pltn 2

27
0 INDONESIA NUCLEAR POWER PLANT BLUE PRINT Lecturer : SYARIFFUDDIN MAHMUDSYAH

Upload: bangkit1110

Post on 11-May-2017

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PLTN 2

0

INDONESIANUCLEAR POWER PLANT

BLUE PRINT

Lecturer : SYARIFFUDDIN MAHMUDSYAH

Page 2: PLTN 2

1

Pertimbangan Penggunaan PLTN

KOMPETITIF SECARA EKONOMIS

KEHANDALAN TINGGI

TINGKAT KESELAMATAN TINGGI

PENERIMAAN MASYARAKAT

Page 3: PLTN 2

2

KOMPETITIF SECARA EKONOMIS

BIAYA INVESTASI

BIAYA BAHAN BAKAR

BIAYA O & M

DALAM JANGKA BIAYA PEMBENGKITAN

KOMPETITIF DIBANDING PEMBANGKIT

LISTRIK JENIS LAIN

Page 4: PLTN 2

3

KEHANDALAN TINGGI

PLTN GENERASI BARU MEMILIKI JAM OPERASI TAHUNAN DIATAS 8OOO JAM

WAKTU MAINTENANCE PENDEK

PENGGANTIAN BAHAN BAKAR NUKLIR LEBIH CEPAT

Page 5: PLTN 2

4

TINGKAT KESELAMATAN TINGGI

JAMINAN KESELAMATAN PERSONIL/PEKERJA, MASYARAKAT DAN INVESTASI

JAMINAN TERHADAP PERLINDUNGAN LINGKUNGAN

JAMINAN TERHADAP KEAMANAN DAN PENYALAHGUNAAN BAHAN NUKLIR DAN RADIOAKTIF

Page 6: PLTN 2

5

PENERIMAAN MASYARAKAT

MEMILIH PLTN DENGAN TEKNOLOGI YANG MAPAN

KINERJA BAIK, ASPEK KESELAMATAN DAN EKONOMI

MEMUNGKINKAN PENGGUNAAN KOMPONEN LOKAL

PENGGUNAAN PLTN GENERASI III DAN IV

Page 7: PLTN 2

6

GENERASI PLTNPARAMETER GENERASI I GENERASI II GENERASI III GENERASI IV

KARAKTERISTIK PROTOTYPE,UKURAN

BERAGAM

KOMERSIAL, DAYA

BESAR, PF >

ADVANCED DESIGN,

SEDERHANA, DAYA

BESAR,

KOMPETITIF, AMAN,

NON PROLIFERASI,

LIMBAH <, KOGEN

SISTEM

KESELAMATAN

REDUNDANSI IHERENT SAFETY,

REDUNDANSI

SISTEM PASIF,

KEDELAMATAN GANDA

CORE DENSITY <,

SISTEM PASIF, EM.

PROT. AREA <

CORE DEMAGE FREQ.

(CDF)

<1/10000/REAKTOR.

TAHUN

<1/10000/REAKTOR.

TAHUN

1/1000000/REAKTOR.T

AHUN

1/1000000/REAKTOR.

TAHUN

CONTOH MAGNOX PWR, BWR, CANDU ABWR, AP 600, AP

1000

PBMR, VHTR

Page 8: PLTN 2

7

Top 10 Nuclear Countries (1999)

727,9

375

306,9

160,4110,9 97,8 91,2 70,4 70,1 67,4

0

100

200

300

400

500

600

700

800

US France Japan Germany Russia Korea RP UK Canada Sweden Ukraine

bil

lio

n k

ilow

att

-hou

rs

U.S. nuclear electricity generation is:

as large as France and Japan (#2

and #3) combined; and

larger than the other 7 nations in

the top 10 combined

Source: IAEA

Page 9: PLTN 2

8

Safety of Current Nuclear Plants There has not been a loss of life in the US due to commercial

nuclear plants (TMI released a small amount of radiation)

Chernobyl accident - a terrible accident with a bad design

These plants are now closed or redesigned for operation

Russian nuclear plant operations are being assisted by IAEA

Regional deregulation of the electricity industry introduces

challenges to continue & enhance the safety of nuclear plants.

- Upgrades of power plant equipment and reliable replacement schedule

- Risk-informed decision making by the industry should be cost-effective

US nuclear plants are now self-insured via Price-Anderson Act

and we should renew Price-Anderson legislation for long-term

Page 10: PLTN 2

9

Nuclear Power High Level Waste (HLW)

All nuclear fuel cycle waste (except HLW) has been safely

and reliably disposed through DoE and NRC regulations;

milling, enrichment, fabrication by-products as LLW

Since 1982, US law ‘defines’ spent nuclear fuel as a HLW,

since reprocessing has not occurred since 1976 (Japan &

Europe currently reprocess spent nuclear fuel for recycle)

Spent fuel is currently stored at ~105 nuclear power plant

sites (~ 2000 mt/yr; total ~50,000 mt) & is planned to be

stored/buried at one site in the US (Yucca Mtn)

All nuclear electricity is taxed at 1mill/kwhre for a HLW

fund (~$0.8 billion/yr; total fund ~ $20 billion)

Reassert criteria, achieve licensing & begin operation of Yucca

Page 11: PLTN 2

10

Evolution of Nuclear Power Systems

1950 1960 1970 1980 1990 2000 2010 2020 2030

Gen IV

Generation IV

Enhanced

Safety

Improved

Economics

Minimized

Wastes

Proliferation

Resistance

Gen I

Generation I

Early Prototype

Reactors

•Shippingport

•Dresden,Fermi-I

•Magnox

Gen II

Generation II

Commercial Power

Reactors

•LWR: PWR/BWR

•CANDU

•VVER/RBMK

Gen III

Generation III

Advanced

LWRs

•System 80+

•EPR

•AP1000

•ABWR

Page 12: PLTN 2

http://www.energy.wisc.edu

PWR Containment

Page 13: PLTN 2

12

Evolution of Nuclear Power Systems

1950 1960 1970 1980 1990 2000 2010 2020 2030

Gen IV

Generation IV

Enhanced

Safety

Improved

Economics

Minimized

Wastes

Proliferation

Resistance

Gen I

Generation I

Early Prototype

Reactors

•Shippingport

•Dresden,Fermi-I

•Magnox

Gen II

Generation II

Commercial Power

Reactors

•LWR: PWR/BWR

•CANDU

•VVER/RBMK

Gen III

Generation III

Advanced

LWRs

•System 80+

•EPR

•AP1000

•ABWR

Page 14: PLTN 2

13

Nuclear Safety Enhanced

Current nuclear power plants have high levels of safety: i.e., reliable operation, low occupational radioactivity dose to workers and with minimal risk and health effects from severe accidents.

Future nuclear reactor systems will meet and exceed safety performance of current reactors.

Decay heat removal, minimize transients and allow time for operator actions are the keys to successful safety performance.

Advanced LWR’s will be simplified, thus more economic and continue to minimize emissions

Deploy advanced light-water reactor systems (GenIII)

Page 15: PLTN 2

Slide 14Doc.ppt0144

The Westinghouse AP1000

A compact station• 3415 MWt. Primary system•1117 MWe•2-loops, 2 steam generators

Page 16: PLTN 2

Slide 15Doc.ppt0144

AP1000/AP600

Reactor Coolant System

Page 17: PLTN 2

Slide 16Doc.ppt0144

AP1000 Turbine-Generator

Page 18: PLTN 2

17

Advanced LWR: AP-1000

Page 19: PLTN 2

18

Advanced LWR: ESBWR

Page 20: PLTN 2

19

Generation IV Reactor Systems

Safety: must meet and exceed current nuclear

power plant reliability, occupational radiation

exposure and risk of accident consequences

Sustainability: minimize waste streams during

spent fuel disposal or reprocessing and recycle

Proliferation and Physical Protection of facilities

Economics: continue to reduce the total cost of

electricity ($/Mwhr-e) to remain competitive with

leading technologies (e.g., gas, coal and wind)

Develop and demo advanced reactors & fuel cycles

(GenerationIV)

Page 21: PLTN 2

20

Very-High-Temperature Reactor (VHTR)

oCharacteristics

o High temperature coolant

o 900 - 1000°C outlet temp.

o 600 MWth

o Water-cracking cycle

oKey Benefit

o High thermal efficiency

o Hydrogen production by water-cracking by High-Temp Electrolysis or Thermo-chemical decomposition

Page 22: PLTN 2

21

Process Heat for Hydrogen Production

Nuclear HeatNuclear HeatHydrogenHydrogen OxygenOxygen

H2O22

1

900 C400 C

Rejected

Heat 100 C

Rejected

Heat 100 C

S (Sulfur)

Circulation

SO2+H2O

+

O221

H2SO4

SO2+

H2OH2O

H2

I2

+ 2HI

H2SO4

SO2+H2OH2O

+

+ +

I (Iodine)

Circulation

2H I

I2

I2

WaterWater

Nuclear HeatNuclear HeatHydrogenHydrogen OxygenOxygen

H2O22

1 O22121

900 C400 C

Rejected

Heat 100 C

Rejected

Heat 100 C

S (Sulfur)

Circulation

SO2+H2O

+

O221

H2SO4

SO2+

H2OH2O

H2

I2

+ 2HI

H2SO4

SO2+H2OH2O

+

+ +

I (Iodine)

Circulation

2H I

I2

I2

WaterWater

L

Liquid Metal

Hydrogen

CxHy

Carbon

Recycle

200 C 1000 C

Thermochemical

Processes

LM Condensed Phase

Reforming (pyrolysis)

Aqueous-phase

Carbohydrate

Reforming (ACR)

H2, CO2

CATALYST

AQUEOUS CARBOHYDRATE

Page 23: PLTN 2

22

Hi-Temp. Electrolysis Process

Porous Anode, Strontium -doped Lanthanum Manganite

Gastight Electrolyte, Yttria-Stabilized Zirconia

Porous Cathode, Nickel -Zirconia cermet

2 H20 + 4 e- 2 H2 + 2 O=

2 O= O2 + 4 e-

2 O=

H2O

H2

O2

4 e-

Interconnection

H2O + H2

Next Nickel-Zirconia Cermet CathodeH2O

H2

Porous Anode, Strontium -doped Lanthanum Manganite

Gastight Electrolyte, Yttria-Stabilized Zirconia

Porous Cathode, Nickel -Zirconia cermet

2 H20 + 4 e- 2 H2 + 2 O=

2 O= O2 + 4 e-

2 O=

H2O

H2

O2

4 e-

2 2 290 v/o H O + 10 v/o H90 v/o H O + 10 v/o H2 10 v/o H2O + 90 v/o H210 v/o H2O + 90 v/o H2

Interconnection

H2O + H2

Next Nickel-Zirconia Cermet CathodeH2O

H2

Porous Anode, Strontium -doped Lanthanum Manganite

Gastight Electrolyte, Yttria-Stabilized Zirconia

Porous Cathode, Nickel -Zirconia cermet

2 H20 + 4 e- 2 H2 + 2 O=

2 O= O2 + 4 e-

2 O=

H2O

H2

O2

4 e-

Interconnection

H2O + H2

Next Nickel-Zirconia Cermet CathodeH2O

H2

Porous Anode, Strontium -doped Lanthanum Manganite

Gastight Electrolyte, Yttria-Stabilized Zirconia

Porous Cathode, Nickel -Zirconia cermet

2 H20 + 4 e- 2 H2 + 2 O=

2 O= O2 + 4 e-

2 O=

H2O

H2

O2

4 e-

2 2 290 v/o H O + 10 v/o H90 v/o H O + 10 v/o H2 2 2 290 v/o H O + 10 v/o H90 v/o H O + 10 v/o H90 v/o H O + 10 v/o H90 v/o H O + 10 v/o H2 10 v/o H2O + 90 v/o H210 v/o H2O + 90 v/o H210 v/o H2O + 90 v/o H210 v/o H2O + 90 v/o H2

Interconnection

H2O + H2

Next Nickel-Zirconia Cermet CathodeH2O

H2

Page 24: PLTN 2

23

GAS-COOLED REACTOR

Page 25: PLTN 2

24

Nuclear Power Fuel Cycle[1000 MWe-yr – (A) Once Thru (B) U-Pu recycle] IAEA-1997

Mining/Milling

Convert/Enrichment

Fuel Fabrication

Reactor (1000MWe)

Reprocessing Plant

Milling waste stream

Conv/Enrich Waste Tails

Fuel Fabrication Waste

Spent Fuel as Waste

Reprocessing Waste (FP)

U3O8 &daughters

(A)10 mt (B) 6mt

UF6 &daughters

(A) 167mt(B) 0.5mt

(A) 205mt (B)120mt

(A) 37mt (B)11.5mt

(A) 36.8mt (B) 36.4mt (U-Pu)

(A) 35.7 mt U, 0.32mt Pu(B) 36mt U, 0.5mt Pu

(B) 1.1 mt U, 5kg Pu

UO2 & daughters

(A) 0.2mt (B) 0.16mt

Page 26: PLTN 2

25

Liquid-Metal Cooled Fast Reactor (LFR)

Characteristics

• Na, Pb or Pb/Bi coolant

• 550°C to 800°C outlet temperature

• 120–400 MWe

Key Benefit

• Waste minimization and efficient use of uranium resources

Page 27: PLTN 2

26

To Advance the Use of Nuclear Energy:

Ensure energy security with bipartisan initiatives and an

executive branch priority on nuclear energy

Enact long-term Price-Anderson legislation

Demonstrate predictable nuclear plant licensing processes

Reassert criteria, achieve licensing & begin operation of

Yucca Mountain Repository

Deploy current light-water reactors in the U.S. (Gen-III)

Develop/demonstrate advanced reactors & fuel cycles (GenIV)

Reestablish a vibrant educational infrastructure

=>Build public confidence and support for nuclear energy