termo2-1-bab7-2013-eksergi

Upload: muhammad-miftakhul-ulum

Post on 13-Apr-2018

255 views

Category:

Documents


2 download

TRANSCRIPT

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    1/25

    2/18/20

    TopikTopik 11

    Analisis Eksergi

    Exer Anal sis

    1

    Dosen: Dr. Ir. I Made Astina, M.Eng.

    Copyright 2006-2014, Dr. Ir. I Made Astina, M.Eng.

    TujuanTujuan PembahasanPembahasan TopikTopik iniini

    Memahami konsep dan definisi eksergi, tingkat keadaanmati (dead state) dan evaluasi eksergi

    Memahami pengembangan aliran eksergi pada sistem

    tertutup, perpindahan eksergi, dan contoh-contoh

    evaluasi dan aplikasinya.

    Memahami neraca aliran eksergi pada volume atur

    Dapat implementasi aplikasi aliran eksergi pada mesin-

    mesin konversi energi

    Memahami konsep dan dapat mengevaluasi efisiensi

    2

    Dapat mengaplikasikan konsep energi dan aspek

    ekonomi yang berkaitan dengan proses perancangan

    dalam sistem-sistem termal.

    Copyright 2006-2014 Dr. Ir. I Made Astina, M.Eng.

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    2/25

    2/18/20

    IntroduceIntroduce

    Energi dapat dikonservasikan dalam setiap peralatan ataupun

    proses. Energi yang dihasilkan dari suatu bahan bakar,elektrisitas, aliran suatu zat, dan lain-lain dapat dihitung

    sebagai suatu produk.

    What is illustrated

    in these figures?

    3Copyright 2007-2014, Dr. Ir. I Made Astina, M.Eng.

    Availability, Exergy (Kemanfaatan, Eksergi)Availability, Exergy (Kemanfaatan, Eksergi)

    Dua sistem pada tingkat keadaan berbeda, akan

    dibawa dalam suatu komunikasi untuk kerja

    Second Law of Thermodynamics

    asar, apa em ang an se aga s s em

    diperbolehkan dalam menuju kesetimbangan.

    Ketika satu dari dua sistem adalah sebuah sistem ideal

    yang disebut sebagai lingkungan dan sistem yang lain

    adalah sistem tertutup dari ketertarikan terhadap

    lin kun an.

    4

    Eksergi didefinisikan sebagai kerja teoritik maksimum

    yang dapat diperoleh sistem keseluruhan yang

    berisikan sistem dan lingkungan karena sistem menuju

    kesetimbangan dengan lingkungan.

    Copyright 2008-2014, Dr. Ir. I Made Astina, M.Eng.

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    3/25

    2/18/20

    Tingkat Keadaan Mati (Tingkat Keadaan Mati (Dead StateDead State))

    Suatu keadaan dengan besaran keadaan tetap dari suatu zatdengan suatu kesetimbangan yang dikhayalkan dan dibatasi

    dalam kurungan tak tembus aliran massa, dan relatif diam

    terhadap lingkungan, kondisi ini disebut sebagai tingkat

    keadaan mati.

    No interaction between system and environment and no

    potential for developing work.

    5Copyright 2007-2014 Dr. Ir. I Made Astina, M.Eng.

    Dead State

    Exergy DiagramExergy Diagram

    6

    Exergy is a function of the state of the surroundings as well

    as the state of the system.

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    4/25

    2/18/20

    Perubahan Energi Lingkungan

    7

    eoeoe VpSTU =

    Exergy EvaluationExergy Evaluation

    )()()(E ooooo SSTVVpUE +=

    Eksergi dari suatu sistem dievaluasi dengan hubungan:

    PEKEUE ++= Energi

    V Volume

    S

    8

    Uo

    Vo

    So

    po

    ToTingkat Keadaan Mati

    Copyright 2008-2014, Dr. Ir. I Made Astina, M.Eng.

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    5/25

    2/18/20

    Specific ExergySpecific Exergy

    Meskipun eksergi adalah sifat ekstensif, sifat ini juga dapat diubahmenjadi sifat intensif. Hubungannya menjadi:

    gz2

    )()()(e +++= ooooo ssTvvpuu

    Divided by mass to find intensive properties!

    9

    Energy and Exergy ComparisonEnergy and Exergy Comparison

    10

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    6/25

    2/18/20

    Take Note!Take Note!

    In this course, E and e are used for exergy and specific exergy,

    whileEand e denote energy and specific energy, respectively.

    .

    approximate concept, exergy or energy will be clear in the

    context.

    Be care with the symbol. Third edition and before using A

    and a for exergy

    11

    Copyright 2008-2014, Dr. Ir. I Made Astina, M.Eng.

    Example 1Example 1

    It is known that the air inner

    piston-cylinder assembly as

    shown in the fi ure. Calculate the

    exergy and specific exergy, and

    take the dead state, To=300 K and

    po=1.01325 bar

    Assumption?

    12

    Copyright 2007-2014 Dr. Ir. I Made Astina, M.Eng.

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    7/25

    2/18/20

    Exergy Balance DevelopmentExergy Balance Development

    First and Second Laws

    =2

    12 WQEE

    1

    +=2

    112

    T

    QSS

    =2 2

    1212 )()(

    ooo TWQ

    TQSSTEE

    13

    Exergy Balance for close system becomes

    Copyright 2008-2014, Dr. Ir. I Made Astina, M.Eng.

    1 1 b

    =2

    11212 )1()(EE o

    b

    oo TWQ

    T

    TVVp

    Neraca Eksergi Sistem TertutupNeraca Eksergi Sistem Tertutup

    =2

    11212 ))(()1(EE oo

    b

    o TVVpWQT

    T

    Ed>0 : ada ireversibilitas pada sistem

    Exergy ChangeExergy Transfer

    Exergy

    Destruction

    T=E

    14

    Ed= 0: tidak ada ireversibilitas o

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    8/25

    2/18/20

    Exergy Transfer Accompanying HeatExergy Transfer Accompanying Heat

    QT

    T

    b

    o

    = 1Eq

    15

    Copyright 2007-2014 Dr. Ir. I Made Astina, M.Eng.

    Exergy of WorkExergy of Work

    ( )12wE VVpW o =

    16

    Copyright 2007-2014 Dr. Ir. I Made Astina, M.Eng.

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    9/25

    2/18/20

    Exergy Rate for Closed SystemExergy Rate for Closed System

    dE)()1(E

    &&& =dt

    dVpWQ

    T

    T

    dt

    doj

    o

    Steady State0

    E=

    dt

    d

    17

    &&

    od T=

    E

    Example 2Example 2

    Takepo=101325

    Pa and To=300 K.

    Find exergy

    destruction in the

    wall?

    18

    Hint: =e

    e

    b

    o

    i

    i

    b

    o QT

    TQ

    T

    T&&& )1()1(Ed

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    10/25

    2/18/20

    Flow ExergyFlow Exergy

    19

    )(E 12w VVpW o =

    Exergy transfer accompanying work

    Exergy Balance Development for Control VolumeExergy Balance Development for Control Volume

    Exergy transfer accompanying work

    ( )eoe vpmW=

    Time rate of the exergy transfer accompanying work

    ( )eoe

    tt

    vpt

    m

    t

    W

    =

    limlim

    00

    W&

    On the other hand:

    20

    eeet vpmt = m0

    ( ) ( )eoeeoe

    t

    vpmvpt

    m&=

    lim

    0

    Copyright 2007-2014 Dr. Ir. I Made Astina, M.Eng.

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    11/25

    2/18/20

    ContdContd

    Time rate of energy transfer accompanying mass flow

    ++= gzVum

    2

    2

    &

    me rate o exergy trans er accompany ng mass ow

    Time rate of exergy transfer accompanying mass flow and flow work

    ( ))()()( ooooo ssTvvpuem += &

    )(e vppv o+=

    21

    gz2

    )()()(e2

    +++= V

    ssTvvpuuooooo

    gz2

    )()(e2

    ++= V

    ssThh ooo

    Exergy Rate Balance for Control VolumeExergy Rate Balance for Control Volume

    +

    =e

    dfee

    iifi

    cvocv

    j

    j

    j

    o mmdt

    dVpWQ

    T

    T

    dt

    dEee1

    Ecv &&&&&

    0E

    ==dVd

    cvcv Steady State

    22

    ( ) dffcvo mWQT

    TEee10

    21

    &&&& +

    =

    +

    =

    e

    dfee

    iificv

    j

    j

    j

    o mmWQT

    TEee10 &&&&&

    By taking single inlet denoted as 1 and single outlet denoted as 2

    where

    22

    )(2

    )()(ee 2121212121 zzgssThh off ++=

    &&od T=E

    Exergy destruction rate can also be evaluated from the second law

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    12/25

    2/18/20

    Example 3Example 3

    A rigid tank is divided into two equal parts by a partition.One part is filled with 1.5 kg of compressed liquid water

    at 300 kPa and 60oC, while the other side is evacuated.

    The partition is removed and water expands into the

    entire tank so that the pressure becomes 15 kPa.

    Determine the exergy destroyed during the process.

    23

    SolutionSolution

    24

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    13/25

    2/18/20

    Solution (contd)Solution (contd)

    25

    Example 4Example 4

    An insulated cylinder is initially filled with saturated

    liquid water at 150 kPa. Initial volume of the cylinder

    is 0.02 m3.The water is heated electrically (2200 kJ)

    at constant pressure. Determine the minimum work

    by which this process can be accomplished and the

    exergy destroyed.

    26

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    14/25

    2/18/20

    SolutionSolution

    27

    Solution (contd)Solution (contd)

    28

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    15/25

    2/18/20

    Example 5Example 5

    An insulated cylinder is initially filled with saturated

    - . .

    a reversible manner until the pressure drops to 0.2

    MPa. Determine the change in the exergy of the

    refrigerant during this process and the reversible

    work.

    29

    SolutionSolution

    30

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    16/25

    2/18/20

    Solution (contd)Solution (contd)

    31

    Second Law (Exergetic) EfficiencySecond Law (Exergetic) Efficiency

    Untuk sistem tertutup

    yang menerima panas

    dengan laju Qs pada Ts

    panas Qu pada Tu, serta

    sejumlah panas dibuang

    ke lingkungan Ql pada Tl

    dE&&&&

    32

    dt us

    dE111E

    =

    dt

    dVpWQ

    T

    TQ

    T

    TQ

    T

    T

    dt

    dol

    l

    ou

    u

    os

    s

    o &&&&

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    17/25

    2/18/20

    Second Law (contd)Second Law (contd)

    Untuk kondisi tunak dan tidak ada interaksi kerja

    lus QQQ &&& +=

    dl

    l

    ou

    u

    os

    s

    o QT

    TQ

    T

    TQ

    T

    TE111 &&&& +

    +

    =

    s

    u

    Q

    Q

    &

    &

    =sso

    uuo

    QTT

    QTT

    &

    &

    )/1(

    )/1(

    =dan

    33

    =

    so

    uo

    TT

    TT

    /1

    /1

    The second-law efficiency is a measure of the

    performance of a device relative to its performance

    under reversible conditions. It differs from the first-law

    Second Law (Contd)Second Law (Contd)

    .

    Verify!

    ?revthth

    ,

    =

    34

    =

    ==

    H

    Lin

    cv

    in

    H

    o

    ocvw

    T

    TQ

    W

    QT

    T

    dt

    dVpW

    11E

    E

    in &

    &

    &

    &

    &

    &

    In case: dV/dt= 0 and TL=To

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    18/25

    2/18/20

    Definition of Second Law EfficiencyDefinition of Second Law Efficiency

    General definition

    Work-Producing Device

    Work-Consuming device In next slide, the

    second law efficiency

    35

    Refrigerator and Heat Pump

    w e er ve rom

    the exergy balance for

    each component

    Turbine EfficiencyTurbine Efficiency

    cvdffcvjo mWQ

    T

    TE)ee(10 21&&&& +

    =j

    cvdcvff Wm E)ee( 21

    &&& +=

    cv

    mW

    = &&

    36

    21 ee ff

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    19/25

    2/18/20

    Pump and Compressor EfficienciesPump and Compressor Efficiencies

    cvd Wm &&& =+ E)ee( 12

    Wcv

    ff

    &

    &

    = 12

    ee

    37

    m

    Unmixed Heat ExchangerUnmixed Heat Exchanger

    34 mc

    cvdfcfhfcfhcv

    j

    j

    j

    o mmmmWQT

    TE)ee()ee(10 4231&&&&&&& +++

    =

    &&&

    1 2mh

    38

    cvdffcffh mm eeee 3421 +=

    )ee(

    )ee(

    21

    34

    ffh

    ffc

    m

    m

    =

    &

    &

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    20/25

    2/18/20

    Mixed Fluid Heat ExchangerMixed Fluid Heat Exchanger

    2

    3

    mm Eeeee &&& +=

    cvdfchfcfhcv

    j

    j

    j

    o mmmmWQT

    TEe)()ee(10 321&&&&&&& +++

    =

    39

    cv

    )ee()ee(

    31

    23

    ffh

    ffc

    mm

    =

    &

    &

    Valve and Nozzle EfficienciesValve and Nozzle Efficiencies

    inlet

    exit

    E

    E

    &

    &

    =

    40

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    21/25

    2/18/20

    Example 6Example 6

    41

    TermoeconomicsTermoeconomics

    42

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    22/25

    2/18/20

    Economic BehaviorEconomic Behavior

    43

    Exergy FlowExergy Flow

    44

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    23/25

    2/18/20

    Example 7Example 7

    Steam is accelerated in an adiabatic nozzle. Thesteam enters at 3.5 MPa, 300oC and exits at 1.6 MPa,

    250oC. Determine the exit velocity, the rate of exergy

    destruction, and the second-law e iciency.

    Steady state

    Potential ener chan e are ne lected

    Assumption:

    45

    Velocity of steam at entrance is small -> zero

    Analyzed as volume control

    SolutionSolution

    46

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    24/25

    2/18/20

    Solution (contd)Solution (contd)

    47

    Example 8Example 8

    Refrigerant-134a is expanded adiabatically in an

    expansion valve from 1.2 MPa, 20oC to 180 kPa. Dead

    state is taken at 100 kPa, 20oC. Determine the work

    - , ,

    the second-law efficiency.

    48

  • 7/27/2019 Termo2-1-Bab7-2013-Eksergi

    25/25

    2/18/20

    SolutionSolution

    49

    SummarySummary

    Exergy concept was introduced in this chapter. It

    includes development of exergy balance. Exergy

    anal sis exam les were also ex lained. Economic

    and exergy analysis was also considered to motivate

    the further study and application of thermo-

    economics.

    50