sitologi

Upload: mignonne13

Post on 18-Jul-2015

387 views

Category:

Documents


2 download

TRANSCRIPT

SITOLOGI PENDAHULUAN Kata Histology berasal dari bahasa Yunani yaitu dari akar kata Histos yang berarti jaringan dan kata Logia/Logos yang berarti ilmu pengetahuan/ ilmu yang mempelajari. Jadi secara harafiah dapat diartikan bahwa Histology adalah ilmu pengetahuan yang mempelajari tentang jaringan. Dari pengertian tersebut kemudian muncul suatu pertanyaan, yakni apa yang tercakup dalam istilah histology dewasa ini ? Setelah ditelusuri lebih jauh ternyata Anatomi dapat dikelompokkan menjadi dua kelompok. Kelompok pertama adalah Anatomi Makroskopik yang artinya struktur tubuh yang dapat dilihat dengan mata telanjang, kelompok kedua Anatomi Mikroskopik artinya struktur tubuh yang hanya dapat dilihat dengan memakai alat bantu yaitu mikroskop. Anatomi mikroskopik dikenal dengan istilah Histologi. Materi pembahasan pada anatomi mikroskopik dikelompokkan menjadi tiga. Kelompok pertama adalah Histology (ilmu yang mempelajari tentang jaringan), kelompok kedua adalah Organology (ilmu yang mempelajari tentang organ), dan kelompok ketiga adalah Sitology (ilmu yang mempelajari tentang seluk beluk sel). Kelompok ketigan ini (sitologi) merupakan cikal bakal perkembangan ilmu-ilmu lain yang berhubungan dengan struktur molekuler sel, misal, ilmu Biology Molekuler. Ilmu Biology Molekuler dalam penerapan sering digunakan dalam teknology dibidang kedokteran yaitu Teknik Rekayasa Genetika. Jadi Histologi tidak hanya mempelajari mengenai jaringan/organ juga mempelajri sel baik itu struktur baupun fungsinya, bahkan mempelajari sampai ketingkan sel/molekuler. Oleh karena itu histology merupakan dasar dari ilmu-ilmu yang lain seperti : Patology, VirologylImunology, Biok.imia, fisiolgy dll. BAB II SITOLOGI Sitologi berasal dari akar kata cytos yang artinya cel dan logos artinya ilmu pengetahuan. Jadi sitologi berarti ilmu yang mempelajari tentang sel. Definisi sel adalah sel merupakan unit struktural yang terkecil dari mahluk hidup yang terdiri dari segumpal protoplasma dan inti sel. Selanjutnya seiring dengan perkembangan ilmu pengetahuan sehingga pada tahun 1930 ditemukan mikroskop elektron. Definisi sel selanjutnya berbunyi Sel adalah merupakan unit struktural dan fungsional yang terkecil yang mampu hidup di dalam suatu lingkungan yang mati . Tanda-tanda sel itu hidup ada beberapa kriteria antara lain: 1. Sel dapat bersifat iritabel, artinya sel dapat menujukkan respon terhadap stimuli baik secara kimiawi maupun listrik. Contohnya adalah sel saraf dan sel otot. 2. Sel dapat bersifat konduktivitas, artinya sel mampu meneruskan rangsangan. Contohnya sel saraf dan sel otot. 3. Sel dapat bersifat kontraktivitas, artinya sel dapat memendekkan protoplasma ke satu arah (terlihat saat pembelahan sel) 4. Sel dapat bersifat absorbsi, sifat ini dapat dimiliki oleh semua jenis sel.

5. Sel mempunyai sifat sekresi, sifat ini paling baik dimuliki oleh sel-sel kelenjar, selain itu juga mempunyai sifat ekskresi. Contoh sel yang kurang/tidak mempunyai sifat ini adalah sel otot dan sel saraf. 6. Sel mempunyai kemampuan respirasi, artinya sel mempunyai kemampuan menangkap oksigen untuk kebutuhan metabolisme di dalam sel. 7. Sel mempunyai sifat pertumbuhan dan perbanyakan, perbanyakan sel berarti dapat membelah diri dan selama perkembangannya dapat menjadi banyak bentuk sifat ini disebut multipoten. Contoh sel yang bersifat multipoten adalah sel mesenchym yang pada akhirnya mengalami defrensiasi artinya sel tersebut telah menuju suatu proses spesialisasi dan bertambah besar. Kegiatan/perubahan-perubahan yang terjadi pada protoplasma/sitosol dapat terlihat secara langsung pada mahluk bersel satu, tapi pada mahluk tingkat tinggi hal tersebut sulit dilihat, hal ini dikarenakan sel tersebut mengalami spesialisasi sel. Akibat spesialisasi sel maka terjadi antara lain: 1. Terjadi hubungan yang erat antara bentuk dan fungsinya. 2. Bagian-bagian tubuh menjadi tergantung satu dengan yang lainnya. 3. Hilangnya potensi sel, artinya hilangnya kemampuan sel untuk berubah bantuk. Di alam semesta ini kita mengenal 2 jenis sel bila dilihat struktur selnya (inti sel) yaitu : 1. Sel prokariota, tipe sel ini mempunyai inti tidak sejati atau tidak mempunyai inti. Di dalam inti sel tidak ada/ada bagian-bagian sel yang tidak jelas. Tipe sel ini dapat dijumpai pada sel bakteri atau sel darah merah (erytrocyt). Sel Prokariota mempunyai struktur internal yang sangat sederhana seperti:

Tidak mempunyai organel yang terbungkus membran. Tidak mempunyai inti sel yang terbungkus membran. Struktur DNA tidak membentuk komplek dengan Histon

2. Sel Eukariota, sel ini mempunyai inti sel sejati. Contoh sel tanaman, sel mahluk hidup tingkat tinggi. Inti sel eukariota di dalamnya dijumpai: Chromatin: merupakan serabut-serabut DNA yang secara erat terikat dengan histon.

Jadi pada hewan tingkat tinggi di dalam tubuhnya terdapat tiga jenis sel yaitu: 1. Sel-sel yang sudah ada sejak lahir. Sel seperti ini sudah mempunyai spesialisasi yang sangat tinggi dan semakin bertambahnya umur maka jumlahnya juga makin berkurang. Jenis sel-sel seperti ini dijumpai pada sel-sel otak, sel-sel ovum. 2. Sel-sel yang dalam perkembangan selanjutnya akan mengalami proses defrensiasi secara bertahap dan kontinyu, namun setelah sel tersebut sudah mencapai umur tertentu maka sel itu akan dilepaskan dari tubuh. Contoh, sel epitel pada saluran cerna, epitel vesica urinaria, sel epitel kulit. 3. Ada juga sel-sel yang sudah mengalami spesialisasi tinggi, tapi dalam keadaan tertentu dapat menjadi muda lagi. Contoh sel-sel pada organ hati, sel-sel organ kelenjar.

MORFOLOGI SEL Pada mahluk tingkat tinggi terdapat berjuta-juta sel yang berbeda bentuk, ukuran, isi sel, dan afinitasnya terhadap berbagai macam zat warna. Pada sel yang masih hidup aktivitas isi sel (sitoplasma) tidaklah tetap melainkan selalu berubah-ubah sesuai dengan aktivitas sel tersebut, Ukuran sel tidaklah tetap juga tergantung dari aktivitas sel saat itu, sel yang aktif atau sel yang sedang istirahat (stadium interpase) berbeda ukurannya maupun bentuknya. Namun demikian sudah ada patokan rentang besarang ukurannya, misal: sel eritrosit ( 3 20 mikron ), sel leukosit ( 8 20 mikron ), sel ovum mamalia ( 100 150 mikron ), sel otot polos panjangnya ( 15 200 mikron ). SITOPLASMA Sitoplasma umumnya terlihat homogen tapi pada beberapa daerah ada terlihat granuler, fibriler atau vakuoler. Sitoplasma sebenarnya mengandung berbagai bangunan kecil yang fungsinya berbeda-beda pula, hal inilah yang menujukkan perbedaan penampilan sitoplasmanya pada saat pengecatan sel. Perbedaan penampilan ini dikarenakan dikarenakan variasi jumlah dan jenis organel yang terkandung di dalam sitoplasma. Pada sel hidup istilah cytoplasmic matrix juga disebut hyaloplasmic. Hyaloplasma berdasarkan komposisi penyusun dan kepekatan (struktur) yaitu: 1) Ektoplasma : terletak di bagian perifir dari sitoplasma (dekat dengan membran sel), mempunyai konsistensi kekentalan yang sangat pekat berbentuk gel ( jel ). Pada cairan ini tidak dijumpai/bebas dengan adanya organel-organel sel maupun benda-benda inklusi, selain itu cairan ini mempunyai sifat tiksotropi artinya cairan tersebut dapat berubah konsistensinya menjadi lebih pekat daripada gel yang disebut sol. Konsistensi seperti sol ini sifatnya revelsibel.

Perubahan tiksotropi ini terjadi apabila sel tersebut terkena pengaruh mekanik dari luar sel. Contoh sel yang mempunyai kemampuan tiksotropi yang tinggi adalah sel amuba, sel-sel yang mempuyai sifat fagositik ( leukosit, makrofag, sel RES, gian cel, plasma sel, dll. ). 2) Endoplasma : letaknya ada di sebelah dalam dari ektoplasma. Cairan ini mempunyai sifat konsistensi lebih cair dibandingkan dengan gel tapi lebih pekat daripada air, selain itu cairan ini tidak mempunyai sifat tiksotropi. Cairan ini mengandung/dijumpai adanya organel-organel sel dan cytoplasmic inclution. Organel-organel ini disebut organoid ( organelles ). Jadi organoid tidak lain adalah merupakan benda-benda kecil yang tetap berada di dalam sel dan terorganisasi yang mempunyai fungsi spesifik untuk proses metabolisme dalam mengatur kelangsungan kehidupan sel.

Organel-organel tersebut dapat dikelompokkan menjadi 2 yaitu: A. Organella yang terbentuk dari membran (mempunyai membran)

1) Membran sel Pada sel hewan dinding sel disebut dengan membran sel kerena komposisi penyusunnya sebagian besar berupa lipid. Membran sel ini disebut juga dengan istilah membran plasma / plasmalemma. Beberapa peneliti (buku) plasmalemma tidak digolongkan ke dalam organoid, namun ada juga beberapa peneliti memasukkan ke dalam golongan organoid, hal ini dilihat dari strutur dan fungsinga yakni berperan pada saat pembelahan sel, regenerasi sel, dan penyerapan zat. Penyerapan/masuknya zat berupa cairan ke dalam sel disebut pinositosis dan masuknya materi berupa benda sifatnya tetap disebut fagosistosis. Sifat-sifat membran sel antara lain: Mempunyai permiabilitas yang sangat tinggi

Tersusun dari 3 komponen :1) lipid ( phospolipid, glikolipid, cholesterol) 2) protein ( proteni integral, protein periferal ) 3) karbohidrat ( karbohidrat dapat terikat dengan protein maupun lipid ). Mempunyai kemampuan untuk mengontrol terhadap keluar masuknya informasi dari maupun ke dalam sel Mempunyai active site untuk proses transformasi energi Membran sel terlalu tipis untuk dilihat dengan mikroskop cahaya karena membran sel mempunyai ketebalan antara 8 10 nm. Dengan ketebalan tersebut tidak tampak pada pemeriksaan mikroskop kecuali potongannya sedikit miring, namun dengan mikroskop elektron membran sel mudah terlihat. Dengan menggunakan mikroskop elektron ternyata membran sel terlihat 3 lapis, hal ini sesuai dengan prinsip mikroskop elektron apa bila materi itu padat elektron akan terlihat gelap sedangkan bila kurang padat elektron terlihat terang. Karena terlihat seperti tersusun 3 lapis maka disebut juga tri laminar membran yakni pada bagian luar yang tersusun oleh lipid yang kepekatan elektronnya lebih tinggi maka akan terlihat gelap, pada bgian tengah kepadatan elektronnya rendah terlihat lebih terang, dan pada bagian dalam tersusun juga oleh lipid maka terlihat pula belap. Dengan seiring perkembangan ilmu pengetahuan ternyata membran sel dapat dipisahkan dengan zat ditergen. Hasil pemisahan tersebut ternyata membran sel terdiri dari dua lapis rantai lipid yaitu asam lemak rantai panjang tidak jenuh (lipid acid ansaturated) dan protein. Phospolipid struktur molekulnya ada yang bersifat polar (dapat dilalui air) yang menghadap keluar (digambarkan sebagai kepala) dan satu lagi bersifat non-polar (tidak dapat ditembus air) yang berada di sebelah bawahnya (digambarkan sebagai ekor). Lapisan lipid yang satunya (di bawah) letaknya terbalik yakni non-polar menghadap ke luar (atas) dan gugus polar menghadap ke dalam (bawah). Teori ini yang sampai kini diyakini kebenarannya yaitu teori Bilayer Lipid. Jadi sifat hydrophylic ada disebelah luar (karena gugus polar dari phospolipid) dan sifat hydrophobic ada disebelah dalam (karena gugus nonpolar dari rantai hidrokarbon) ini terdapat pada membran bagian luar sedangkan membran bagian dalam posisinya terbalik. Protein membran berfungsi sebagai: - sebagai pompa ion - sebagai ion cenel (pintu gerbang) - sebagai enzim - sebagai reseptor - sebagai perekat/penghubung antar sel

Gugus karbohidrat terikat pada protein/lipid yang menonjol ke permukaan sel disebut glikokalik (extrinsic cell coat), karbohidrat berperan untuk membantu protein dalam kemampuannya untuk mengenal sesuatu, sehingga cell coat tersebut berfungsi sel menjadi bersifat selektif dan permiabel, sifat spesifik, dan sifat adhesif (melekat).

GAMBAR: foto mikroskop elektron membran sel

2) Retikulum Endoplasmik Retikulum endoplasmik terdapat dua bentuk yang berbeda baik struktur maupun fungsinya yakni yang berbentuk butiran-butiran kasar disebut Rough endoplasmik retikulum (RER) dan satunya lagi berbentuk buluh/gelembung disebut smooth endoplasmik (SER) berupa butiran halus. Smooth endoplsmik dapat juga berbentuk gelembung pipih (cysternae) yang membentuk suatu jalinan disebut retikulum. Perkembangan teori terkhir ternyata retikulum endoplasmik dianggap sebagai proliferasi dari kerioteka interna (membran inti bagian luar). Dengan pengecatan HE akan memberikan kesan warna biru/violet (sifat basa) sehingga disebut juga komponen basofil sitoplasma, ini terlihat jelas pada sel-sel otot (disebut ergastoplasma) selain itu juga terlahat jelas pada sel kelenjar. Pada sel saraf retikulum endoplasmik disebut benda-benda Nissl. Rough Endoplasmik retikulum (RER) diidentikkan dengan ribosoma. RIBOSOMA :

Ribosoma mersifat basofil, sehingga sitoplasma menjadi bersifat basofil karena begitu banyaknya jumlah ribosom di dalam sitoplasma. Ribosoma merupakan pusat pembentukan protein. Robosoma merupakan tempat untuk merangkai asam-asam amino menjadi peptida atau protein. Dengan mikroskop elektron ukuran ribosoma berkisar antara 10 20 nm dengan komposisi RNA sebanyak 60 % dan protein sebanyak 40 %, karena komposisi inilah yang menyebabkan ribosom bersifat basopilik. Ribosom pada mamalia mempunyai koefisien sedimen (kecepatan dalam pengendapan) sebesar 80S (satuan Swedberg) butiran besar dari ribosom satuan sedimennya sebesar 60S dan butiran becil sebesar 40S. Pada proses pembentukan protein ribosom melekat pada mRNA Gambar:

SER tersusun berupan gelembung-gelembung pipih berupa lembaranlembaran dengan permukaan yang halus tanpa adanya ribosom (bentuk vesikuler), dari jalinan-jalinan tersebut terbentuklah vesikel yang mengangkut bahan-bahan untuk disintesis di RER dan selanjutnya diteruskan ke Golgi komplek. Jumlah SER untuk setiap jenis sel tidak sama, hal in penting fungsinya untuk menghasilkan sekret baik itu berupa hormon maupun nonhormon, misal, - biosintesis hormon steroid/testosteron oleh sel Leydig - biosintesis hormon progesteron oleh sel-sel korpus luteum - sintesis lipid/detoksifikasi oleh sel-sel hati (hepatocyt) - biosistesis hormon glukagon oleh sel-sel pankreas, hormon ini berfungsi merangsang terbentuknya membran baru (terbentuknya retikulum endoplsmik baru). Pada hati glukagon diperlukan untuk perombakan glikogen menjadi glukosa. - Pada sel-sel eptel usus berperan dalam absorbsi lipid. - Pada otot skelet/jantung (RER disebut retikulum sarkoplasma) yang secara aktif mengatur kadar kalsium disekitar miofibril, sehingga berperan dalam membantu proses kontraksi otot.

Smooth Endoplasmik Retikulum (SER) mempunyai peranan yang berbeda-beda sesuai dengan jenis selnya.

3) GOLGI KOMPLEK Pada tahun 1889 seorang ahli saraf dari Italia bernama Camillo Golgi menemukan organel pada sel saraf kucing dan burung dengan menggunakan metoda pengecatan perak nitrat. Dari hasil pengamatan diketahui bahwa setiap sel memiliki organel ini (golgi komplek) yang di dalamnya mengandung lipoprotein. Beberapa buku/penulis gilgi komplek mempunyai banyak nama seperti: Golgi Net, Aparatus Retikularis Golgi, Internal Retikuler Apparatus. Golgi komplek berbentuk pipih yang tersusun seperti jala, dimana pada bagian yang memanjang pada lempeng golgi disebut saculus. Dengan mikroskop elektron golgi komplek letaknya tidak sama untuk semua jenis sel, misal: pada sel kelenjar terletak di atas inti (dekat inti) yakni berbatasan dengan kutub bebas dari sel, pada sel saraf letaknya mengelilingi inti, pada sel pankreas letaknya tidak menentu. Perkembangan selanjutnya dimana golgi komplek yang telah kompak (dewasa) menghadap kutub bebas dari sel, dan dari tempat ini melepaskan butiran-butiran sekret yang disebut juga sebagai butir Golgi ( Golgi granules) atau Vakuola Golgi atau Vesikel Pemindah. Butir-butir tersebut pada saat dilepaskan berwarna cerah namun lama kelamaan berubah warna menjadi gelap. Butir-butir yang telah menjauhi Golgi disebut Butir Zymogen. Fungsi dari Golgi Komplek adalah: - tempat proses sintesis - tempat pemekatan (membentuk struktur protein) - tempat proses penambahan gugus/senyawa - tempat penyimpanan sementara hasil produk

Fungsi ini jelas terlihat aktivitasnya pada sel-sel kelenjar maupun sel-sel endokrin. Selanjutnya protein/sekrit yang dihasilkan mengalami

pengaktifan, setelah itu barulah dikeluarkan dari sel atau digunakan sendiri oleh selnya untuk eksistensi sel

4) LISOSOMA Dahulu organel in kurang mendapat perhatian, namun dekade terakhir ini banyak diselidiki karena perannya yang sangat penting dalam mempertahankan sel. Hasil penyelidikan diketahui organel lisosoma berupa kantong-kantong kecil berdiameter antara 0,15 0,8 mikron, di dalamnya mengandung ensim pencernaan bagi sel. Ensim tersebut bersifat hidrolitik yang bekerja aktif pada situasi sedikit asam ( PH 5 ), sehingga ensim ini disebut Hidrolisa Asam. Dengan demikian lisosoma merupakan organel dalam sel yang berperan dalam proses penghancuran. Lisosoma ada 2 tipe yaitu: 1) Lisosoma primer: berisi berisi ensim hidrolitik. 2) Lisosoma sekunder: merupakan peleburan antara lisosoma primer dengan berbagai gelembung substrat. Lisosoma primer berkembang yang berasal dari perkembangan dari Aparatus Golgi, dan selanjutnya menjauhi Golgi. Heterofagosom terbentuk akibat invaginasi membran plasma yang mengelilingi benda asing, sedangkan Vakuola Krinofagi adalah merupakan peleburan dari gelembung sekrit yang telah mengalami penuaan atau kerusakan dengan lisosom primer. Lisosoma Sekunder sekrit yang ada di dalamnya dapat dikeluarkan dari selaput atau masih tetap ada di dalamnya, hal ini disebut Lisosom pembentuk pigmen lipofuksin. Jenis ensim yang terkandung di dalamnya adalah: Acid phospatase Acid ribonuclease Acid deoxyribonuclease Cathepsin Peroksidase. Ensim yang terkandung di dalam organel lisosoma dapat memecah/menghancurkan protein, DNA, RNA, karbohidrat, dan lemak. Sintesa ensim tersebut diduga terjadi di dalam Endoplasmik Retikulum dan selanjutnya tersimpat dalam kantong penyimpan.

MITOKONDRIA

Mitokondria telah lama sudah diketahui oleh para ilmuan baik itu mitokondria yang berasal dari tanaman maupun dari mahluh hidup (eukariota). Pada tahun 1890 oleh Altman menemukan mitokondria sebagai butiran-butiran kecil seperti benang dan dapat bergerak aktif serta dapat membelah diri tanpa diikuti oleh pembelahan sel. Pembelahan mitokondrian diperkirakan melalui pembelahan yang sangat sederhana yakni pembelahan Amitosis. Mitokondria mempunyai sangat bervariasi bentuknya tergantung dari aktivitasnya, dapat berbentuk bulat, oval, dan bahkan memanjang dengan ukuran birkisar antara 2 3 mikron. Dengan mikroskop elektron mitokondria terlihat mempunyai dua (2) lapisan membran yaitu lapisan di sebelah luar disebut outer membran dengan ketebalan 7 nm (nanometer) dan lapisan sebelah dalam disebut inner membran yang tebalnya 8 nm. Diantara membran luar dan membran dalam terdapat matrik berupa cairan yang merupakan tempat terjadinya siklus creb. Pada inner membran dapat membentuk lipatanlipatan ke arah dalam. Lipatan ini disebut Krista. Kepadatan krista tergantung dari aktivitas mitokondria, kalau aktivitsnya tinggi maka lipatan krista akan tampak lebih banyak dan mitokondria terlihat memanjang. Pada inner membran terdapat partikel-partikel yang mrupakan elementary unit untuk kelangsungan proses reaksi oksidasireduksi, phosphrilasi oksidatif, dan proses pembentukan ATP. Selain itu juga terdapat ion-ion anorganik sperti Ca, P, Mg, yang berguna untuk memelihara keseimbangan ion di dalam sel, selain itu juga terdapat ensim seperti sitokrom dan flavoprotein yang mengandung ion Fe untuk mengatur respirasi sehingga kedua ensim ini dikenal sebagai ensim resipirasi, selain itu juga terdapat ensim Koensim Q dan ensim Oksidatif Fosforilase.

Pada matrik dijumpai ensim kreb ( Krebscitric acid cycle enzymes ) dan ensim untuk sintesis protein/lipid, selain itu juga ditemukan DNA dan RNA untuk pembelahan sel (sebagai materi genetik). Hasil pemetaan gen pada DNA mitokondria ternyata susunan nukleotida berbeda dengan susunan nukleotida pada DNA inti sel, namun demikian susunan nukleotida (mtDNA) sama persis dengan susunan nukleotida (mtDNA) dari orang tuanya (Ibunya). Dengan adanya materi genetik serta ensimensim untuk pembelahan sel ada di dalamnya maka mitokondrian dapat mengadakan pembelahan. Pembelahan mitokondria bersifat semiotonom, artinya dapat dikatakan mitokondria merupakan sel lain yang hidup di dalam sel yang hidup secara bersimbiose. Pembelahannya tidak tergantung dari informasi dari inti sel namun untuk kelangsungan hidupnya dibawah kendali inti sel.

6) PEROKSISOM ( MIROBODIES ) Organel ini dahulu belum mendapat perhatian walaupun telah diketemukan lewat pemeriksaan dengan elektron mikroskop berbentuk bulat. Belakangan ini justru mendapat perhatian yang tinggi mengingat telah diketemukan ensim yang terkandung di dalamnya. Butiran-butiran pekat elektron. Ensim yang terkandung di dalamnya : Katalase, hidrogen peroksida, urat oksidase, D-aminooksidase. Fungsi organel ini mengatur pemakaian oksigen di dalam sel, proses metabolik, proses detoksifikasi, dan pemecahan asam lemak menjadi asetil-CoA ( sangat jelas terlihat pada sel hati).

B. Organella yang tidak terbentuk dari membran (tidak mempunyai membran) Organel yang tidak terbentuk dari membran sering disebut dengan kerangka sel (cytoskleton). Kerangka sel ini membentuk jalinan komplek yang berfungsi untuk mempertahankan bentuk sel, stabilitas sel, gerakan sel (waktu pembelahan sel), dan membantu pada proses mitosis Yang termasuk organel ini antara lain: 1. SENTRIOLA Organel sentriola asal usulnya tidak terbentuk dari membran (tidak mempunyai membran sel). Pada stadium interpase tampak sepasang berbentuk granul berukuran antara 0,5 10 mikron. Selama memasuki tahap mitosis sentriola dikelilingi oleh massa yang cerah disebut Centromer. Benang-benang halus yang memancar dari centriola disebut Aster yang merupakan /dikenal dengan Pusat Sel . Dengan menggunakan mikroskop elektron ternyata bentuk sentriola berbentuk kantong silinder tidak seperti anggapan semula berbentuk granul. Bentukkan kantong silinder ini mempunyai diameter 150 mm (milimikron) dan panjang 300 500 mm dengan unjung yang satu terbuka dan ujung lainnya tertutup. Melalui penampang melintang tampak adanya 9 bangunan sub-unit yang tersusun longitudinal (paralel longitudinal) dan tiap sub-unit memiliki 3 buluh-buluh halus yang tersusun sedemikian rupa, sehingga pada potongan melintang tampak adanya 3 lingkaran yang berdekatan . Bagian paling dalam disebut buluh A lalu buluh B dan buluh C yang paling luar. Buluh A dari 9 sub-unit memilik i jarak yang sama satu dengan yang lainnya yang membentuk lingkaran dengan lingkaran 150 mm Buluh A dari sub-unit yang satu akan berhubungan dengan buluh C dari subunit yang terdekat, sehingga memberika gambaran seperti roda bergerigi, sehingga sumbu dari setiap sentriola membentuk diplosom tersusun tegak lurus satu dengan yang lainnya. Di dalam sentriola juga ditemukan senyawa aktin dan miosin, sehingga sentriola dapat memanjang maupun memendek sesuai dengan aktivitasnya.

2. MIKROTUBULUS Mikrotubulus microtubules mempunyai nama lain adalah Cytoplasmic microtubules. Pada stadium interpase sangat sedikit dan berperan sebagai kerangka sel, sehingga dapat mempertahankan bentuk sel (sel erytrocyt). Pendapat lain menyatakan bahwa mikrotubulus membantu dalam perubahan bentuk sel (sel Leukocyt dan sel Makrofag). Pada stadium mitosis mikrotubulus jumlahnya sangat banyak. Di bawah mikroskop elektron mikrotubulus terlihat seperti tabung kecil dengan diameter 220 270 Amstrom dengan ketebalan dindingnya 50 70 Amstrom. Pada pase mitosis terlihat dari kutub ke kutub sel atau dari kutub ke kromosom dengan jumlah 12 buah dengan jarak satu dengan yang lainnya 55 60 Amstrom. Pada sel saraf (axon) mikrotubulus disebut juga Neurotubulus dengan ukuran sedikit lebih besar dari pada neurofilamen yang berjalan longitudinal. Neurotubulus berfungsi untuk pertumbuhan penjuluran sel saraf yang sedang berkembang, begitu pula untuk membantu transport berbagai organel dari perkarion ke tepi. 3. FILAMEN Filamen merupakan komponen dari fibril yang mempunyai ukuran jauh lebih kecil. Filamen yang terdapat pada sel mempunyai diameter 30 60 Amstrom. Pada sel kulit (daerah epidermis ) filamen membentuk tonofibril yang merupakan bahan pembentuk keratin. Fungsi utama filamen adalah untuk kontraksi sel, ini jelas terlihat pada sel otot, tapi pada sel yang lainnya (bukan sel otot) fungsinya belum jelas. Sementara ini diduga filamen membantu dalam perpindahan/memindahkan komponen-komponen sitoplasmik. Letaknya tersebar di dalam sitosol oelh karena itu para ahli juga menduga juga dapat berfungsi sebagai penyokong sel (cytoskeleton)

C. CYTOPLASMIC INCLUSION Cytoplasmik inklusi mempunyai nama lain yaitu Paraplasma. Paraplasma bersifat sementara, artinya bangunan ini berada di dalam sel hanya sementara dan akan dikeluarkan dari sel pada saat-saat tertentu atau dirombah menjadi bentuk lain, bentukan ini merupakan benda yang sifatnya mati/senyawa, misal yang berupa cadangan ( lemak, glikogen), berupa pigmen ( melanin, hemosiderin), atau berupa granul-granul sekretorik ( yang isinya dapat berupa protein/ensim, hormon). Paraplasma tidak dijumpai pada semua sel, tapi hanya ada pada sel-sel tertentu saja. NUKLEUS Nukleus atau inti sel dianggap sebagai pusat pengatur aktivitas sel, sedangkan di stoplasma merupakan tempat matabolisme sel berlangsung. Bentuk inti umumnya berbentuk mendekati bulat, tapi pada sel neutrofil (polinuklier) intinya terlihat bergelambir. Sebenarnya bagian lobus satu dengan lobus inti lainnya dihubungkan oleh selaput penghubung tipis, sehingga pada saat pengecatan

kadang penghubung ini tidak tercat dan akhirnya inti sel terlihat lebih dari satu (polinuklier) Untuk melihat bagian-bagian sel yang terkandung di dalamnya akan terlihat bila sel berada dalam stadium interpase (istirahat).

Hal-hal yang tampak umumnya adalah: 1. MEMBRAN INTI Dinding inti terdiri dari dua lapis, antara lapis yang satu dengan lapis lainnya terdapat ruang antara yang berisi bahan amorf dan berjarak 40 70 nm (nanometer). Lapisan tersebut adalah: a) karioteka eksterna, b) ruang perinuklier, c) karioteka interna. Ruangan yang terbentuk dari dua lapis tersebut disebut dengan istilah Sisterna Perinuklier. Kedua karioteka (membran) mempunyai kepadatan elektron yang berbeda yakni karioteka eksterna (membran bagian luar dengat dengan sitoplasma) kurang padat elektron dan pada pada lapis ini banyak diketemukan ribosum yang melekat dan endoplasmik retikulum. Pada karioteka interna di bagian dalamnya terdapat polipeptida yang merupakan tempat pertautan dari kromatin. Membran inti terdapat pori-pori yang mempunyai diameter 300 1000 Angstrom dengan jarak antara 0,1 0,2 mikron. Penelitian lebih jauh, diketehui lubang/pori tersebut dilapisi oleh

selaput yang sangat tipis berupa chenel material berbentuk filamen. Filamen ini diperkirakan berfungsi mirip sebagai diafragma.

2. NUKLEOLUS Nukleolus disebut juga Plasmosum. Plasmosum bentuknya bulat berjumlah 1 4. Nukleolus di dalam inti dapat bergerak, oleh karena itu sel yang mempunyai nukleolus lebih dari satu ( sel hati ) kadang terlihat di bawah mikroskop hanya satu atau dua, hal ini karena pergerakan nukleulus yang posisinya kebetulan sejajar/berhimpitan. Nukleolus kaya akan RNA, DNA, dan protein, hal ini dikarenakan di da;am nukleolus merupakan tempat materi genetik (Gen)/DNA. Dengan menggunakan mikroskop elektron nukleolus terlihat ada 3 zona yaitu: 1) pars Granulosa, 2) pars Fibrosa, dan 3) Pars Kromosomal. Pars Granulosa dan Pars Fibrosa kaya dengan Ribonukleoprotein yang merupakan prekursor ribosum yang akan dibentuk, sedangkan pars Kromosomal kaya dengan DNA. RNA-ribosomal (rRNA) di daerah pars kromosomal diubah dan disimpan sementara di daerah pars Fibrosa dan selanjutnya diteruskan ke pars Granulosa sebelum akhirnya dilepaskan ke dalam sitoplasma. 3. KROMATIN Kromatin mudah diwarnai dengan pengecatan HE yang tampak berwarna ungu (basofil). Kromatin di dalam inti letaknya menyebar. Dari peyebarannya dapat dikelompokkan menjadi 3 daerah yaitu: Kromatin tepi: berupa granul-granul di sekitar karioteka interna Lempeng-lempeng kromatin: letaknya tersebar di antara dinding inti dan nukleolus Kromatin pembungkus nukleolus: letaknya mengelilingi nukleolus Pada pembelahan sel (stadium interfase) kromatin berkumpul membentuk benang-benang halus yang disebut KROMOSOM. Tapi ada juga kromatin yang tidak tampak pada stadium ini dan masih merupakan bagian dari kromosom disebut EUKROMATIN. Istilah Heterokromatin tidak lain merupakan kromatin dari segmen kromosom berupa benang-benang halus yang tampak selama stadium interpase. Belakangan diketemukan kromatin kelamin yang tidak lain dalah kromatin sex atau Barr Bodies tampak berupa granul-granul basofilik terletak dekat dengan nukleolus, kromatin ini diduga merupakan peleburan dari hetrokromatin yang berasal dari dua kromosom-X. Terlihat jelas pada sel soma dari individu betina. 4. KARIOLIMFE Kariolimfe disebut juga Nukleuplasma yang berupa cairan proyein dengan

konsistensi lebih pekat bila dibandingkan sitoplasma. Apa bila inti mengalami kelainan/perubahan berupa: kariopiknosis, karioreksis, dan kariolisis itu merupakan pertanda bahwa seltersebut telah mengalami kalainan patologik. REPIKLASI GEN Replikasi gen adalah merupakan perbanyakan/dupliksi gen, kejadian ini ditemukan pada saan pembelamah sel baik itu pembelahan mitosis maupun pembelahan meiosis. Peneliti mayakini bahwa pada kromosom terdapat gen-gen pembawa informasi genetik. Pada saat itu belum banyak diketahui bagai mana bentuk gen itu. Kemudian pada tahun 1928 seorang akhli mikrobiologi berkebangsaan Inggris bernama Griffith. Dengan menggunakan bakteri Diplococcus pneumonia meneliti tentang materi genetik bakteri tersebut, kesimpulan yang didapat adalah pembawa informasi genetik adalah DNA. Penelitian berikutnya dilakukan oleh Oswold Avery pada tahun 1944 di Institut Rokefeller New York dengan menggunakan bakteri yang sama tapi dengan metoda yang berbeda (lebih canggih) yaitu bakteri strain patogen diambil materi genetiknya lalu dimurnikan dan akhirnya dimasukkan ke dalam sel bakteri nonpatogen, hasilnya bakteri nonpatogen itu menjadi patogen, dengan demikian diyankni pembawa informasi genetik itu adalah DNA. Sampai disini disepakati bahwa Gen itu adalah: bagian atau segmen dari DNA yang berperan sebagai pembawa informasi gentik melalui pembentukan secara tidak langsung molekul-molekul protein. Kemudian timbul pertanyaan bagaimanakah bentuk DNA itu, ini belum bisa dijawab. Kemudian tahun 1953 oleh James D. Watson dan Francis Crick dapat menjawab pertanyaat tersebut yang terkenal dengan sebutan Postulat Watson and Crick yaitu: 1. Struktur DNA terdiri dari dua rantai polinukleotida yang berbentuk helix berputar ke kanan melingkari satu sumbu membentuk helix berganda. 2. kedua rantai berpasangan satu dengan yang lainnya dalam posisi anti paralel dan arah rantai yang satu dengan rantai yang lainnya berlawanan arah. 3. kedua rantai helix melingkar tersebut sedemikian rupa sehingga keduanya tidak dapat dipisahkan kecuali dengan perlakuan. 4. Gugus-gugus basa purin dan pirimidin dari kedua rantai terletak di bagian dalam dan basa-basa dari rantai pertama berpasangan dengan basa-basa dari rantai kedua. 5. Basa-basa tersebut berpasangan sedemikian rupa sehingga basa Adenin (A) berpasangan dengan Timin (T) dan Guanin (G) berpasangan dengan Citosin (C). 6. Pasangan-pasangan tersebut terjadi karena adanya ikatan hidrogen antara basa dari rantai pertama dengan rantai kedua. 7. Pasangan basa pada rantai yang satu dengan rantai kedua merupakan pasangan kompementer.

Setelah diketahui postulat ini barulah perkembangan di bidang sel sangat maju, bahkan dapat menggunakan DNA untuk melacak penyakit-penyakit keturunan dan sekaligus dapat memperbaiki kelainan DNA yang mengalami kelainan tersebut. PERTUMBUHAN DAN PEMBELAHAN SEL Pertumbuhan sel adalah hasil sintesis biokimiawi dari protoplasma, disini terjadi penambahan jumlah protoplasma pada sel. Replikasi gen tidak lain adalah duplikasi DNA yang berlangsung pada stadium interpase. DNA berperan aktif dalam menentukan kehidupan dan arah sel dan dari DNA dapat disintesa RNA dan pada akhirnya dibentuk protein. Pembelahan sel melalui 3 cara yaitu: 1. Pembelahan Amitosis 2. Pembelahan Mitosis 3. Pembelahan Miosis PEMBELAHAN AMITOSIS Pembelahan amitosis disebut juga pembelahan secara langsung ( direct cell division ). Pembelahan secara amitosis berlangsung sangat sederhana dan dalam waktu yang sangat singkat. Pembelahan dimulai dari pembelahan inti kemudian diikuti oleh pembagian sitoplasmanya. Cara pembelahan amitosis tidak diikuti dengan pembelahan/duplikasi kromosom. Pembelahan cara ini banyak ditemukan pada binatang tingkat rendah, juga pada bakteri. PEMBELAHAN MITOSIS Pembelahan mitosis menghasilkan dua sel anak yang sama persis dengan sel induk, sifat-sifat genetiknya juga sama. Ditinjau dari sitologi modern, mitosis dipandang sebagai replikasi DNA. Proses mitosis pada sel/organ tubuh berlangsung secara kontinyu dengan kecepatan yang berbeda. Perbedaan ini dipengaruhi oleh:

Jenis kelamin Macam organ Suhu, baik suhu tubuh maupun suhu di luar tubuh Kondisi fisiologis individu Menurut De Robert mitosis meliputi 5 tahap al: interpase, propase, metapase, anapase, dan telopase. 1. PROPASE Pada pase ini terlihat perubahan-perubahan pada inti sel dan sitoplasma. Perubahan-perubahan yang dapat diamati adalah: a. Inti sel membesar dan kromonemata memendek sehingga tampak seperti benang-benag halus. b. Sentriola membelah menjadi dua, kemudian menunju ke masing-masing kutub sel. Dari sentriola ini keluar benang-benag halus. c. Pada akhir stadium profase, kariotek mulai lenyap tapi belum sempurna sehingga kromosum mulai terlihat tapi belum kompak, kromosom terlihat agak panjang dan langsing (belum berkontraksi sempurna).

2. METAPASE Pada stadium metapase, kromosum sudah berkontraksi sempurna (kompak) dan sudah memisahkan diri ke bidang ekuator. Pada stadium ini tampak kromosom bergerak menuju kutub masing-masing, pada akhir metafase membran inti sudah lenyak sama sekali.

3. ANAPASE Pada stadium anapase terjadi pembelahan kromosom secara longitudinal dan belahannya menuju ke masing-masing kutub, pemindahan kromosom ini diduga karena pengaruh protein yang berada di dalam mikrotubulus. Sel

terlihat menggelembung mendekati oval.

4. TELOPASE Pada stadium telopase awal, sentriola sudah berada pada kutub-kutub sel dan selanjutnya diikuti dengan munculnya inti pada sel anakan. Nukleulus muncul kembali dari nukleoler organizer. Sebelum memasuki stadium interfase, kromosom membelah diri dan kembali dari bentuk uliran ke bentuk benang. Kariotek terbentuk kembali dan diikuti dengan terbetuknya membran inti. Selanjutnya diikuti dengan terbentuknya organel-organel sitoplasmik. Pada akhir stadium telofase teleh terbentuk dua anak sel yang membawa materi genetik yang idendik.

5. INTERPASE Stadium interpase merupakan tahap istirahat, keadaan ini dipergunakan untuk tumbuh dan penambahan sitoplasma dan paraplasma. Waktu yang diperlukan pada stadium ini trgantung jenis. Sel-sel muda diperlukan waktu yang lebih singkat bila dibandingkan sel tua. Jenis sel epitel mempunyai ewaktu yang singkat bila dibandingkan dengan sel saraf. Sebetulnya pada stadium interfase dikatakan fase insirahat tidaklah tepat, karena pada stadium ini justru terjadi serangkaian perubhan untuk mempersiapkan diri untuk membelah berikutnya. Oleh karena itu pada stadium ini terbagi menjadi 3 fase yaitu: Pase G1 : disebut pase presintesis DNA Pase S : disebut pase sintesis DNA Pase G2 : disebut pase pasca duplikasi DNA

PEMBELAHAN MEIOSIS

Menurut konsep lama meiosis diartikan sebagai pembelahan reduksi, hal in mungkin disebabkan jumlah kromosom sel anak mengalami pengurangan menjadi setengah jumlah kromosom sel induk. Kini konsep itu telah ditinggalkan. Konsep terbaru menyatakan, bahwa meiosis terjadi proses crossing over kromosom. Pada proses ini kromosom tidak mengalami reduksi baik pada pembelahan pertama maupun pembelahan kedua, tapi yang terjadi sebenarnya adalah berupa distribution of chromosomes. Artinya, pembelahan reduksi tidak tepat, hanya terjadi distribusi/penyebaran dari kromosom.. Pembelahan meiosis meliputi dua tahap antara lain: Tahap pertama : terjadi distribution and redistribution bagian kromosom. Tahap kedua : Pada tahap ini sama dengan pembelahan mitosis. Tahap pembelahan pertama dapat diamati 4 tahap ( sama seperti pembelahan mitosis) hanya pada tahap stadium propase memerlukan waktu yang lebih lama, karena di dalamnya terbagi lagi menjadi 4 substadium yaitu: 1. Stadium Leptoten : pada stadium ini kromosom tampak jelas berbentuk filamen. 2. Sadium Zygoten : pada stadium ini kromosom yang homolog saling berkumpul dan mulai berpasangan. 3. Stadium Pakhiten : kromosom homolog yang berpasangan tersebut menempatkan diri secara longitudinal, sehingga tiap pasangnya disebut: bivalen. Selanjutnya terjadi pembelahan secara longitudinal dan akhirnya terbentuk 4 kromonemata. Selanjutnya terjadi crossing over (pindah silang).Terjadinya pindah silang bagian-bagian kromosom dengan pola tertentu. Artinya terjadi pertukaran gen secara acak sehingga terbentuk 4 anak sel dengan membawa gen yang berbeda satu dengan lainnya. 4. Stadium Diploten : setelah crossing over (pindah silang) selesai, terjadilah proses pemisahan antara kromosom homolog, tapi proses pemindahan kromatid agak mengalami kesulitan karena terjadi proses terminasi. Setelah itu diikuti dengan lenyapnya membran inti.

Setelah itu berakhirlah stadium propase dan selanjutnya diikuti pase selanjutnya ( metapase, anapase, dan telopase) Tahap pembelahan kedua, menjelang pembelahan kedua terjadi interpase secara singkat. Setelah itu kembali terjadi serangkaian pembelahan seperti pada pembelahan mitosis biasa. Bedanya denga pembelahan pertama terletak pada pembelahan stadium propase, dimana pada pembelahan kedua stadium propase berjalan singkat dan seterusnnya diikuti dengan satium berikutnya. Jadi sel anak yang dihsilkan pada pembelahan meiosis terbentuk 4 sel anak yang haploid dengan membawa kombinasi gen-gen yang berbeda.

Meiosis yang berlangsung pada sel spermatogonia (spermatogenesis) dan sel oogonia (oogenesis) pada prinsipnya adalah sama, hanya saja pembelahan pada spermatogonia menghasilka 4 spermatozoa dengan morfologik identik tapi mempunyai gen-gen yang tidak sama. Sedangkan pada sel oogonia hanya terbentuk satu oocyt (ovom) yang besar (fungsional) tiga lainnya mengalam atrisia karena pembagian sitoplsma yang tidak merata. Pembagian sitoplasma yang tidak merata ini terjadi pada stadium telopase pertama dan stadium telopase kedua.

Meiosis spermatogonia I. JARINGAN EPITEL Bab I PENDAHULUAN Bahan ajar ini disusun untuk memenuhi kebutuhan akan bahan-bahan kuliah yang mempelajari struktur jaringan tubuh dalam setiap organ tubuh. Untuk mempelajarinya diperlukan pengetahuan mendasar tentang jenis-jenis jaringan yang ada dalam tubuh, khususnya jaringan epitel. Dalam jaringan, pada umumnya terdapat 3 komponen dasar yang menyusunnya yaitu 8. Sel : merupakan komponen yang bersifat hidup dalam jaringan dan merupakan Unit Struktural dan Fungsional yang terkecil dari organisme. 9. Substansi interseluler : bersifat tidak hidup dan sebagai hasil produksi sel. Sebagai nampak dari peranannya maka substansi ini terdapat diantara selsel dalam jaringan. Bentuk fisiknya : dapat sebagai substansi dasar, karena tidak berbentuk dan dalam keadaan setengah padat. Juga dapat sebagai serabut. 10. Cairan : merupakan komponen yang menonjol dalam plasma darah, cairan limfa cairan jaringan dan sebagainya. Jaringan epitel, merupakan sistem yang tersusun oleh 2 macam komponen pokok yaitu 4. Sel yang telah mengalami diferensasi khas. 5. Substansi interselular yaitu bahan antara sel-sel,yang bersifat khas pula dan merupakan penunjang bagi sel dalam jaringan. Bab II JARINGAN EPITEL Jaringan ini terdiri dari kumpulan atau deretan sel-sel yang sangat rapat susunannya sehingga membentuk suatu lembaran/ lapisan yang substansi interselulernya sangat sedikit dan tipis atau tidak punya, dan cairannya sangat sedikit. Deretan sel ini melapisi permukaan jaringan atau alat, baik dari luar maupun dalam organ (melapisi rongga alat), tapi juga digunakan untuk kelenjar. Istilah Epithelium berasal dari kata epi yang berarti di atas dan thele berarti punting (nipple). Istilah persebut untuk pertama kali digunakan terhadap suatu lapisan pada permukaan bibir yang tembus cahaya. Dibawah lapisan tersebut

terdapat punting-punting (papilae) jaringan pengikat yang banyak mengandung kapiler darah. Jaringan epitel tidak berdiri terlepas, tetapi melekat erat pada jaringan di bawah deretan sel, jaringan ini dinamakan membrana basalis, tempat sel epitel melekat. Membrana basalis ini dahulu dianggap sebagai kondensasi substitusi dasar jaringan ikat di bawah epitel yang langsung berhubungan dengan jaringan epitel. Sekarang membrana basalis dianggap sebagai hasil produksi langsung sel epitel. Membrana basalis tidak dapat dilihat dengan mikroskop optik dengan teknik pewarnaan Haematoksilin-Eosin (H.E.), Membrana basalis bersifat permeabel, sehingga zat makanan dari jaringan dibawahnya dapat merespon epitelium melalui membrana ini. Mikroskop elektron memperlihatkan, bahan membrana basilis tersusun oleh: Lamina basalis, yang merupakan lapisan di bawah sel epitel setebal 500-800 A terdiri atas filamen tipis dengan diameter 30-40 A Filamen membentuk anyaman dalam substansi dasar membrana basalis dan berhubungan langsung dengan membran dasar sel epitil terdekat. Lamina fibroretikularis, yang merupakan serabut kecil-kecil sebagai serabut retikuler, di sebelah luar lamina basalis. Substansi dasar yang mengandung protein polisakarida. Gambar Membrana Basalis (Mikroskop Elektron) A: Lamina Basalis; B: Lamina fibro retikuler; C: Serabut kolagen; D: Membrana Basalis Epitel berasal dari lembaran/ lapisan embrio yaitu dari lapisan ektoderm misalnya epitel permukaan kulit tubuh. Dari lapisan entoderm misalnya epitel dinding duodeum. Dari lapisan mesoderm ada 2 yaitu : Endothelium yang merupakan susunan sel-sel yang membatasi permukaan dalam pembuluh darah,jantung dan pembuluh limfe., Mesothelium yang merupakan susunan sel-sel yang membatasi rongga tubuh yang besar yang juga menutupi beberapa organ tertentu seperti misalnya melapisi peritoneum, pleura, dan perikardium. Dalam perkembangan, pada suatu tempat epitel dapat melekuk, menjadi batang atau pipa sehingga menjadi epitel kelenjar. ASAL-USUL EPITEL. Sebagian besar epitel tumbuh dari lapisan ektoderm dan entoderm, walaupun ada sejumlah epitel yang berasal dari mesoderm. Dari lapisan ektoderm misalnya epitel kulit dan derivatnya seperti rambut, bulu, cakar, kuku, tanduk, jengger, gelambir, invaginasi kulit. Dari lapisan endoderm : melapisi bagian dalam tubuh, misalnya epitel dinding duodenum. Pada umumnya mesoderm yang terdapat di antara ektoderm dan entoderm embrio akan menjadi jaringan pengikat atau otot. Sedangkan epitel yang berbentuk membran dan berasal dari mesoderm ada 2 yaitu : endotelium yang merupakan susunan sel-sel yang membatasi permukaan dalam pembuluh darah, jantung dan pembuluh limfe. Mesotelium yang merupakan susunan sel-sel yang membatasi rongga tubuh yang besar yang juga menutupi beberapa organ tertentu seperti misalnya melapisi peritonium, pleura dan perikardium. Dalam perkembangan, pada suatu tempat epitel dapat melekuk, menjadi batang atau pipa sehingga menjadi epitel kelenjar.

Dari uraian ini maka jaringan epitel dapat menjadi 2 kelompok yakni : I. Epitel pelapis yaitu epiteliumsuperfisiale yang bersifat membran atau lembaran/lapisan. II. Epitel kelenjar yaitu epitelium glandulare. I. EPITEL PELAPIS : Epitel ini dapat dikelompokan dan diberi nama berdasarkan patokan tertentu. 1. Berdasarkan bentuk sel epitel: 4. Epitelium squamousum dengan epiteliocytus squamous: pipih/gepeng 5. Epitelium kuboideum dengan epiteliocytus cuboideus.: kuboid. 6. Epitelium kolumnar dengan epiteliocytus columnaris: silindris. Untuk melihat bentuk sel epitel tersebut tidak cukup melihat dari arah permukaan epitil yang kebanyakan berbentuk poligonal. Namun yang penting bentuk pada potongan tegak lurus permukaannya. Sel pipih/ gepeng/ squamous: Karena berbentuk sebagai sisik ikan maka disebut sel squamuos. Dengan demikian ukuran tinggi/tebal kurang dari ukuran panjang dan lebar selnya. Pada potongan tegak lurus permukaan (melintang), epitel tampak bentuk sel yang memanjang dengan bagian tengahnya yang berisi inti lebih menebal. Sedangkan apabila dilihat dari permukaan epitil tampak sel-selnya berbentuk poligonal Gambar Epitel pipih selapis Sel kuboid: Mempunyai ukuran tebal dan panjang yang sama sekarang nampak sebagai bujur sangkar. Biasanya inti berbentuk bulat terletak ditengah sel. Dari permukaan, epitel bentuk selnya nampak poligonal. Gambar epitelium kuboid selapis. Sel kolumner/silindris: Mempunyai ukuran tinggi yang melebihi ukuran lebarnya. Dari permukaan epitelnya nampak selnya berbentuk poligonal biasanya inti yang berbentuk oval terletak agak kearah basal. Gambar epitel silindris selapis. 2. Berdasarkan Jumlah Lapisan Sel Epitel: Epitelium simpleks: selapis (seperti contoh gambar di atas) Epitelium stratifikatum/kompleks: berlapis-lapis. Berlapis, hanya sel-sel dasar (basal) saja mencapai membrana basalis. Gambar skematis tipe-tipe epitelium Epitelium pseudostratifikatum/pseudokompleks: Semua berlapis. Melihat letak deretan inti sel-sel,seakan-akan epitel ini berlapis,namun sebenarnya tidak

berlapis, sebab semua sel bersandar pada membrana basilis : hanya ukuran tinggi sel-sel berbeda-beda. Gambar Epitel Pseudokompleks bersilia. Epitelium transitionale: Epitil peralihan. Jenis epitil ini terutama dimiliki oleh alat berongga yang dapat mekar jika bertambah isi. Oleh karena itu bentuk sel berlapis yang kolumner dapat berubah menjadi kuboid rendah jika alat penuh isi. Ciri khas epitil ini adalah bahwa lapisan permukaan yang membatasi lumen dilengkapi dengan sel-sel khusus,berbentuk bulat,yang akan menjadi sel payung jika alat mengembang. Contoh dijumpai pada ureter dan Vesika urinaria. Gambar epitel transisional 3. Berdasarkan Jumlah dan Bentuk Sel Epitel dikenal: Epitelium simpleks squamosum/epitel selapis pipih. Contoh : lapisan luar kapsula glomeruli pada ginjal, labyrinth, endotelium, permukaan dalam menbrana tympani, retetestis, vasa darah dan limfa, duktus alveolaris dan alveoli paru, mesotelium rongga tubuh,pars descendens ansa henle pada ginjal. Seluruh sel yang menyusun epitel ini berbentuk gepeng dan tersusun dalam satu lapisan. Gambar epitelium pipih selapis Epitelium simpleks kuboideum/epitel kuboid selapis susunannya terdiri atas selapis sel yang berbentuk kuboid dengan inti yang bulat ditengah. Contoh : pada plexus choroideus di ventriculus otak, folikel glandula thyroidea, epitel germinativum pada permukaan ovarium, epitel pigmentosa retinae, ductus exretorius beberapa kelenjar. Gambar epitelium kubus selapis Epitelium simpleks columnare/epitel silindris selapis: susunannya terdiri atas selapis sel-sel yang berbentuk silindris dengan inti yang berbentuk oval tampak terletak pada satu deretan. Contoh : pada permukaan selaput lendir tractus digestivus dari lambung sampai anus, vesica fellea, ductus exretorius beberapa kelenjar. Epitel pada permukaan usus selain berfungsi sebagai pelindung juga berfungsi sebagai sekresi,karena diantarannya terdapat sel-sel yang mampu menghasilkan lendir. Bahkan pada beberapa tempat terdapat hampir seluruh epitelnya terdiri atas sel kelenjar yang berbentuk sebagai piala,sekarang dinamakan sel piala (goblet sel) Gambar Epitelium silindris selapis dengan goblet sel Epitelium squamosum compleks/epitelium stratificatum squamosum/epitel gepeng berlapis: Epitel ini lebih tebal dari epitel selapis. Pada potongan tegak lurus permukaan (melintang) terlihat berbagai bentuk sel yang menyusunnya, walaupun disebut epitel gepeng. Yang berbentuk gepeng

hanyalah sel-sel yang terletak pada lapisan permukaan,sedangkan sel-sel yang terletak lebih dalam bentuknya berubah. Sel-sel yang terletak lebih dalam bentuknya berubah. Sel-sel yang terletak paling basal berbentuk kuboid atau silindris melekat pada membrana basalis. Diatas sel-sel silindris ini terdapat lapisan sel yang berbentuk polihedral yang makin mendekati permukaan makin memipih.Epitel jenis ini sangat cocok untuk berfungsi proteksi,tetapi sebaliknya kurang cocok untuk fungsi sekresi. Oleh karena itu, apabila pada permukaan epitel gepeng berlapis terdapat cairan, bukanlah berasal dari epitil itu sendiri melainkan berasal dari kelenjar yang terdapat dibawah epitil. Karena berlapis dan tebal,maka kemungkinan timbul gangguan nutrisi.Sekarang epitil jenis ini dibedakan 2 macam yaitu : Epitelium stratificatum squamosum noncornificatum/epitel gepeng berlapis tanpa keratin (tanpa penandukan). Epitel ini terdapat pada permukaan basal,misalnya pada covum oris, oesofagus, cornea, conjuntiva, vagina dan urethrae feminina. . Gambar epitel pipih berlapis tanpa penandukan Epitelium stratificatum squamosum cornificatum/epitel gepeng berlapis berkeratin penandukan). Struktur epitel ini mirip dengan epitel gepeng berlapis tanpa keratin, kecuali sel-sel permukaannya mengalami perubahan menjadi suatu lapisan yang mati yang tidak jelas lagi batasbatas selnya. Lapisan permukaan tersebut merupakan lapisan keratin. Jenis epitel ini diketemukan pada permukaan epidermis kulit. Gambar epitel pipih berlapis yang mengalami penandukan Mempelajari epitel gepeng berlapis dapat dilihat lapisan-lapisan sel pada epidermis kulit sebagai berikut : Stratum basale : merupakan lapisan dasar,sel berbentuk silindris pendek atau kubus. Dalam sitoplasmannya terdapat butir-butir pigmen melanin. Stratum spinosum : lapisan ini terdiri atas beberapa lapis sel yang berbentuk polihedral. Pada pengamatan dengan mikroskop cahaya terlihat seakanakan selnya berduri (spina) yang sebenarnya disebabkan adanya bangunan yang disebut desmosome. Stratum granulosum : lapisan ini terdiri atas 2-4 lapis sel yang berbentuk belah ketupat dengan sunmbu panjangnya sejajar permukaan. Didalam sel-selnya terdapat butir-butir keratolin,oleh karena mulai lapisan ini terjadi perubahan-perubahn faali. Stratum lusidum : lapisan ini kadang-kadang tidak jelas karena tampak sebagai garis jernih yang homogen. Sebenarnya lapisan ini terdiri atas sel-sel tidak berinti yangtelah mati yang mengandung zat yang dinamakan eleidin dalam sitoplasmanya. Stratum korneum : merupakan lapisan yang teratas dari epidermis. Pada lapisan ini zat eleidin telah berubah menjadi keratin. Bagian terluar dari lapisan ini, bagian-bagian epidermis dilepaskan sehingga merupakan lapisan tersendiri yang dinamakan stratum disjunctum. Epitelium silindrikum kompleks/epitel silindris berlapis/stratified columnar epithelium. Epitel ini terdiri atas beberapa lapisan sel dengan lapisan yang teratas berbentuk silindris dan bagian basal selnya tidak mencapai

membrana basalis. Lapisan sel-sel dibawah sel silindris berbentuk lebih pendek bahkan bagian yang terbawah berbentuk kuboid. Contoh : pada fornix conjunctiva, urethrae pars kavernosa, peralihan oropharynx ke larynx. Pada permukaan sel dari lapisan teratas dilengkapi dengan silia, misalnya pada facies nasalis falatum molle, larynx dan esofagus dari fetus. Gambar epitel silindris berlapis (terlihat melapisi dinding lumen) Epitelium kuboideum kompleks/epitel kubus berlapis.Merupakan epitil berlapis yang terdiri atas sel-sel permukaan yang berbentuk kuboid. Contoh : pada dinding antrum folikuli ovarii, duktus exkretorius glandula parotis. Gambar Epitelium kuboid berlapis. Epitelium cylindricum pseudocompleks/epitel silindris bertingkat/epitil silindris berlapis semu. Epitil ini sepintas lalu, mirip epitil berlapis, namun apabila diperhatikan secara seksama ternyata tidak berlapis. Epitil jenis ini pun mempunyai modifikasi dengan adanya silia pada permukaan sel yang berukuran tinggi sehingga epitil ini disebut epitil silindris berlapis semu bersilia. Contoh : dijumpai pada trachea, broncus yang besar, ductus deferens. Gambar Epitel silindris berlapis semu EPITEL KHUSUS 1. Epitel bersilia: ada 2 macam silia yaitu silia bergerak (kinosilia), gerak sendiri contoh pada spermatozoa dan gerak zat lain contoh pada sel respiratorius dan oviduk. Silia tidak bergerak (stereosilia), seperti mikrovili panjangpanjang saling bergandengan melalui anastomosis yang fungsinya memperluas permukaan skretorik. Contoh pada duktus epididimis. 2. Neuroepitelium: Sel epitel ini mengalami deferensiasi sehingga dapat menghantarkan stimulus, mempunyai rambut seperti silia. Contoh dapat dijumpai pada organ gustus (pengecap), epitel olfaktorius. 3. Epitel berpigmen: epitel yang berfungsi dalam penangkapan sinar matahari. Contoh pada retina mata. 4. Myoepitelium: epitel ini mengandung myofibril (serabut otot) sehingga dapat berkontraksi. Terbentuk dari sel mio-epitel, dimana sel ini terdapat antara kutub dasar sel epitel kelenjar dan membrana basalis, berbentuk bintang memeluk sel kelenjar, mengandung filamen kontraktil, sel ini dianggap ikut membantu memeras sekret keluar dari kelenjar. Disebut juga sebagai sel keranjang karena sel mioepitel diduga berfungsi membantu mendorong sekrit kelenjar ke dalam ductus excretorius, apalagi terlihat bahwa tonjolan-tonjolan sitoplasmanya yang panjang mengelilingi Pars secretoria membentuk anyaman sebagai keranjang. 5. Endotelium: Epitel ini mempunyai bentuk pipih selapis, menjadi dinding terdalam dari pembuluh darah dan limfe. Fungsi endotelium sebagai media pertukaran zat antara pembuluh darah dengan ruang jaringan ikat.

6. Mesotelium: Bentuk epitel ini mirip dengan endotelium, yang merupakan susunan sel-sel yang membatasi rongga tubuh yang besar yang juga menutupi beberapa organ tertentu misalnya yang melapisi peritoneum, pleura dan pericardium. 7. Retikuler epitelium: epitel ini membentuk jala / retikuler. Contoh dapat dijumpai pada timus dan organ-organ pembentuk darah. 8. Synsisium: merupakan epitel dengan batas sel mengabur. Pada pembentukan epitel, batas samping sel-sel dapat mengabur, sukar dilihat, sehingga pada pemeriksaan preparat dengan pengecatan Haematoksilin-Eosin (HE), epitelnya hanya dapat dikenal dengan melihat inti-inti sel yang berderetderet. Contoh pada vili choriales plasenta. STRUKTUR KHUSUS PADA PERMUKAAN SEL EPITEL Pengkhususan struktur pada permukaan sel epitel merupakan modifikasi pada permukaan lateral, bagian basal dan bagian apeks. Terjadinya modifikasi untuk berbagai fungsi seperti mengikat epitelium yang satu dengan yang lainnya, difusi antar sel, untuk penghalang (barier) antar sel, masuknya zat-zat dari lumen yang dibatasi oleh jaringan dibawahnya, untuk komunikasi antar sel, untuk mengisi celah antar sel pada tempat tertentu dan merambatkan listrik. Modifikasi pada permukaan lateral/ sisi sel epitel. Merupakan hubungan antar sel-sel epitel yaitu cara perlekatan satu sel dengan tetangga bermacam-macam disebut junctio intercellularis, ada 2 macam yaitu Junctio intercellularis simpleks dan Junctio intercellularis kompleks. Junctio intercellularis simpleks: sederhana, berupa gambaran serupa jari-jari kedua tangan yang saling terjalin disebut junctio intercellularis digitiformis, yang berfungsi memperluas dan memperkuat perlekatan antar sel. Contoh pada epitelium pipih selapis. Sedangkan junctio-intercellularis kompleks merupakan bangunan yang cukup kompleks disebut Junctional Complex yaitu: Zonula occludens (Tight Junction), Zonula adhaerens (Intermediate junction), Desmosome (Macula adhaerens), Nexus (Gap junction). Istilah Macula merupakan daerah kecil berupa bercak sedangkan Zonula dimaksud apabila daerah tersebut melingkari sel sebagai gelang. Istilah Adhaerens dimaksudkan untuk struktur khusus pada membran sel yang berdekatan dengan jarak antara 200 A- 250 A, di dalam celah antara sel tersebut berisi bahan yang diduga berguna untuk melekatkan satu sama lain. Istilah Occludens diterapkan untuk sel-sel yang berhadapan sedemikian dekatnya sehingga masing-masing membran plasmanya berhimpitan langsung tanpa dipisahkan oleh celah. Gap junction merupakan bentuk hubungan antar sel yang dipisahkan oleh celah yang sempit sebesar 20 A. Zonula occludens/ Tight junction/ Pentalaminar junction: Terletak pada permukaan epitel, dimana celah antara 2 sel sangat sempit karena membran sel melebur. Mempunyai daya penutup, sehingga bahan ekstrasel tidak mungkin melintas dari bagian permukaan ke bagian dasar epitel. Jadi fungsi Zonula occludens rupanya untuk memisahkan celah ekstraselluler dengan lumen

yang dibatasi oleh epitel bersangkutan. Dengan demikian pengangkutan bahanbahan dari lumen haruslah melalui permukaan bebas sel. Zonula adhaerens/Intermediate junction: Letaknya di bawah zonula occludens, dimana ada suatu ruang yang memisahkan membran tersebut sebesar 150 A dan terisi oleh polisakarida yang padat. Fungsinya untuk perlekatan mekanik antar sel yang berdekatan pada epitel atau jaringan lain (sebagai rangka sel) dan membantu proses pengaliran zat-zat. Desmosome/ Macula adhaerens. Letaknya di bawah zonula adhaerens, biasanya berbentuk bulat atau oval. Bentuk hubungan tersebut memberikan kesan bahwa dua sel yang berdekatan tersebut menempel satu sama lain. Di daerah tersebut membrana plasma dari kedua sel berjalan sejajar dengan jarak 200 A 250 A. Sitoplasma di dekat bangunan tersebut tampak lebih padat elektron, tetapi lebih ke dalam sitoplasmanya kurang padat dengan mengandung filamen. Diungkapkan bahwa filamen tersebut tidak berakhir dalam bagian yang padat elektron melainkan memutar kembali sebagai huruf U. Adanya bahan glikoprotein dalam celah ekstraseluler terbukti bahwa di daerah tersebut terwarnai. Di tengah-tengah celah tersebut terdapat lapisan padat elektron yang memisahkan, tetapi belum jelas bahan apa yang menyusunnya. Fungsi desmosome rupanya sebagai tempat penempelan mekanik antar 2 sel yang berdekatan. Sebagai contoh banyak dijumpai pada epitel berlapis yang banyak mengalami tekanan seperti pada epitel dermis dan pada cervix, juga epitel simpleks kolumner. Nexus/Gap junction/Macula communicans. Termasuk hubungan interseluler yang mempunyai katagori hubungan komunikasi antar sel. Terdapat sebagai celah antara sel endotel pada dinding kapiler. Sel ini banyak memiliki mikrofilamen kontraktil, sehingga diduga sel sendiri juga kontraktil. Ini berakibat bahwa lebar celah tersebut dapat diatur sesuai dengan keperluan pertukaran zat melalui dinding kapiler. Pada beberapa jaringan, penggandengan sel melalui nexus menunjukkan fungsi yang menonjol. Misalnya penggandengan secara listrik akan mensinkronkan kontraksi otot jantung dan otot polos yang perlu untuk peristaltik. Modifikasi pada permukaan basal sel epitel. Membrana basalis: Merupakan kondensasi bahan mukopolisakarida dan protein yang terdapat di bawah permukaan basal semua epitel, walaupun ketebalannya tidak selalu sama. Membrana basalis yang paling tebal terdapat di bawah epitel yang sering mengalami gesekan seperti misalnya epidermis kulit. Invaginasi basal: Merupakan bagian basal dari membran terlihat sebagai bangunan yang berkelokkelok. Fungsinya untuk memperluas permukaan sekresi dan absorbsi. Contohnya pada sel-sel tubuli ginjal. Caveolae: Pada bagian basal dari sel ada bangunan seperti tonjolan ke dalam. Hemidesmosome:

Bangunan yang terdapat di bagian dasar sel epitelyang berdekatan dengan jaringan pengikat di bawahnya, dimana bentuknya menyerupai desmosome tetapi hanya separuh. Modifikasi pada permukaan apex/ permukaan bebas sel epitel. Mikrovili. Merupakan tonjolan sitoplasma berbentuk silindris yang terdapat pada permukaan bebas sel epitel. Tonjolan-tonjolan tersebut dinamakan berbeda-beda. Misalnya yang terdapat pada tubulus kontortus proksimalis, pleksus khoroideus dan plasenta sebagai brush border, karena berbentuk bulu sikat. Sedangkan tonjolan yang terdapat pada epitel usus dinamakan striated border, karena tampak bergaris-garis. Fungsi mikrovili yaitu memperluas permukaan agar dapat meningkatkan daya absorbsi sel-sel epitel usus. Pada permukaan mikrovili usus terdapat enzim yang berguna untuk memecahkan bahan-bahan makanan agar dapat diabsorbsi. Stereosilia. Merupakan jenis mikrovili yang berukuran sangat panjang. Jenis mikrovili ini terdapat pada permukaan epitel duktus epididimis dan duktus deferens yang berfungsi mengatur keadaan lingkungan untuk pematangan spermatozoa. Kinosilia. Biasanya dinamakan sebagai silia saja, merupakan tonjolan yang berbentuk sebagai bulu halus dan bersifat motil (bergerak). Kemampuan bergerak tersebut disebabkan karena adanya struktur khusus yang berbeda dengan stereosilia. Sebuah silium tertanam dalam suatu bangunan yang dinamakan korpuskulum basale. Apabila dibuat potongan melintang melalui batang di luar sel, di dalamnya terdapat susunan mikrotubuli yaitu sepasang di tengah dan 9 pasang di sekelilingnya. Silia dapat diketemukan pada epitel traktus respiratorius, oviduk dan uterus. Krusta. Merupakan pemadatan sitoplasma di dekat permukaan bebas sel epitel misalnya pada epitel transisional dengan maksud melindungi sel terhadap pengaruh kimiawi di luarnya. Kuticula. Merupakan bahan yang disekresikan oleh sel epitel yang kemudian diletakkan sebagai kerak di luar sel epitel. Ini dapat ditemukan sebagai kapsula lentis. II. Epitel Kelenjar II. EPITEL KELENJAR/ EPITHELIUM GLANDULARE

Sel epitel yang mampu mengeluarkan sekret disebut sel kelenjar atau epitheliocytus secretorius atau glandulocytus. Jika sel-sel ini membentuk epitel maka terjadilah epithelium glandulare. Epitel ini bersama dengan jaringan lain

dapat membentuk kelenjar atau glandula.

KLASIFIKASI KELENJAR Berdasarkan pemanfaatan hasil kelenjarnya secara garis besar dibedakan menjadi kelenjar eksokrin dan kelenjar endokrin. Krin berasal dari kata krinos yang berarti memisahkan atau menghasilkan. Kelenjar eksokrin dimaksudkan untuk kelenjar-kelenjar yang biasanya mempunyai saluran keluar untuk mengangkut hasil kelenjarnya yang selanjutnya bermuara pada permukaan dalam dan luar tubuh. Apabila hasilnya diangkut oleh pembuluh darah atau pembuluh limfa, maka kelenjar demikian dimasukkan kedalam kelenjar endokrin atau kelenjar hormon. Karena kelenjar hormon tidak memiliki saluran keluar kadang-kadang dinamakan juga sebagai kelenjar buntu dan hasilnya dinamakan hormon. Namun bagi beberapa kelenjar endokrin yang tidak mempunyai saluran keluar tidak dapat dimasukkan sebagai kelenjar hormon. Kedua jenis kelenjar yang disebutkan diatas kesemuanya berasal dari membran epitel yang menutupi permukaan,yang pada suatu saat tumbuh masuk ke dalam jaringan pengikat dibawahnya. Kelompok sel-sel epitel yang mengadakan invasi tersebut selanjutnya memperbanyak diri dan berdiferensasi untuk membentuk kelenjar. Biasanya dalam pembentukan kelenjar eksokrin masih tetap dipertahankan hubungannya dengan epitel permukaannya, sedang untuk kelenjar endokrin sudah tidak lagi berhubungan. Kelenjar eksokrin : kelenjar ini melepaskan sekret melalui saluran kelenjar (duktus ekskretorius), misalnya kelenjar ludah atau langsung dalam rongga alat berdekatan, misalnya pada kelenjar dinding usus. Sel penghasil sekret dinamakan eksokrinosit. Kelenjar endokrin: kelenjar ini melepaskan sekret langsung ke dalam pembuluh darah atau limfe, dan diangkut ke alat atau jaringan sasaran. Contoh pada kelenjar thyroidea, kelenjar suprarenalis. Sel penghasil sekret atau hormon dinamakan endokrinosit.

Berdasarkan jumlah sel, kelenjar digolongkan menjadi

Kelenjar uniseluler: Kelenjar ini hanya tersusun oleh 1 sel. Kelenjar jenis ini tidak mempunyai saluran keluar, karena biasanya terdapat pada epitel permukaan, misalnya pada epitel usus sebagai sel piala atau sel cangkir atau goblet cell. Kelenjar multiseluler: Terdiri atas banyak sel, umumnya membentuk kelenjar.

Berdasarkan letak kelenjarnya terhadap epitel permukaan, maka jenis kelenjar ini dibedakan menjadi: Kelenjar intraepitelial, yaitu membentuk kelompok sel kelenjar pada epitel permukaan tanpa saluran kelenjar (lihat gambara). Kelenjar jenis ini dapat dijumpai pada epitel mukosa lambung dan rongga hidung.

Kelenjar ekstraepitelial; jenis kelenjar ini merupakan kelenjar yang terdapat dalam jaringan pengikat. Pada kelenjar jenis ini, dapat dibedakan 2 bagian yaitu: Pars secretoria adalah bagian yang menghasilkan sekrit dan Duktus ekskretorius adalah saluran yang menampung sekrit dari pars sekretoria. Berdasarkan bentuk Pars sekretorianya, dapat dibedakan menjadi: Kelenjar tubuler, yang berbentuk pipa., Kelenjar alveoler yang berbentuk sebagai labu., dan Kelenjar asiner yang bentuknya mirip kelenjar alveoler tetapi lebih bulat. Kelenjar tubuler masih dibedakan menjadi : tubuler lurus, tubuler bergelung dan tubuler bercabang.

Berdasarkan jumlah lapisan sel epitel Pars sekretorianya, dibedakan menjadi: Kelenjar monotyche, yang terdiri atas 1 lapis sel (misalnya pada kelenjar keringat) dan Kelenjar polyotyche, yang terdiri atas beberapa lapis sel (misalnya kelenjar sebasea).

Berdasarkan bentuk duktus excretoriusnya, dapat dibedakan: Kelenjar sederhana, karena duktus ekskretoriusnya tidak bercabang dan Kelenjar kompleks, karena duktus ekskretoriusnya bercabang-cabang. Dengan memperhatikan bentuk Pars sekretoria dan duktus exkretorius , dalam tubuh dikenal berbagai jenis kelenjar yaitu: 1. Kelenjar tubuler sederhana (Simple tubular gland): a. Kelenjar tubuler lurus (misal: kelenjar usus besar) b. Kelenjar tubuler bergelung (misal: kelenjar sudorifera) c. Kelenjar tubuler bercabang (misal: kelenjar uterina) 2. Kelenjar tubuloalveoler sederhana (simple tubuloalveolar gland): kelenjar ini terdapat selalu bercabang (misal: kelenjar sub-mandibularis, kelenjar duodenalis brunneri). 3. Kelenjar alveoler sederhana (simple alveolar gland): contohnya pada kelenjar sebasea yang terdapat pada kulit dan kelenjar meibomi pada kelopak mata. 4. Kelenjar tubuler kompleks (compound tubular gland) : Kelenjar ini mempunyai pars skretoria yang berbentuk tubuler dengan saluran keluarnya yang bercabang yang akhirnya bermuara dalam satu saluran utama. Contoh pada testis. 5. Kelenjar tubulo-alveoler kompleks (Compound tubulo-alveolar gland): Kelenjar ini mempunyai pars sekretoria berbentuk alveoler dan beberapa saluran keluar yang bermuara dalam saluran keluar utama. Contoh pada kelenjar parotis, kelenjar submandibularis.

Berdasarkan cara pembentukan dan pelepasan sekret dikenal: Kelenjar Merokrin: Isi lain sel kelenjar tidak diikutsertakan dalam sekret, sehingga sel sama sekali tidak rusak.Contoh pada Pars exocrin Pancreatis, kelenjar sudorifera.

Kelenjar Holokrin: Semua isi sel diikutsertakan dalam sekret. Contoh

pada kelenjar sebasea (kelenjar minyak), Sel-sel gamet jantan dan betina.

Kelenjar Apokrin: Pada sekret diikutsertakan isi bagian puncak sel, yang menjadi rusak. Contoh pada kelenjar axillaris, kelenjar sirkumanale.

Berdasarkan sifat sekretnya, kelenjar eksokrin dapat dibedakan menjadi: Kelenjar Sitogen yaitu kelenjar yang menghasilkan sel-sel sebagai sekretnya. Contoh pada testis dan ovarium. Kelenjar Nonsitogen, yaitu kelenjar yang hasilnya tidak mengandung selsel. Dari jenis kelenjar ini , dibedakan menjadi: Kelenjar Mukosa, kelenjar Serosa dan kelenjar Seromukosa (campuran).

Kelenjar Mukosa. Sekret kelenjar mukosa bersifat kental. Bentuk sel kelenjarnya piramidal dengan bagian puncahnya berisi tetes-tetes bahan musinogen atau premusin sebagai bahan pembentuk lendir. Inti sel berbentuk gepeng terdesak di daerah basal. Apabila premusin telah dilepaskan oleh sel kelenjar, maka bahan tersebut berubah menjadi mukus lendir. Diantara kelenjar-kelenjar yang termasuk jenis ini , ada yang berbentuk uniseluler yaitu sel Piala. Kelenjar Serosa: Kelenjar ini menghasilkan sekretnya yang encer jernih yang berbentuk sebagai albumin, kadang-kadang mengandung enzim. Sel-sel Serosa juga berbentuk piramidal dengan inti berbentuk bulat yang terletak agak di tengah. Butir-butir sekretoris bersifat asidofil. Di bagian basal sel terdapat granular endoplasmis reticulum sehingga pada pengamatan dengan mikroskop cahaya, tampak gambaran yang bergaris-garis. Contoh pada kelenjar pankreas, kelenjar parotis.

Kelenjar Campuran: Kelenjar yang merupakan campuran dari sel-sel kelenjar Mukosa dan Serosa. Kadang-kadang sel-sel mukosa terdesak oleh sel serosa sehingga membentuk gambaran sebagai bulan sabit yang dinamakan Demiluna Gianuzzi. Contoh pada kelenjar Submandibularis, kelenjar sublingualis.

Gambar : (A) Kelenjar Serosa ; (B) Kelenjar Mukosa;(C) Kelenjar Seromukosa (campuran);(D) Kelenjar Demiluna.

Fungsi Jaringan epitel:

1. Sebagai penutup dan perlindungan (proteksi), karena epitel melapisi permukaan dalam dan luar tubuh. 2. Sebagai alat absorbsi, misalnya epitel membatasi permukaan dalam usus selain berfungsi perlindungan juga berperan dalam proses penyerapan hasil-hasil pencernaan makanan yang bekerja secara selektif. 3. Sebagai lubrikasi, sebagian besar saluran-saluran dalam tubuh permukaannya harus tetap basah, sehingga epitel yang menutupi harus mampu menghasilkan cairan tertentu, misalnya epitel yang melapisi vagina yang tidak memiliki kelenjar. 4. Sebagai alat sekresi, dalam hal ini epitel tersebut bertindak sebagai kelenjar. 5. Sebagai alat indera, misalnya epitelium sensorium.

DAFTAR PUSTAKA

Bloom W., and W. Fawcett, 1976. Tex Book of Histology ed. B. Saunders Company Philadelphia London.

Dellmann H.D and E.M Brown, 1976. Tex Book of Histology. Lea and Febiger Phladelphia.

Mariono SH di Fiore, 1981. Atlas of Human Histology. Lea and Febiger, Philadelphia.

Subowo, 1992. Histologi Umum . Pusat Antar Universitas-Ilmu Hayati Institut Teknologi Bandung. JARINGAN SARAF Jaringan syaraf mempunyai fungsi utama sebagai berikut: 1. Sebagai alat komunikasi di dalam tubuh: Fungsi ini terlihat dari kemampuan jaringan syaraf dalam menerima, maerubah rangsangan (stimulus) menjadi impuls dan selanjutnya menyalurkan keseluruh syaraf dan berakhir pada syaraf pusat. 2. Sebagai alat koordinasi: Semua aktivitas syaraf yang dimiliki ini diperlukan adanya koordinasi yang dilakukan oleh jaringan syaraf itu sendiri. Kedua fungsi ini sangat erat hubungannya dalam menjalankan keselarasan fungsional untuk segala kegiatan hidup sehari-hari, sehingga individu tersebut dapat menyesuaikan dirinya terhadap perubahan yang terjadi di sekitarnya. Pokok pembahasan jaringan syaraf ada dua aspek yaitu: A. Organisasi jaringan syaraf B. Morfologi jaringan syaraf A. ORGANISASI JARINGAN SYARAF Unit struktural jaringan syaraf yang merupakan bentuk satu kesatuan yang disebut NEURON. Unit kesatuan itu dapat berupa unit genetik, unit morfologik, dan unit tropik sistem syaraf. Bentuk kesatuan tersebut (Neuron) terdiri dari badan sel (cyton/soma) dan penjuluran sitoplasma. Penjuluran sitoplasma ini

sering disebut Neurit (axon) dan Dendrit, sedangkan perikaryon merupakan bagian badan sel disekeliling nukleus. Selajutnya neuron bersama-sama dengan neuroglia yang bertindak sebagai sel-sel penunjang membentuk jaringan syaraf. Hubungan antara neuron sebagai pengantar impuls terjadi melalui sinaps. Jadi sinaps merupakan tempat hubungan neuron dengan neuron yang lainnya. Neuron menghantarkan impuls hanya kesatu arah saja yang dikenal dengan istilah Polarisasi Dinamik. Doktrin Neuron : 1. Tiap neuron berasal dari stem sel embrional yaitu neuroblast yang memiliki informasi genetik untuk menjalankan fungsinya. 2. Tiap neuron adalah unit struktural yang terpisah secara jelas dengan unit neuron lainnya yang mengadakan kontak dengan unit-unit lainnya. 3. Unit-unit tersebut membentuk seperti rantai sel-sel yang merupakan mekanisme konduksi sistem syaraf. 4. Tiap neuron bertanggung jawab untuk nutrisi, metabolisme, dan pemeliharaan bagian komponen dirinya sendiri Jaringan syaraf yang terdapat pada susunan syaraf pusat seperti cerebrum (otak besar), cerebellum (otak kecil), dan medulla spinalis akan dibahas lebih lanjut pada mata ajaran ORGANOLOGI. B. MORFOLOGI JARINGAN SYARAF Neuron mempunyai banyak tipe namun demikian mempunyai hungsi utama sama yakni menerima stimuli dari dalam lingkungan (interosepsi) dan menerima stimuli dari luar (exterosepsi). Kemampuan iritabilitas dan konduktivitas yang tinggi dari sitoplasmanya merupakan pendukung utama fungsi neuron tapi kemampuan regenerasinya sangat kecil. Sel yang erat hubungannya dengan kelangsungan hidup/fungsional jaringat syarah adalah sel neuroglia. Sel neuroglia memegang peranan untuk proteksi, nutrisi , dan integritas struktural jaringan syaraf . KLASIFIKASI NEURON Neuron memiliki berbagai variasi ukuran, bentuk, jumlah prosesus sel, dan panjang prosesus sel. Morfologik neuron yang bermacam-macam ini menggambarkan adanya adaptasi terhadap perubahan fungsional yang terjadi sangat bervariasi. Neuron dapat dibagi menjadi 2 kelompok yaitu neuron transmisi dan neuron sekretorik. A. Neuron Transmisi

Merupakan bagian terbesar dari neuron. Sel neuron ini memiliki dendrit, badan sel, dan sebuah axon. Berdasarkan atas banyaknya penjuluran neuron transmisi ada beberapa tipe antara lain: a. Neuron Unipoler Sejati: neuron ini hanya memiliki sebuah axon, tipe ini terdapat terbatas pada sistem saraf yang sedang berkembang. Selain itu juga ada yang tampak penjuluran yang keluar dari badan sel dan kemudian baru terjadi pemisahan antara neurt dan dendrit. Apabila penjuluran tersebut pendek dan segera terpisah disebut neuron pseudo-unipoler. Tipe neuron ini umumnya bersifat sensoris. Axon dan dendritnya bersatu dekat dengan badan selnya, tapi di badan sel masih terlihat terlihat sedikit terpisah sebelum penjuluran itu menyatu. Pada retina mata terdapat sel amacrin yang tidak memiliki axon, sehingga neuron ini juga disebut neuron-anaxonik. b. Neuron Bipoler : neuron ini memiliki sebuah dendrit utama dan sebuah axon yang terletak pada kutub badan sel yang berlawan. Disini jelas terlihat dua penjuluran yang terpisah jelas keluar dari badan selnya, dimana yang satu sebagai neurit (axon) dan satunya lagi sebagai dendrit. Contoh neuron tipe ini terdapat pada: retina mata, ganglion vestibulare, Ganglion spinale, sel olfaktorius. c. Neuron Multipoler : Neuron ini mempunyai banyak penjuluran, tapi yang jelas terlihat hanya satu akan berfungsi sebagai axon dan selebihnya sebagai dendrit. Tipe ini paling banyak ditemukan. Pada susunan syaraf pusat terbatas dijumpai pada: neuron piramidal, sel Purkinje, dan neuron motoris dari cornua ventralis tulang belakang.

Bila dilihat dari panjang pendeknya penjuluran, banyak sedik tipe percabangannya neuron multipoler dibedakan lagi menjadi: (a) neuron golgi tipe I : disebut juga tipe Deiter. Tipe ini memiliki banyak dendrit dan sebuah axon yang panjang yang berakhir membentuk percabangan yang komplek disebut axon terminal atau telodendron. Dijumpai pada syaraf perifir yakni neuron preganglionik simpatik dan parasimpatik, neuron postganglionik simpatik. (b) neuron golgi tipe II : neuron ini mempunyai banyak dendrit dan sebuh axon yang pendek dan berakhir tidak jauh dari badan selnya. Umumnya terdapat pada substansia grisea dan tidak sampai memasuki daerah substansia alba. Axon terminalnya disebut juga neuropodia. Contohnya terdapat pada: neoron di daerah kortek serebri, kortek serebelli, dan retina mata. Neuron neurosekretorik

Adalah sel-sel syaraf spesifik yang mempunyai kemampuan mensintese, dan kemudian mentransport benda Herring melalui axonnya yang selanjutnya membebaskan berbagai zat (hormon) ke dalam darah. Hubungan antara sel ini dengan vasa darah disebut organ neurohemal. Beberapa sel neurohemal neuropypophyse (hypopise pars posterior) menghasilkan oxytocin dan anti diuretik hormon (ADH) . Selain itu ada juga sel neurohemal yang terdapat pada hypothalamusyang menghasilkan releasing factors (releasing hormon).

Morfologi sel syaraf: Bentuk sel syaraf (perikaryon) umumnya bulat, dapat juga polihidral dengan diameter birkisar antara 4 150 mikron. Intinya bulat dan besar, kromatin relatif sedikit terletak di daerah eksentris sehingga nukleus terlihat sedikit pucat. Anak inti (nukleolus) umumnya satu mengandung RNA dan protein dasar, sehingga nukleolus bisa bersifat basofil atau asidopil tergantung jenis pengecatan yang dipakai Perikaryon atau badan sel syaraf , mempunyai sitoplasma disebut neuroplasma, sedangkan pada axon/dendrit disebut aksoplasma. Di dalam plasma terdapat organel-organel sel seperti aparatus golgi, mitokondria, sentriola, paraplasma (pigmen/lemak), dan neurofibril. Selain itu juga terdapat butiran-butira di dalamnya mengandung zat sejenis protein/hormon yang disebut juga Benda Nissl yang terletak pada perbatasan badan sel dengan dendrit atau axon namun tidak dijumpai pada axon. Penelitian lebih lanjut dilaporkan bahwa Benda Nissl tidak lain adalah endoplasmik retikulum dengan bitir RNA. Benda Nissl jumlahnya pada badan sel sangat bervariasi tergantung aktivitas sel syaraf tersebuit, misal, pada keadaan lelah jumlahnya sedikit atau istirahat jumlahnya sangat banyak dan tidak dijumpai dalam keadaan patologik. Peristiwa hilangnya/berkurangnya benda Nissl ini disebut Khromatolisis. Khromatolisis ini bersifat reversibel. Bervariasinya benda Nissl merupakan ciri utama berbagai tipe neuron. Garanul-granul tersebut (benda-benda Nissl) sebenarnya merupakan kelompokan RER, ribosom bebas dan polysoma. Sehubungan kebanyakan neuron tidak menghasilkan protein untuk transport ekstraseluler. Maka dengan adanya benda Nissl yang jumlahnya berubah-ubah adalah cukup membingungkan. Hasil penelitian menyatakan bahwa dalam satu hari neuron dan memperbaiki 1/3 dari jumlah proteinnya dan benda Nissl diperkirakan berperan dalam proses pembentukan protein. Proses kromatolisis dibarengi dengan bertambahnya ribosom, RER, dan polysoma maka proses kromatolisis juga dapat diangga sebagai proses restorasi neuron itu sendiri. Pada pangkal axon di daerah perikaryaon tercat/terlihat terang karena kepadatan elektron rendah, daerah ini disebut axon-hillock Berdasarkan klasifikasi Bodian secara fungsional neuron dapat dibagi dalam 3 zona : 1. Zona dendritik: adalah daerah neuron yang merupakan subjek dari stimulus eksitasi dan inhibisi. Termasuk dalam zona ini adalah: dendrit, badan sel, dan segmen permukaan axon. Impuls yang datang ke zona ini dapat

menimbulkan atau tidak menimbulkan adanya aksi potensial dan respon bersifat bertingkat. 2. Zona Axonik: adalah meliputi segmen arborisasi ujung syaraf. Daerah ini merupakan bagian konduksi yang bersifat all or none 3. Zona Telodendritik: adalah meliputi modifikasi terminal yang memungkinkan terjadinya transfer secara listrik atau kimia ke neuron berikutnya atau ke organ efektor. Respon bersifat bertingkat.

DENDRIT Dendrit berfungsi untuk memperluas permukaan neuron, mirip dengan cabangcabang pohon. Dendrit biasanya lebih pendek dibandingkan dengan axon, bercabang-cabang secara kontunyu hingga terkecil. Permukaan dendrit maupun badan sel tertutupoleh spina atau gemmula yang merupakan hubungan synaps dengan axon terminal dari sel syaraf lainnya. Isi sitoplasma sama dengan sitoplasma badan sel. Benda Nissl hanya terbatas pada bagian proximal dendrit. AXON Axon atau axis silinder timbul dari axon hillock di perikarion. Prosesus yang tunggal ini permukaannya licin dan diameter ukurannya konstan. Sebelum berakhir pada efektor terlebih dahulu bercabang-cabang membentuk telodendron. Membran plasma axon disebut juga axolemma. Segmen permulaan tempat munculnya dari badan sel merupakan tempat permulaan myelinisasi, selain itu di tempat ini mempunyai ambang exitasi yang lebih rendah dibandingkan pada dendrit dan badan sel. Nodus ranvier terdapat pada beberapa tempat disepanjang axon bermyelin dan merupakan tempat diskontinyu dari selubung myelin.. Pada tempat tersebut axon disebungi oleh processus sitoplasmik sel glia. Pada Nodus Ranvier axon menebal. Secara fungsional Nodus Ranvier merupakan konduksi saltatorik impuls yaitu tempat meloncatnya gelombang depolarisasi dari satu nodus ke nodus berikutnya. Organel seperti mitokondria, neurotubulus, neurofilamen, SER, dan benda Nissl tidak dijumpai pada axon hillock maupun pada axon. Karena panjangnya prosesus maka akan terjadi masalah transportasi impuls maupun zat-zat lainnya. Aliran material ada 2 macam yaitu material yang mengalir dari badan sel disebut somatopugal (retrograde) dan aliran materian ke badan sel disebut somatopetal (anterograde). Aliran somatopugal ada 2 macam yaitu: aliran axoplasmik lambat dan aliran axoplasmik cepat. Sebagian besar material dalam axoplasma bergerak lambat dengan kecepatan 0,5 5 mm/hari, hal ini diperlukan dalam mengangkut material yang besdar untuk pemeliharaan, penggantian organela yang sud ah tua atau untuk reparasi axon. Namun ada juga material yang mengalir dengan kecepatan 10 200 mm/hari yang merupakan aliran cepat. Aliran cepat ini

menggunakan bantuan organel neurotubulus sebagai alat transport. Material yang diangkut dengan cepat ini digunakan untuk keperluan berlangsungnya fungsi synaps axon. Sehubungan sifat badan sel yang tanggap terhadap perubahan axon terjadi juga aliran somatopetal (anterograde) TRANSFER INFORMASI Neuron mengalami modifikasi untuk menimbulkan dan mengkonduksikan informasi ke seluruh tubuh dalam bentuk pesan elektrik. Hal yang sama pentingnya yaitu kemampuan neuron untuk mentransfer informasi ke organ efektor dan atau neuron.

Transfer informasi terjadi dengan 2 cara mekanisme: 1. Mekanisme transfer transmisi elektronik 2. Mekanisme transfer elektrokimia MEKANISME TRANSMISI ELEKTRONIK Transmisi elektronik pada jaringan syaraf terjadi pada tempat spesifik disebut efapses elektrotonic junctions atau disebut juga sinapses elektronik. Pada jaringan lain misal nexi disebut Gap junctions. Ruang yang terbentuk adalah sangat sempit sehingga tidak ada perbedaan konsentrasi ion antara kedua sel tersebut. Stimulus yang melalui efapses tidak perlu mengalami polarisasi untuk mengalirkan materi dari satu sel ke sel yang lainnya, sehingga aliran listrik dapat berjalan dengan cepat. MEKANISME ELEKTROKIMIA Sinapses merupakan tempat transmisi elektrokimia terjadi dan bersifat lebih umum dibandingkan dengan efapses. Aktivitas listrik pada membran sel syaraf presinaptik menyebabkan dibebaskannya substansi neurotransmiter yang melintasi ruang interseluler dan menghubungkan sisi reseptor pada membran sel post sinaptik. Persatuan antara sel neurotransmiter dengan sisi reseptor akan mengakibatkan perubahan yang dapat bersifat exitasi ataupun inhibisi. Proses pembebasan baik secara difusi maupun persatuan substansi transmiter pada sisi reseptor mengakibatkan waktu transmisi terhabat. Hambatan ini disebut Hambatan sinapses. Ujung axon merupakan elemen membran presinaptik, sedangkan organ efektor merupakan membran postsinaptik. Kedua membran ini dipisahkan oleh ruang interseluler (celah sinaptik/synaptic cleft) yang lebarnya 6 20 nm dan

mengandung material yang padat elektron dan filamen halus. Pada bidang membran postsinaptik terdapat penebalan yang disebabkan karena adanya filamen, dan penebalan ini disebut subsynaptic web. Pada ujung presinaptik terdapat mitokondria, neurofilamen, neurotubulus, dan vesikula sinaptik. Sitoplasma yang padat dapat ditemukan pada membran pre- maupun postsinaptik, kadang dapat juga dijumpai hanya pada salah satunya. Tidak seperti pada efapses maka sinapses kimia bersifat polar (aliran satu arah) yaitu sesalu dari membran presinapstik ke membran postsinaptik. Bagian presinaptik axis silinder meluas membentuk bentukan seperti bola lampu atau seperti kancing baju. Perluasan pada ujung axon disebut boutons terminauuk sedangkan perluasan sepanjang axis silinder disebut boutons passage. Kedua macam perluasan ini dapat dijumpai pada axon dari serabut syaraf tak bermyelin atau pada nodus Ranvier dari serabut syaraf bermyelin. Ujung axon dapat membentuk sinapses dengan berbagai bagian neuron lain yaitu: 1. axo-somatik 2. axo-dendritik 3 axo-axonal 4. dendro-dendritik 5. somato-dendritik 6. somato-somatik Sinapses yang terbentuk antara sel syaraf dengan sel otot skelet disebut Junctura neuro-muskuler.

NEUROGLIA Jaringan ikat tubuh membentuk rangka utama pada sebagian besar organ tubuh. Rangka jaringan ini tidak hanya bersifat sebagai penyokong tetapi juga merupakan sarana tempat komponen vaskuler menyebar ke seluruh bagian parenchim. Model hubungan yang erat dan ketergantungan merupakan sifat struktural dari sistem syaraf perifir. Hubungan semacam ini tidak menojol pada sistem syaraf pusat. Neuroglia merupakan derivat ektoderm yang merupakan epithelium yang telah mengalami modifikasi secara unik. Epithelium ini tergantung pada jaringan pengikatnya tetapi terpisah dari padanya. Sistem syaraf pusat berasal dari perkembangan 2 macam sel yaitu satu kelompok sel

membentuk neuron yang berkembang membentuk bangunan geometris yang komplek dan kelompok yang lainnya berkembang diantara neuron. Kelompok sel kedua ini yang dikenel dengan neuroglia (sel glia). Neuroglia berfungsi membentuk rangka penyokong atau stroma sistem syaraf pusat. Selain itu neuroglia juga membentuk pelekat neuron yang mengikat neuron bersama-sama. Disamping sebagai penyokong juga mempunyai fungsi sebagai proteksi, penyuplai nutrisi, dan fungsi-funsi lainnya untuk integritas neuron. Neuroglia juga terdapat pada sistem syaraf perifir. Berdasarkan ukurannya terdapat dua macamneuroglia: yaitu makroglia dan mikroglia. Yang tergolong makroglia adalah: 11. oligodendrosit 12. astrosis 13. ependima 14. amfisit 15. sel Schwann 16. sel Muler Yang tergolong mikroglia adalah : 6. mikrogliosit Selain berdasarkan atas bentuk ukuran sel neuroglia dapat juga digolongkan berdasarkan hubungannya dengan sistem syaraf pusat sistem syaraf perifir yaitu: Gliasentral : termasuk di dalamnya adalah oligodendrogliosit astrosit ependima sel Muller mikrogliosit Gliaperifir: 7. ampisit 8. sel Schwann Dengan pengecatan rutin ( HE ) badan sel dan prosessus sel dari neuroglia tidak begitu jelas terlihat. Gliaperifir madah diidentifikasi berdasarkan dengan melihat hubungannya dengan elemen sistem syaraf perifir. Neuropil merupakan istilah untuk menggambarkan susunan mirip jala yang komplek yang terdapat pada sel-sel sistem syaraf pusat. Pada neuropil terdapat processus sel (axon dan dendrit) serta elemen neuroglia substansia grissea. Oligodendrogliosit Oligodendrogliosit merupakan neuroglia yang terbesar jumlahnya. Ciri-ciri spesifik : nukleus kecil, bentuk bulat atau oval, mengandung heterochromatin dalam jumlah sedang. Nukleusnya bervariasi dari besar dan pucat sampai kecil dan

gelap. Secara umum, nukleusnya lebih kecil dan lebih bulat dari pada nukleus astrosit. Sitoplasmanya kurang padat, processus sedikit, sel-sel ini terjepit antara processus sel dan badan sel saraf. Juga memiliki hubungan erat dengan kapiler darah. Oligodendroliosit dapat menempati posisi perineuronal, perivaskuler, atau intervasikuler. Oligodendroliosit perineurel memiliki fungsi nutrisi. Pada otak kucing kira-kira 90% permukaan badan sel tertutup oleh sel ini. Oligodendrogliosit berperan pada proses melenisasi processus sel di sistem saraf pusat. Fungsi ini mempengaruhi kecepatan produksi sepanjang processus sel saraf. Astrosit Dalam sistem saraf pusat jumlahnya no. 2 sesudah oligodendroliosit. Ada 2 macam astrosit yaitu astrosit fibrosan dan protoplasmik. Yang protoplasmik lebih kaya protoplasma dari yang lain. Astrosit fibrosa lebih banyak ditemukan pada substansialba sedang yang protoplasmik yang lebih banyak ditemukan pada substansia grisea. Keduanya memiliki nukleus besar, bulat atau oval biasanya sangat pucat. Granula chromatin halus kadang-kadang tampak menggumpal di perifer. Astrosit penting sebagai penyokong struktural pada otak dan medula spinalis. Sel ini juga berperan pada proses reparasi dan pembentukan parut pada sistem saraf pusat. Astrosit dapat mengalami hipertrodi, hiperprasi dan bersifat fogositik. Astrosit berfungsi sebagai isolator permukaan reseptor sel saraf. Secara klasik sel ini berfungsi sebagai barier/ penghalang hubungan darah dan otak. Mikrogliosit Terbesar di sistem saraf pusat, sitoplasma tidak padat, nukleus kecil dan gelap. Nukleus dapat bulat, punya identasi atau berbentuk tidak teratur. Processai sel banyak. Sel ini dimasukkan dalam sistem makrofag yang berasal dari promonosit sumsum tulsng nerah. Tetapi tidak semua peneliti sependapat. Mikrogliosit hanya dapat melakukan fogositosis kalau kerusakan kecil. Kalau kerusakan yang terjadi besar, maka sel fogositik bermigrasi dari vasa darah untuk membantu mikrogliosit. Sel Muller Sel Muller merupakan elemen neugrolia yang spesifik, terdapat pada retina mata. Ependima Merupakan elemen neuroglia yang membatasi canalis neuralis. Sel-sel ini membatasi canalis neuralis medulla spinalis dan keempat ventrikel yang terdapat pada otak. Lapisan ini memiliki gambaran yang menyolok pada tempat-tempat pada plexus chorioideus karena sel-sel mengalami modifikasi yang cukup jauh. Pada emberyo sel ependima berbentuk kuboid atau kolumner rendah. Sel epindema memiliki nuklei besar dan pucat, nekleoli satu atau lebih. Pada dewasa, tepi basal dipisahkan dari jaringan saraf oleh membran basalis. Pada hewan

muda, modifikasi basal sangat komplekx dam processus sitoplasmatiknya dapat meluas sampai ke jaringan saraf. Fungsi sel epindema bermacam-macam, antara lain untuk pembentukan cairan cerebro-spinal. Proses pembentukan cairan cerebrospinal tidak hanya terbatas pada sel epindima di daerah plexus choriadius tetapi terjadi juga pada daerah yang tersebar di ventrikel otak. Sel ependima yang bersilia berfungsi untuk meng