solidifikasi

18
10/1/15 1 Proses SOLIDIFIKASI 1 Bagaimana material membeku? Apabila material (logam atau bukan logam) dalam kondisi cair diturunkan temperaturnya, maka energi kinetik rata-ratanya turun dan akan menyebabkan membekunya material tersebut. 2

Upload: frankypakpahan

Post on 20-Feb-2016

227 views

Category:

Documents


9 download

DESCRIPTION

Pembekuan

TRANSCRIPT

Page 1: Solidifikasi

10/1/15

1

Proses  SOLIDIFIKASI  

1

Bagaimana  material  membeku?  

Apabila material (logam atau bukan logam) dalam kondisi cair diturunkan temperaturnya, maka energi kinetik rata-ratanya turun dan akan menyebabkan membekunya material tersebut.

2

Page 2: Solidifikasi

10/1/15

2

Pembentukan nuklei (bibit) ! Molekul (atom) umumnya dapat bergerak

bebas, tapi kadang kala ada yang saling bersatu (lengket)

! Pada energi kinetik yang lebih rendah, molekul akan lebih banyak bersatu lagi (bertempelan) satu dengan lainnya

3

1-Oct-15

4

SEBUAH INTERFACE TERBENTUK KETIKA PADATAN MEMBEKU DARI CAIRAN

Page 3: Solidifikasi

10/1/15

3

Artinya …..

Ò Besarnya perubahan energi bebas untuk sistem adalah jumlah dari 2 faktor, yaitu volume dan luas permukaan.

Ò   ΔG  =  4/3  π r  3ΔGv    +    4π r  2σ Ò Energi bebas volume naik jika radius/jari

jari pangkat tiga bertambah Ò Energi bebas permukaan meningkat jika

jari jari kwadrat bertambah

5

6

o  Penghalusan Butir - Penambahan nukleus/bibit pembekuan secara heterogen dan terkendali dapat meningkatkan jumlah butir yang terbentuk dalam pembekuan pada proses pengecoran.

o  Penyebaran Kekuatan – peningkatan kekuatan tarik dengan membuat dislokasi sulit bergerak, yaitu dengan memberikan cluster kecil dengan paduan elmen lain

o  Transformasi Fasa dalam Kondisi Padat- perubahan fasa yang terjadi pada kondisi padat

o  Proses Pembekuan Secara Cepat – menghasilkan struktur material yang unik dengan memberikan kecepatan pendinginan yang sangat tinggi selama pembekuan

MEKANISME PENGUATAN LOGAM

Page 4: Solidifikasi

10/1/15

4

7

o Specific heat – panas yang dibutuhkan untuk mengubah temperatur dari unit berat material satu derajat

o Solidification front - Interface antara solid dan liquid.

o Planar growth – pertumbuhan halus dari solid-liquid interface selama pembekuan

o Dendrite – struktur padatan seperti pohon cemara yang tumbuh ketika cairan membeku

ISTILAH DALAM PEMBEKUAN

Mengapa terjadi proses pembekuan?

•  Energi dari phasa kristal (padat) < energi dari phasa cair

•  Beda energi tersebut disebut energi volume bebas (ΔGv)

•  Dengan berkembang tumbuhnya phasa padat tersebut, jumlah energi volume bebas akan bertambah …….

•  Tetapi nilainya negatif 8

Page 5: Solidifikasi

10/1/15

5

Tetapi……

•  Saat pembentukan phasa padat tersebut, terbentuk suatu “batas antar permukaan” (interface) antar kedua phasa tersebut

•  Energi bebas permukaan, σ berhubungan dengan interface ini

•  Ketika fasa padat tumbuh, jumlah energi bebas permukaan naik dan….

•  Nilainya positive…. 9

1-Oct-15 10

Jumlah energi bebas dari sistim solid-liquid berubah dengan ukuran padatan. Padatan menjadi embrio jika radius lebih kecil dari radius kritis, dan jadi bibit (nucleus) jika radiusnya lebih besar dari radius kritis.

Page 6: Solidifikasi

10/1/15

6

Apa artinya …….

"  JIKA HANYA BEBERAPA MOLEKUL YANG SALING MELEKAT (JUMLAH INTI KURANG) MAKA MEREKA AKAN LARUT KEMBALI

"  JIKA JUMLAH MOLEKUL YANG SALING MELEKAT CUKUP, EMBRIO AKAN TUMBUH

11

Nukleasi Homogen v This process is called homogeneous

nucleation v Hanya terjadi jika material very pure v Ukuran jari-jari kritis dari inti: r*  =  2  σ Tm  /  (ΔHf  *  ΔT)  

v   ΔT  à undercooling v Undercooling material umumnya 50 - 500

degrees C.

12

Page 7: Solidifikasi

10/1/15

7

Nukleasi Heterogen •  Nukleasi homogen umumnya terjadi di

lab.

•  Impurities provide a “seed” for nucleation

•  Solidification can start on a wall.

•  It’s like cloud seeding, or water condensing on the side of a glass.

•  Adding impurities on purpose is called inoculation

13

Ukuran Butir

•  Solidification caused by homogeneous nucleation occurs suddenly and only produces a few grains

•  In heterogeneous nucleation, solidification occurs on many “seeds”, so the grains are smaller, and more uniform

•  Which will be stronger?

14

Page 8: Solidifikasi

10/1/15

8

Pertumbuhan Butir & Solidifikasi •  If a melt is cooled slowly, and the

temperature is the same throughout, solidification occurs with equal probability everywhere in the melt. However….

•  Metals are usually cooled from the container walls – so solidification starts on the walls

15

Panas Peleburan

Ò When the liquid solidifies, energy must be removed.

Ò In planar growth the energy is conducted into the solid and out through the walls of the container.

16

Page 9: Solidifikasi

10/1/15

9

Apa yang terjadi jika logam cor tidak diberi inokulasi?

•  Solidification starts on the walls. •  The surrounding liquid is supercooled,

so the solid quickly grows, but… •  All that heat that is evolved is hard to

conduct away. •  Some of it is absorbed by the

surrounding liquid…which then heats up.

17

Pembentukan Dendrit

•  All that heat raises the melt temperature near the wall above the freezing point.

•  The solid grows out away from the wall, “looking” for cooler metal.

18

Solid Liquid

Page 10: Solidifikasi

10/1/15

10

Dendrit •  Dendrites form as the metal solidifies

out into the melt, leaving molten metal behind, that has been reheated from the heat evolved in the solidification process.

•  Dendrite formation is common, even in inoculated melts, however the better a melt is inoculated, the fewer dendrites

19

Casting: Solidification •  Grains perpendicular to wall shut-off other grains, so columnar structure naturally develops perpendicular to mold wall. •  Grain boundaries tend to be weak à columnar castings tend to be brittle (unless loaded parallel to the column direction, as in turbine blades). •  Equiaxed structure usually preferred for strength, can be achieved with innoculating agents and/or fast cool.

Page 11: Solidifikasi

10/1/15

11

Segregasi

21

1-Oct-15

22

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.

(a) Shrinkage can occur between the dendrite arms. (b) Small secondary dendrite arm spacings result in smaller, more evenly distributed shrinkage porosity. (c) Short primary arms can help avoid shrinkage. (d) Interdendritic shrinkage in an aluminum alloy is shown (x 80)

Page 12: Solidifikasi

10/1/15

12

1-Oct-15

23

24

(a)   The secondary dendrite arm spacing (SDAS).

(b)   (b) Dendrites in an aluminum alloy (x 50). (From ASM Handbook, Vol. 9, Metallography and Microstructure (1985), ASM International, Materials Park, OH 44073-0002.)

Page 13: Solidifikasi

10/1/15

13

Secondary Dendrite Arm Spacing

•  The faster cooled off the liquid, the shorter the spacing between the arms

•  Small SDAS results in higher tensile strength and yield strength (Why?)

•  Very fine SDAS can be produced by cooling the metal as droplets

25

26

o  Recalescence - The increase in temperature of an undercooled liquid metal as a result of the liberation of heat during nucleation.

o  Thermal arrest - A plateau on the cooling curve during the solidification of a material caused by the evolution of the latent heat of fusion during solidification.

o  Total solidification time - The time required for the casting to solidify completely after the casting has been poured.

o  Local solidification time - The time required for a particular location in a casting to solidify once nucleation has begun.

Cooling Curves

Page 14: Solidifikasi

10/1/15

14

27

©20

03 B

rook

s/C

ole,

a d

ivis

ion

of T

hom

son

Lear

ning

, Inc

. Th

omso

n Le

arni

ng™

is a

trad

emar

k us

ed h

erei

n un

der l

icen

se.

(a) Cooling curve for a pure metal that has not been well inoculated. Liquid cools as specific heat is removed (betweens points A and B). Undercooling is thus necessary (between points B and C). As the nucleation begins (point C), latent heat of fusion is released causing an increase in the temperature of the liquid. This process is known as recalescence (point C to point D). Metal continues to solidify at a constant temperature (T melting). At point E, solidification is complete. Solid casting continues to cool from the point. (b) Cooling curve for a well inoculated, but otherwise pure metal. No undercooling is needed. Recalescence is not observed. Solidification begins at the melting temperature

Kurva  Pendinginan  Logam  Murni  •  A pure metal solidifies at a constant

temperature equal to its freezing point (same as melting point)

Page 15: Solidifikasi

10/1/15

15

Pembekuan  Paduan  •  Most alloys freeze over a temperature range

rather than at a single temperature

(a) Phase diagram for a copper‑nickel alloy system and (b) associated cooling curve for a 50%Ni‑50%Cu composition during casting.

Three Cast Structures of Solidified Metals • FIGURE 5.8 Schematic illustration of three cast structures of metals solidified in a square mold: • (a) pure metals; • (b) solid-solution alloys; and • (c) the structure obtained by heterogeneous nucleation of grains, using nucleating agents.

Page 16: Solidifikasi

10/1/15

16

31

o  Chill zone - A region of small, randomly oriented grains that forms at the surface of a casting as a result of heterogeneous nucleation.

o  Columnar zone - A region of elongated grains having a preferred orientation that forms as a result of competitive growth during the solidification of a casting.

o  Equiaxed zone - A region of randomly oriented grains in the center of a casting produced as a result of widespread nucleation.

Struktur Coran

Cacat Solidifikasi

Ò Shrinkage É Cavities É Pipes É Control with a riser

Ò Gas Porosity É Gas may be dissolved in the melt,

then trapped in the solid

Ò Interdendritic Shrinkage

32

Page 17: Solidifikasi

10/1/15

17

1-Oct-15

33

34

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.

Several types of macroshrinkage can occur, including cavities and pipes. Risers can be used to help compensate for shrinkage

Page 18: Solidifikasi

10/1/15

18

Waktu  Solidifikasi  •  SolidificaIon  takes  Ime  •  Total  solidificaIon  Ime  TTS  =  Ime  required  for  casIng  to  solidify  aMer  pouring  

•  TTS    depends  on  size  and  shape  of  casIng  by  relaIonship  known  as  Chvorinov's  Rule  

     where  TST  =  total  solidificaIon  Ime;  V  =  volume  of  the  casIng;  A  =  surface  area  of  casIng;  n  =  exponent  with  typical  value  =  2;  and  Cm  is  mold  constant.  

n

m AVCTST ⎟⎠⎞

⎜⎝⎛=

Konstanta  Cetakan  dalam    Chvorinov's  Rule  

•  Konstanta Cetakan Cm tergantung pada: –  Mold material –  Thermal properties of casting metal –  Pouring temperature relative to melting point

•  Value of Cm for a given casting operation can be based on experimental data from previous operations carried out using same mold material, metal, and pouring temperature, even though the shape of the part may be quite different