adalah orbital ligan t1u(12, 34, 56) dan yang cocok dengan orbital logam eg adalah orbital ligan eg (1+234,25+261234). Antara orbital logam eg dan kelompok orbital ligan dan orbital molekular ikatan dan anti-ikatan akan terbentuk. Hubungan ini ditunjukkan di Gambar 6.10.

Urutan tingkat orbital molekul dari tingkat energi terendah adalah ikatan (a1g