pertemuan ilmiah radioisotop, radiofarmaka, …repo-nkm.batan.go.id/3413/1/imam.pdf ·...

17
PROSIDING ISSN : 2087-9652 PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, SIKLOTRON DAN KEDOKTERAN NUKLIR BADAN TENAGA NUKLIR NASIONAL PUSAT TEKNOLOGI RADIOISOTOP DAN RADIOFARMAKA GEDUNG 11, KAWASAN PUSPIPTEK, TANGERANG SELATAN, BANTEN TELP/FAX : (021) 756 3141 email : [email protected] “Current Advances in Radionuclide Technology Nuclear Medicine and Molecular Imaging” Gedung Diklat RSUP Dr. Kariadi Jl. Dr. Sutomo No. 16 Semarang 10 – 11 Oktober 2014

Upload: buinhu

Post on 17-Mar-2019

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

PROSIDING

ISSN : 2087-9652

PERTEMUAN ILMIAH RADIOISOTOP,RADIOFARMAKA, SIKLOTRONDAN KEDOKTERAN NUKLIR

BADAN TENAGA NUKLIR NASIONAL

PUSAT TEKNOLOGI RADIOISOTOP DAN RADIOFARMAKAGEDUNG 11, KAWASAN PUSPIPTEK, TANGERANG SELATAN, BANTEN

TELP/FAX : (021) 756 3141email : [email protected]

“Current Advances in Radionuclide Technology Nuclear Medicine and Molecular Imaging”

Gedung Diklat RSUP Dr. KariadiJl. Dr. Sutomo No. 16

Semarang

10 – 11 Oktober 2014

Page 2: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

ProsidingPertemuanIlmiahRadioisotop, Radiofarmaka,SiklotrondanKedokteranNuklirTahun 2014

ISSN : 2087-9652

i

KATA PENGANTAR

Puji Syukur kami panjatkan kehadirat Allah atas petunjuk dan karunia yang telah diberikansehingga Prosiding Pertemuan Ilmiah Tahunan Radioisotop, Radiofarmaka, Siklotron danKedokteran Nuklir 2014 dengan tema “ Current Advances in Radionuclide Technology NuclearMedicine and Molecular Imaging” dapat diterbitkan. Prosiding ini merupakan kumpulan karyailmiah yang telah lolos proses seleksi yang dilakukan oleh tim penelaah dan telahdipresentasikan dalam seminar pada tanggal 10 dan 11 Oktober 2014 yang bertempat di AulaGedung Direksi Rumah Sakit Umum Pusat Dr. Kariadi Jalan Dr Sutomo nomor 16 Semarang.

Pertemuan Ilmiah Tahunan Radioisotop, Radiofarmaka, Siklotron dan Kedokteran Nuklir 2014diisi dan diikuti oleh kurang lebih 220 peserta yang berasal 10 satuan kerja pemerintah, 14perwakilan Rumah Sakit, 3 universitas, 7 perwakilan industri dan 2 perwakilan dari luar negeriyaitu dari Royal Prince Alfred Hospital, Australia dan Seoul National University, Korea.

Pusat Teknologi Radioisotop dan Radiofarmaka dan Perhimpunan Kedokteran NuklirIndonesia sebagai pihak penyelenggara seminar ini menyampaikan terimakasih yangsebesar-besarnya kepada semua peserta dan pembawa makalah yang telahberpartisipasidalam seminar dan aktif memberikan masukan yang bermanfaat bagi semuamakalah yang dipublikasikan. Ucapan terimakasih juga disampaikan kepada seluruh DewanEditor yang telah membantu dalam seleksi, penilaian dan peningkatan mutu makalah untukbisa dipublikasikan dalam Prosiding Pertemuan Ilmiah Tahunan Radioisotop, Radiofarmakadan Siklotron 2014. Terimakasih pada seluruh anggota dewan redaksi yang telah bekerjakeras untuk menyusun dan menerbitkan prosiding ini, serta semua pihak yang telah ikutmembantu dalam penyelenggaraan seminar sampai dapat diterbitkannya prosiding ini.

Besar harapan kami bahwa Prosiding ini akan banyak berguna bagi para pembaca sertasemua rekan seprofesi, serta akan dapat menjadi acuan dan titik tolak untuk mencapaikemajuan yang lebih besar untuk perkembangan di bidang radioisotop, radiofarmaka,siklotron dan kedokteran nuklir.Kami sadari bahwa seminar dan prosiding ini tidak lepas dariberbagai kekurangan. Kami mohon maaf dan kritik serta saran yang bersifat membangundemi perbaikan dimasa datang selalu kami harapkan dari rekan sejawat dan pembaca yangbudiman.

Serpong, Januari 2015

Tim Editor

Page 3: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

ProsidingPertemuanIlmiahRadioisotop, Radiofarmaka,SiklotrondanKedokteranNuklirTahun 2014

ISSN : 2087-9652

ii

Dewan Editor/Penelaah Prosiding PIT 20141. Dr. Rohadi Awaludin (PTRR-BATAN)

2. Dr. Martalena Ramli(PTRR-BATAN)

3. Basuki Hidayat, dr, Sp.KN (FK-UNPAD, RS. Hasan Sadikin Bandung)

4. Imam Kambali, PhD(PTRR-BATAN)

5. Drs. Hari Suryanto, M.T(PTRR-BATAN)

6. Drs. Adang Hardi Gunawan(PTRR-BATAN)

7. Widyastuti(PTRR-BATAN)

Page 4: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

ProsidingPertemuanIlmiahRadioisotop, Radiofarmaka,SiklotrondanKedokteranNuklirTahun 2014

ISSN : 2087-9652

iii

SUSUNAN PANITIA

Penasehat1. Prof. Dr. Johan S Masjhur, dr, SpPD-KEMD, SpKN

Perhimpunan Kedokteran Nuklir Indonesia

2. Dra. Siti Darwati MSc

Pusat Teknologi Radioisotop dan Radiofarmaka - BATAN

3. A. Hussein S Kartamihardja, dr, SpKN, MH.Kes

Perhimpunan Kedokteran Nuklir Indonesia / Fakultas Kedokteran - UNPAD

Pengarah1. Dr. Rohadi Awaludin

2. Trias Nugrahadi, dr ,Sp.KN

3. Drs. Hotman Lubis

4. Dra. R. Suminar Tedjasari

Redaktur Prosiding PIT 2014 dan Panitia Pelaksana PIT 20141. Ratna Dini Haryuni, M.Farm

2. Herlan Setiawan, S.Si

3. Diah Pristiowati

4. Rien Ritawidya, M.Farm

5. Titis Sekar Humani, M.Si

6. Nur Rahmah Hidayati, M.Sc

7. Drs. Agus Ariyanto

8. Didik Setiaji, A.Md

9. Veronika Yulianti Susilo, M.Farm

10. Wira Y Rahman

11. Indra Saptiama, S.Si

12. Fath Priyadi S.ST

13. Bisma Baron Patrinesha, A.Md

14. Jakaria, S.ST

Page 5: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

ProsidingPertemuanIlmiahRadioisotop, Radiofarmaka,SiklotrondanKedokteranNuklirTahun 2014

ISSN : 2087-9652

iv

LAPORAN KETUA PANITIA

Assalamu’alaikumwr.wb.

SegalaPujibagi Allah SWT, karenaatasrahmatdankarunia-NyaPertemuanIlmiahTahunanRadioisotop, Radiofarmaka, SiklotrondanKedokteranNuklirTahun2014 dapatterlaksanadenganbaik. Pertemuanilmiahinimerupakankegiatanrutin yangterselenggarasetiaptahun,kerjasamaantaraPusatTeknologiRadioisotopdanRadiofarmaka(PTRR) -BATAN denganPerhimpunanKedokteranNuklir Indonesia (PKNI)danPerhimpunanKedokterandanBiologiNuklir Indonesia (PKBNI).

Tema yang diangkattahuniniadalah“ Current Advances in Radionuclide Technology NuclearMedicine and Molecular Imaging”. Pertemuaninidihadirioleh 220pesertadariberbagaikalanganbaikdaridalammaupundariluarnegeri, meliputiparapengambilkebijakan, peneliti, klinisi, akademisi, sertamitraindustri. Bentukkegiatan yangtelahdilaksanakanberupa: plenary sessiondarikeynote speaker, presentasi oral, presentasiposter, sertapameranprodukdariPusatDiseminasidanKemitraan –BATANdanbeberapamitraindustri.

Kegiataninibertujuanuntuksharingilmu, memperolehinformasibarusertamenyampaikanhasil-hasillitbangterkinidi bidangradiofarmaka, molecular imaging, kedokterannuklirdantargetedradionuclide therapy.

Kamiberharapsemogapertemuaninidapatmemberikankontribusidalammeningkatkanperkembanganilmudibidangradioisotop, radiofarmaka,siklotrondankedokterannuklirsertadapatmemberikanmanfaat yang sebesar-besarnyabagiseluruhpihak. Akhir kata, Kami mengucapkanterimakasihpadasemuapihak yangtelahmensukseskanpenyelenggaraankegiatanPIT 2014. Kamijugamemohonmaafatassegalakekurangan,semogatahundepankitadapatberjumpakembalipadakeadaaan yang lebihbaik.

Wassalamu’alaikumwr.wb

KetuaPanitia

Ratna Dini Haryuni, M.Farm

Page 6: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

ProsidingPertemuanIlmiahRadioisotop, Radiofarmaka,SiklotrondanKedokteranNuklirTahun 2014

ISSN : 2087-9652

v

KATA SAMBUTANKEPALA PUSAT TEKNOLOGI RADIOISOTOP DAN RADIOFARMAKA

Assalamu’alaikum wr. wb.

Alhamdulillah, segala puji dan syukur kita panjatkan kepada Allah SWT atas nikmat dankarunia-Nya sehingga acara Pertemuan Ilmiah Tahunan Radioisotop, Radiofarmaka,Siklotron dan Kedokteran Nuklir Tahun 2014 dapat dilaksanakan dengan baik sampaidengan terbitnya prosiding. Kami mengucapkan terima kasih yang sebesar-besarnya kepadaTim Penelaah, Tim Editor dan semua pihak yang terlibat dalam penyelesaian prosiding ini.

Kami mengharapkan prosiding ini dapat digunakan sebagai dokumentasi karya ilmiah parapeneliti dan praktisi dalam bidang kesehatan khususnya kedokteran nuklir yang telahdipresentasikan pada Pertemuan Ilmiah Tahunan Radioisotop, Radiofarmaka, Siklotron danKedokteran Nuklir Tahun 2014 pada tanggal 10-11 Oktober 2014 di Aula Gedung DireksiRumah Sakit Umum Pusat Dr.Kariadi Jl. Dr. Sutomo, Semarang, Jawa Tengah. Pertemuanilmiah ini mengangkat tema “Current Advances in Radionuclide Technology, NucluarMedicine and Molecular Imaging”dengan melibatkan para peneliti dari Pusat TeknologiRadioisotop dan Radiofarmaka (PTRR) dan beberapa satuan kerja dilingkungan BATANmaupun perguruan tinggi, para praktisi kedokteran nuklir serta pembicara tamu dari luarnegeri yaitu Royal Prince Alfred Hospital of Australia dan Seoul National University of Korea.

Harapan kami semua semoga prosiding ini dapat dijadikan referensi bagi berbagai pihakterutama para peneliti, pemikir dan pemerhati kesehatan dalam penelitian danpengembangan radioisotop, radiofarmaka dan siklotron, serta aplikasinya dalam bidangkedokteran nuklir sehingga dapat meningkatkan kualitas pelayanan kesehatan bagimasyarakat luas.

Wassalamu‘alaikum wr. wb.

Kepala Pusat Teknologi Radioisotop dan Radiofarmaka

Dra. Siti Darwati, M.Sc

Page 7: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

ProsidingPertemuanIlmiahRadioisotop, Radiofarmaka,SiklotrondanKedokteranNuklirTahun 2014

ISSN : 2087-9652

vi

DAFTAR ISI

Kata Pengantar ......................................................................................................................... iDewan Editor / Penelaah Prosiding PIT 2014 ........................................................................ iiSusunan Panitia........................................................................................................................ iiiLaporan Ketua Panitia ............................................................................................................. ivKata Sambutan Kepala Pusat Teknologi Radioisotop dan Radiofarmaka ......................... vDaftar isi .................................................................................................................................... vi

Preparasi dan Uji Stabilitas 177Lu-DOTA-F(ab’)2- Nimotuzumab SebagaiKandidat Radiofarmaka Terapi Kanker .................................................................................. 1Martalena Ramli, Citra R.A.P. Palangka, Lina Elfita, Ratna Dini Haryuni,Titis Sekar Humani

Penentuan Tangkapan Radiofarmaka 99mTc-Siprofloksasin TerhadapCiprofloxacin-Resistant Escherichia coli dan Ciprofloxacin-ResistantStaphylococcus aureus ........................................................................................................... 12Isti Daruwati, Maria Agustine, Maula Eka Sriyani, Iim Halimah, Rizky Juwita Sugiharti,Nelly D. Leswara

Kinerja Kolom Generator 99Mo/99mTc dengan Material Berbasis ZirkoniumMenggunakan 99Mo Aktivasi Dengan AktivitaS 250 mCi .................................................... 21Marlina, Sriyono, Endang Sarmini, Herlina, Abidin, Hotman Lubis, Indra Saptiama,Herlan Setiawan, Kadarisman

Optimasi Pemisahan 177Lu dari Yb2O3 untuk Radioterapi denganMetode Kromatografi Kolom ................................................................................................... 28Triani Widyaningrum, Endang Sarmini, Umi Nur Sholikhah, Triyanto,Sunarhadijoso Soenarjo

Karakterisasi 198AuNP Terbungkus PAMAM G4 untuk Penghantar Obat Diagnosadan Terapi Kanker .................................................................................................................... 35Anung Pujiyanto, Eni Lestari, Mujinah , Hotman L, Umi Nur sholikah, Maskur,Dede K, Witarti, Herlan S, Rien R , Adang H G, Abdul Mutalib

Pengaruh Pencucian Larutan HNO3 0,1 N pada Kolom Alumina AsamTerhadap Rendemen dan Kualitas 99mTc Hasil Ekstraksi PelarutMetil Etil Keton (MEK) dari 99Mo Hasil Aktivasi.................................................................... 42Yono S, Adang H.G. dan Sriyono

Modifikasi Kontrol Duct Heater Untuk Mempertahankan Stabilitas Humidity di dalamCave Siklotron Guna Menunjang Pengoperasian Siklotron CS – 30 BATAN .................... 50I Wayan Widiana, Sofyan Sori, Jakaria, Suryo Priyono

Pemisahan Radioisotop Terapi 188Re dari 188WMelalui Kolom Generator 188W/188Re Berbasis MBZ ......................................................... 57Sriyono, Herlina, Endang Sarmini, Hambali, Indra Saptiama

Validasi Kit Immunoradimetricassay Free Prostate Specific Antigenuntuk Pemantauan Pembesaran Prostat Jinak Secara In Vitro........................................... 65Puji Widayati, Veronika Yulianti Susilo, Wening Lestari, Agus Ariyanto

Page 8: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

ProsidingPertemuanIlmiahRadioisotop, Radiofarmaka,SiklotrondanKedokteranNuklirTahun 2014

ISSN : 2087-9652

vii

SintesisPaduanPolimerPolimerPoli-n-Sopropilakrilamida (PNIPA)/Polivinilpirolidon (PVP) Bertanda Iodium-125...................................................................... 71Indra Saptiama, Eli Fajar Lestari, Herlina, Karyadi, Endang Sarmini, Abidin, Hotman LubisTriani Widyaningrum, Rohadi Awaludin

Optimizing Irradiation Parameters of Cyclotron-Produced Radionuclides Cu-64,I-123 and I-124........................................................................................................................... 77Imam Kambali and Hari Suryanto

Evaluasi Uptake Radiofarmaka 99mTc-Siprofloksasin oleh Bakteri Escherichia colidan Staphylococcus aureus yang Resisten Terhadap Antibiotik KotrimoksazolSecara In Vitro .......................................................................................................................... 86

Sintesis Nanopartikel Emas Menggunakan Reduktor Trisodium Sitrat ............................. 95Herlan Setiawan, Anung Pujiyanto, Hotman Lubis, Rien Ritawidya, Mujinah,Dede Kurniasih, Witarti, Hambali, Abdul Mutalib

Optimasi Disain untuk Menekan Dimensi dan Berat Modul Kontainer Perisai Radiasipada Perangkat Brakiterapi..................................................................................................... 102Ari Satmoko, Kristiyanti, Tri Harjanto, Atang Susila

Page 9: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

Prosiding Pertemuan Ilmiah Radioisotop, Radiofarmaka, Siklotron dan Kedokteran NuklirTahun 2014

ISSN : 2087-9652

Imam Kambali, dkk 77

OPTIMIZING IRRADIATION PARAMETERS OF CYCLOTRON-PRODUCEDRADIONUCLIDES Cu-64, I-123 and I-124

Imam Kambali and Hari Suryanto

Center for Radioisotope and Radiopharmaceutical Technology (PTRR)National Nuclear Energy Agency (BATAN)

Kawasan Puspiptek Serpong, Gedung 11, Tangerang Selatane-mail: [email protected]

ABSTRACTOPTIMIZING IRRADIATION PARAMETERS FOR CYCLOTRON-PRODUCED RADIONUCLIDESCu-64, I-123 AND I-124. Successful production of cyclotron-based radionuclides depends on variousirradiation parameters including the type, energy and beam current of incident particle, targetthickness and geometry as well as irradiation time. This paper presents theoretical calculations foroptimization of future Cu-64, I-123 and I-124 radionuclide production using BATAN’s CS-30 cyclotronfrom 64Ni(p,n)64Cu, 123Te(p,n)123I, 124Te(p,n)124I and 124Te(p,2n)123I nuclear reactions. Optimum targetthickness and proton incidence angle, proton energy and beam current which result in optimum EndOf Bombardment (EOB) yields are highlighted. A well-developed and widely available software calledStopping and Range of Ion in Matter (SRIM) version 2013 are employed to determine the optimum Niand Te target thickness for several irradiation requirements and then followed by calculations of theEOB yields. In addition, the calculated EOB yields are then compared with previous experimentalresults obtained elsewhere. For production of Cu-64, the optimum Ni target thickness when a 26.5MeV proton beam is incident at 0o angle relative to the target normal should be nearly 1.5 mm whichyields up to 560 mCi/µA.hr at the end of the bombardment. At proton beam energy of 12 MeV, 12 MeVand 22 MeV for production of I-123 from Te-123 target, I-124 and I-123 from Te-124 targetsrespectively, the associated optimum target thickness are 0.64 mm, 0.65 mm and 1.8 mm whereastheir EOB yields are predicted to be 30.6 mCi/µA.hr, 4.2 mCi/µA.hr and 159.3 mCi/µA.hr respectively.For all Cu-64, I-123 and I-124 radionuclide production, comparisons with some selected experimentaldata indicate that the much-lower-than-expected EOB yields are mainly due to incorrect targetthickness prepared for the irradiation.Key words : cyclotron, proton, Ni and Te targets, Cu-64, I-123 and 124I-124, EOB yield

ABSTRAKOPTIMASI PARAMETER IRADIASI UNTUK RADIONUKLIDA Cu-64, I-123 DAN I-124 YANGDIPRODUKSI MENGGUNAKAN SIKLOTRON. Keberhasilan produksi radionuklida berbasis siklotrontergantung pada berbagai parameter iradiasi, termasuk jenis, energi dan arus berkas partikelpenembak, tebal dan geometri target dan juga waktu iradiasi. Makalah ini menyampaikan perhitungansecara teori untuk optimasi produksi radionuklida Cu-64, I-123 dan I-124 dimasa yang akan datangdari reaksi nuklir 64Ni(p,n)64Cu, 123Te(p,n)123I, 124Te(p,n)124I dan 124Te(p,2n)123I menggunakan siklotronCS-30 yang dimiliki oleh BATAN. Ketebalan target, sudut penembakan, energi proton dan arus protonyang menghasilkan optimum End Of Bombardment (EOB) yields dibahas dalam makalah ini. Dalampenelitian ini, software Stopping and Range of Ion in Matter (SRIM) versi 2013 yang tersedia secaragratis dan online digunakan untuk menentukan ketebalan optimum target Ni dan Te untuk beberapakondisi iradiasi yang kemudian dilanjutkan dengan perhitungan EOB yield. Lebih jauh lagi, hasilperhitungan EOB yield selanjutnya dibandingkan dengan data eksperimen yang sebelumnya telahdipublikasikan. Untuk produksi Cu-64, ketebalan optimum target Ni ketika berkas proton berenergy26,5 MeV ditembakkan tegak lurus terhadap permukaan target adalah sekitar 1,5 mm dengan hasilEOB yield sebesar 560 mCi/µA.jam. Dengan energi proton masing-masing sebesar 12 MeV, 12 MeVdan 22 MeV untuk produksi I-123 dari target Te-123, I-124 dan I-123 dari target Te-124, target Tehendaknya dibuat setebal 0,64 mm, 0,65 mm dan 1,8 mm untuk mendapatkan EOB yield masing-masing sebesar 30.6 mCi/µA.jam, 4.2 mCi/µA.jam and 159.3 mCi/µA.jam. Untuk produksi ketigaradionuklida Cu-64, I-123 dan I-124 tersebut, data eksperimen menunjukkan hasil EOB yang jauhlebih kecil dari perhitungan teoritis karena adanya kesalahan penentuan tebal target.Kata kunci : siklotron, proton, target Ni dan Te, Cu-64, I-123, I-124, EOB yield

Page 10: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

Prosiding Pertemuan Ilmiah Radioisotop, Radiofarmaka, Siklotron dan Kedokteran NuklirTahun 2014

ISSN : 2087-9652

Imam Kambali, dkk 78

INTRODUCTIONThe CS-30 cyclotron owned by the

Indonesian National Nuclear Energy Agency(BATAN) in Serpong is currently undermaintenance and is scheduled to beemployed for production of short-livedradionuclides for medical purposes in thenear future. The H+-accelerating cyclotron iscapable of producing proton beam of up to26.5 MeV at variable external beam currentof up to 30 µA. Depending on the target ofinterest, the proton energy can be reducedusing aluminum degraders.

Medical radionuclides such as 64Cu,123I and 124I produced by proton irradiationhave been widely used and developedoverseas for pre-therapeutic dosimetricstudies [1 – 4]. 64Cu is produced via nuclearreaction 64Ni(p,n)64Cu and has been of greatinterest due to its potential applications inmedical field, particularly for cancerdiagnosis. The β+ emitting 64Cu whose half-life is 12.7 hours is used for PositronEmission Tomography (PET). The thresholdenergy for 64Ni(p,n)64Cu is nearly 2.5 MeVand the maximum cross-section isapproximately 765 mbarn which occurs atnearly 10 MeV based on TALYS-calculateddata [5]. Enriched nickel targets (64Ni) in theform of electroplated targets have beenwidely suggested as the best target for 64Cuproduction [1,2], though natural Ni targethas also been of interest elsewhere [6].

Radionuclide 123I decays by electroncapture, which is immediately followed byemission of gamma ray with a predominantenergy of 159 keV at a half life of 13.22hours. The gamma ray is primarily used forimaging by means of Single PhotonEmission Computed Tomography (SPECT).In contrast, radionuclide 124I is a β+ emitterwith a half life of 4.18 days, which is usefulfor Positron Emission Tomography (PET).

Both medical radioactive iodine 123Iand 124I can be produced by either direct orindirect methods. Direct method ofproducing 123I and 124I uses a relatively lowenergy (8 – 22 MeV) cyclotron [7] as aproton accelerator in which the proton beam

is then irradiated into enriched or naturaltellurium (Te) targets. However producingthe radioisotopes from natural Te targetsrequires relatively higher proton energy, yetit results in much lower radioactivity thanthose produced from enriched Te targetsbecause of their low cross-sections [8].

Successful production of the PET andSPECT radionuclides requires thoroughunderstanding of the irradiation parameters,including energy of proton as an incidentparticle, incidence angle, target preparationand thickness, proton beam current as wellas irradiation time. Knowledge aboutoptimum proton energy is essential since itcorresponds to the threshold energy andcross-section/excitation function of aparticular target when the incident proton isbombarded into the target surface.

Target preparation is also one of thecrucial factors to consider prior to the targetirradiation. Careful studies of the types oftargets (i.e. electroplated targets, foil targetsor mixed targets) should be carried out tominimize failures associated with the targethandling before, during and after irradiationas well as optimum radioactivity yields.

Another important parameter relevantto the 64Cu production is the target thicknessas it corresponds to the radioactivity yield.Knowledge about proton distributions in theNi and Te targets is, therefore, paramount tosuccessfully determine the correct targetthickness prior to proton irradiation. Theproton distributions in Ni and Te targets canbe examined from the particle’s stoppingpower/energy loss and range, which can becalculated using the Stopping and Range ofIon in Matter (SRIM) package [9]. In theSRIM codes, stopping power is defined asthe energy required to slow down theincident particle during its interaction withmatter over a certain distance, whereas thedistance over which the ion totally stops iscalled the range. Mathematical equationscorrespond to the stopping and range of ionin matter have been described elsewhere[10], and that the SRIM-calculated data

Page 11: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

Prosiding Pertemuan Ilmiah Radioisotop, Radiofarmaka, Siklotron dan Kedokteran NuklirTahun 2014

ISSN : 2087-9652

Imam Kambali, dkk 79

Te target

θ

Protonbeam

agree with experimental results within 10%accuracy or less [11].

Since the threshold energy for64Ni(p,n)64Cu nuclear reaction is nearly 2.5MeV, any proton irradiation over 2.5 MeVwill result in some radioactive yields duringand at the end of the bombardment. For123Te(p,n)123I, 124Te(p,n)124I and124Te(p,2n)123I the threshold energy is 5MeV, 5 MeV and 10 MeV respectively. TheEnd-Of-Bombardment (EOB) yield (Y) forany nuclear particle-produced radioisotopeis not only dependent on the nuclear cross-section at a particular energy, σ(E), but alsoon the stopping power, d(E)/dx, and someother parameters as described by [9]:

…… (1)

Where Φ is the number of chargedparticles per unit of time, λ is the decayconstant of the resulting radioisotope, t isthe duration of irradiation, NA is theAvogadro number, ρ and M are the massdensity and atomic mass of the targetrespectively, Ei is the initial energy of theincident particle, and Eth is the thresholdenergy.

This paper reports on the use of theSRIM codes to discuss the range anddissipated energy of energetic protons in Niand Te targets relevant to Cu-64, I-123 andI-124 production. The EOB yieldsassociated with the proton-irradiated Ni andTe targets are also discussed for severalirradiation parameters, including targetthickness, proton beam current andirradiation time. The predicted results arealso compared with the experimental andcalculated data available elsewhere.

METHODOLOGYSRIM Calculations

The SRIM package employed in thesimulations was the SRIM 2013 version, inwhich proton beams in the energy rangebetween 5 MeV and 50 MeV were incident

in64Ni,123Te and 124Te targets, initially normalto the targets surfaces. In order to study thedependence of the proton beam range onthe incidence angle, the targets weretheoretically irradiated at several incidenceangles ranging from 0o to 70o relative to thetargets surfaces as depicted in Fig. 1, withnearly 100,000 protons simulated in thecalculations.

Fig. 1 Proton beam and Te target set-up in theSRIM calculations.

The proton energy of 12 MeV and 22MeV were chosen for the angle variationstudy in 123Te and 124Te targetsrespectivelywhereas proton energy of 10 MeV wereemployed for 64Ni target.Calculations of End-Of-Bombardment(EOB) Yields

The EOB Yields were theoreticallycalculated using equation (1) foroptimum64Cu,123I and 124I yields from proton-irradiated64Ni,123Te and 124Te targets at anumber of proton beam current of up to 30µA (equal to the maximum possible currentthe BATAN’s CS-30 cyclotron couldgenerate). The first term (Φ) in equation (1),for a proton beam as the incoming particle,can be expressed as [12]:

(2)

Where Z is the charge of proton, and I is thebeam current.

The irradiation parameters used forthe calculations are given in Table 1 whilethe excitation functions for the particularnuclear reactions were based on theTALYS-calculated data found in reference[5] and are shown in Fig. 2. The proceduresfor calculating the EOB yield have beendescribed elsewhere for 18F production [12].

Page 12: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

Prosiding Pertemuan Ilmiah Radioisotop, Radiofarmaka, Siklotron dan Kedokteran NuklirTahun 2014

ISSN : 2087-9652

Imam Kambali, dkk 80

Fig. 2 TALYS-Calculated excitation function of64Ni(p,n)64Cu, 123Te(p,n)123I, 124Te(p,n)124I and

124Te(p,2n)123I nuclear reactions [5].

RESULTS AND DISCUSSIONCalculated Results for Cu-64

The behavior of the proton beamdistributions in the energy range between 5MeV and 30 MeV is relatively similar whichcan be inferred from the shape of theirenergy loss/stopping power plots (Fig. 3). Ingeneral, for any proton energy, the stoppingpower increases with increasing distance oftravel until it peaks at a certain value (calledBragg peak) and then drops dramaticallyfollowing the loss of the proton energy.

Fig. 3 Energy loss of several energetic protonbeams ranging from 5 MeV to 30 MeV in nickeltarget, calculated using the SRIM 2013 versionpackage [10]. The corresponding ranges are

shown in the inset

In contrast to the general trend of theenergy loss, in which it decreases withincreasing proton energy, the rangeincreases with increasing proton energy asshown in the inset of Fig. 3. The range goesup quite steeply from 73.8 µm at proton

energy of 5 MeV to 154 µm for the 30-MeVproton beam, whereas there are 47 targetatoms displaced by the incoming 5 MeVproton beam compared to 137 vacancies asa result of the 30-MeV proton irradiation.

Fig. 4 Stopping power and range (inset) of a 10-MeV proton beam in Ni target at various angles

of incidence

The dependence of the proton rangeon the incidence angle for proton energy of10MeV is plotted in Fig. 4. For a beam of10-MeV protons, the larger the incidenceangle the shorter the distance it travels,which is due to higher stopping power asdepicted in Fig. 4. In other words, the rangeof the proton is shorter as the incidenceangle increases (inset, Fig. 4). It is alsoclear that the distribution of the energy lossbroadens with increasing incidence angle.

Fig. 5 EOB yields as a function of Ni targetthickness at different proton beam current

ranging from 1µA to 3 µA and fixed energy of26.5 MeV for irradiation time of 1 hour

Using equation (1) and (2), as statedearlier in the calculation section, the EOByields of a 26.5-MeV proton beam at

0 5 10 15 20 25 30 35 400

500

1000

1500

Proton Energy (MeV)

Cro

ss-s

ectio

n (m

Bar

n)

64Ni(p,n)64Cu123Te(p,n)123I124Te(p,n)124I124Te(p,2n)123I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

20

40

60

80

100

120

140

Distance (mm)

Ene

rgy

loss

(MeV

/mm

-ion)

5 MeV10 MeV15 MeV20 MeV25 MeV30 MeV

0 5 10 15 20 25 300

0.51

1.52

Energy (MeV)

Ran

ge (m

m)

0 0.05 0.1 0.15 0.2 0.25 0.30

20

40

60

80

100

120

140

160

180

Distance (mm)

En

erg

y lo

ss (

Me

V/m

m-io

n)

0o

10o

20o

30o

40o

50o

60o

70o

0 10 20 30 40 50 60 700

0.1

0.2

Angle (o)

Ra

ng

e (

mm

)

Ep = 10 MeV

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.4

0.8

1.2

1.6

2

Thickness (mm)

EO

B y

ield

(Ci)

3 uA

2 uA

1 uA

(a)

t = 1 hour

Page 13: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

Prosiding Pertemuan Ilmiah Radioisotop, Radiofarmaka, Siklotron dan Kedokteran NuklirTahun 2014

ISSN : 2087-9652

Imam Kambali, dkk 81

different current between 1µA and 3µA werecalculated as a function of 64Ni targetthickness depicted in Fig. 5 which indicatesimilar behavior for irradiation time of 1hour. The rapid increase in the 64Cu yields isevident when the 26.5-MeV proton beam isirradiated into a less-than-0.5-mm Ni target,though the EOB yields rise further at aslower rate before they eventually level offwhen the target is over 1.2-mm thick. Intheory, there will be no added radioactivityyield should the Ni target thickness isincreased further to greater than 1.5 mmthick. For an hour irradiation time, themaximum EOB yieldis expected to beapproximately 0.56 Ci for proton beamcurrent of 1 µA.

In order to further study the influenceof irradiation time and Ni target thicknessover the EOB yields, a range of yieldcalculations were carried out with 10-minuteincrements, again at fixed proton energy of26.5 MeV, and the results are shown in Fig.6 for a proton beam of 1 µA. The dramaticsurge in the EOB yields can be clearly seenin the figure for all investigated Ni targetthickness ranging from 0.2 nm to 1.5 nm.EOB yields of up to 1.44 Ci is expected tobe produced following the irradiation of a1.5-mm thick Ni target over a period of 180minutes (3 hours).

Fig. 6 EOB yields as a function of irradiation timeat different Ni target thickness and fixed energy

of 26.5 MeV for proton beam current of 1 µA

To sum up an optimum EOB yield of560 mCi/µA.hr (0.56 Ci/µA.hr) is expected tobe achieved when a 1.5-mm enriched Nitarget is irradiated using the BATAN’s 26.5-

MeV proton cyclotron. However when thetarget thickness is less than the optimumthickness, the EOB yield would be down toapproximately 173 mCi/µA.hr for a 200-µmNi target.

A range of experimental data werecollected from several references to verifythe calculated EOB yields as listed in Table1 (for Ep = 12 – 15.5 MeV) . Using a 12-MeV proton beam, Obata et al irradiatedenriched Ni targets at a constant beamcurrent of 50 µA. At the end of thebombardment, they obtained 64Curadioactivity yields of 3.079 mCi/µA.hr,3.734 mCi/µA.hr, and 6.565 mCi/µA.hr fortarget thicknesses of 127.45 µm, 144.16 µmand 277.28 µm respectively. Theseexperimental results are, however, muchlower than the predicted results calculatedin this report as well as those obtainedelsewhere [13].

Based on the SRIM-calculated data, a12-MeV proton beam is able to penetraterelatively deep into a Ni target and pass thetarget at an average range of 377.2 µm (Fig.4). Therefore, the optimum yield of around6.89 mCi/µA.hr at this particular protonenergy would only be obtained if the Nitarget thickness was around 377.2 µm.However in the case of Obata, et alinvestigation [14], they employed up to277.28-µm thick Ni targets to produce 64Cu,which are too thin to totally stop theincoming 12-MeV proton beam. At adistance of 277.28 µm from the Ni surface,the protons would lose nearly 10.58 MeV oftheir total energy; hence, a vast number ofprotons would pass through the thin Nitarget and deposit only some fraction oftheir total energy. This explanation alsoapplies to the other thinner Ni targets. Forthis reason, the proton-bombarded Nitargets in their experiments resulted in muchlower-than expected EOB yields.

Calculated Results for I-123 and I-124The energy loss as a function of the

total distance traveled by 5 – 50 MeV protonbeams in 123Te and 124Te targets (calculated

0 30 60 90 120 150 1800

0.3

0.6

0.9

1.2

1.5

t (minute)

EO

B y

ield

(Ci)

1.5 mm1.2 mm1.0 mm0.8 mm0.6 mm0.4 mm0.2 mm

Ip = 1 uAEp = 26.5 MeV

Page 14: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

Prosiding Pertemuan Ilmiah Radioisotop, Radiofarmaka, Siklotron dan Kedokteran NuklirTahun 2014

ISSN : 2087-9652

Imam Kambali, dkk 82

using SRIM 2013 codes; equation (1) and(2)) is shown in Fig. 7 and Fig. 8, in whichthey exhibit a very similar behavior over theenergy range. In general, the energy lossdecreases with increasing proton energy,and that the particle distribution in eachtarget broadens at higher energy. For thesame proton incident energy, the energyloss of the nuclear particle is slightly higherin 124Te compared with that of in 123Te,though the difference stands at less than3%.

The projected range is plotted as afunction of the proton incident energy foreach elemental target (inset, Fig. 7 and 8)which conforms that proton penetratesdeeper into the material target as the energyis increased, and that the range is inverselyproportional to the stopping power. A slightdifference in the projected range of thesame incident energy is noticeable, eventhough it is less than 1%. For example, forproton energy of 50 MeV, the projectedrange of the incoming proton beam in 123Teand 124Te targets are 6.62 mm and 6.67 mmrespectively.

Fig. 7 SRIM-calculated energy loss and range ofvarious energetic proton beams in 123Te target.

Fig. 8SRIM-calculated energy loss andrange of various energetic proton beams

in124Te target.

The dependence of proton range onthe incidence angle in both elementaltargets is shown in Fig. 9 and 10. The rangeof a 12-MeV proton beam was evaluated in123Te target for proton incidence angleranging from 0o to 70o with respect to thetarget normal (Fig. 9), whereas the samerange of incidence angle was simulated fora 22-MeV proton beam in 124Te target (Fig.10). For both energetic proton beamsinvestigated in this report, the larger theincidence angle, the broader the iondistribution in the target and the shallowerthe penetration. Another interestingly similarbehavior is that the energy loss drops withincreasing incidence angle of up to 30o, butthen it relatively levels off up to 45o followedby a sudden increase as the incidenceangle goes up further.As well, the projectedrange of both the 12-MeV and 22-MeVproton beams in Te targets decreases veryquickly as the incidence angle increases,however their nominal projected range isvery different (inset, Fig. 9 and 10). Forinstance, at 0o-incidence angle, theprojected range for the 12-MeV protons is585 µm in 123Te target, while the projectedrange of the 22-MeV protons at the sameangle is 1.64 mm.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 70

10

20

30

40

50

60

70

80

Distance (mm)

Ene

rgy

loss

(MeV

/mm

-ion)

5 MeV10 MeV15 MeV20 MeV25 MeV30 MeV35 MeV40 MeV45 MeV50 MeV

0 10 20 30 40 50 6002468

10

Energy (MeV)

Ran

ge (m

m)

p + 123Te

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 70

10

20

30

40

50

60

70

80

Distance (mm)

Ene

rgy

loss

(MeV

/mm

-ion)

5 MeV10 MeV15 MeV20 MeV25 MeV30 MeV35 MeV40 MeV45 MeV50 MeV

0 10 20 30 40 50 6002468

10

Energy (MeV)

Ran

ge (m

m)

p + 124Te

Page 15: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

Prosiding Pertemuan Ilmiah Radioisotop, Radiofarmaka, Siklotron dan Kedokteran NuklirTahun 2014

ISSN : 2087-9652

Imam Kambali, dkk 83

Fig. 9SRIM-calculated energy loss andrange of a 12-MeV proton beam in 123Te

target at varied incidence angles.

Fig. 10SRIM-calculated energy loss andrange of a 22-MeV proton beam in 124Te

target at varied incidence angles.

The recommended Tellurium targetthickness may be determined from theprojected range of the particular protonbeam in which it completely dissipates itsenergy into the target surface and thenadded by a 10% of its projected range tocompensate with the standard error sincethe accuracy of the calculated range andstopping power is within 5 – 10% [9]. Whenthe Te target is irradiated at 0o incidenceangle with respect to target normal, theoptimum target thickness for producing 123Iis 0.64 mm and 1.8 mm from 123Te(p,n)123Iand 124Te(p,2n)123I nuclear reactionsrespectively, whereas a target thickness of0.65 mm is required for generating 123I from124Te(p,n)124I reaction. For the threeinvestigated nuclear reactions, the targets

should be made thinner with largerincidence angles.

It is widely known that for proton-produced radionuclides, the radioactivityyield depends on the irradiation time andbeam current as discussed by Suryanto, etal [12] for 18F production from 18O(p,n)18Fnuclear reaction. In the case of 123I and 124Iproduction, the predicted EOB yields havebeen theoretically calculated using equation(1) for 123Te(p,n)123I, 124Te(p,n)124I and124Te(p,2n)123I nuclear reactions as can beseen in Fig. 11, in which the proton energywas set to be 12 MeV for 123Te(p,n)123I and124Te(p,n)124I reactions, and 24 MeV for124Te(p,2n)123I reaction. As expected, ingeneral, the radioactivity yield increaseswith increasing duration of irradiation andbeam current with 123I from 124Te(p,2n)123Ireaction yields the highest radioactivityamong the three since it has the highestcross-section.

Fig. 11 Predicted EOB yields for 123Te(p,n)123I,124Te(p,n)124I, and 124Te(p,2n)123I nuclearreactions at proton beam current of 1 µA.

At a beam current of 1µA, the maximumEOB yields for 123Te(p,n)123I, 124Te(p,n)124Iand 124Te(p,2n)123I nuclear reactions after 3hours bombardment are 12.4 mCi, 87.2 mCiand 454 mCi respectively. In other words, atproton beam energy of 12 MeV forproduction of I-123 from Te-123 target andI-124from Te-124 target, and 22 MeV forproduction of I-123 from Te-124 target, theassociated EOB yields are predicted to be30.6 mCi/µA.hr, 4.2 mCi/µA.hr and 159.3mCi/µA.hr respectively at theircorresponding optimum thickness.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

10

20

30

40

50

60

70

80

90

100

Range (mm)

Ene

rgy

loss

(MeV

/mm

-ion)

0o

10o

20o

30o

40o

50o

60o

70o

0 10 20 30 40 50 60 70 800.10.20.30.40.50.6

Angle (degrees)

Ran

ge (m

m)

p + 123Te

Ep = 12 MeV

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

Range (mm)

Ene

rgy

loss

(MeV

/mm

-ion)

0o

10o

20o

30o

40o

50o

60o

70o

0 10203040506070 800

0.40.81.21.6

2

Angle (degrees)

Ran

ge (m

m)

Ep = 22 MeV

p + 124Te

10 30 50 70 90 110 130 150 170 1900

100

200

300

400

500

t (minutes)

Y (m

Ci)

123Te(p,n)123I124Te(p,n)124I124Te(p,2n)123I

10 30 50 70 90 110 130 150 170 1900

1000

2000

3000

4000

5000

t (minutes)

Y (m

Ci)

123Te(p,n)123I124Te(p,n)124I124Te(p,2n)123I

10 30 50 70 90 110 130 150 170 1900

2,000

4,000

6,000

8,000

10,000

t (minutes)

Y (m

Ci)

123Te(p,n)123I124Te(p,n)124I124Te(p,2n)123I

10 30 50 70 90 110 130 150 170 1900

3,000

6,000

9,000

12,000

15,000

t (minutes)

Y (m

Ci)

123Te(p,n)123I124Te(p,n)124I124Te(p,2n)123I

(b)

(c)

Ip = 1 uA Ip = 10 uA

Ip = 30 uAIp = 20 uA

(d)

Page 16: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

Prosiding Pertemuan Ilmiah Radioisotop, Radiofarmaka, Siklotron dan Kedokteran NuklirTahun 2014

ISSN : 2087-9652

Imam Kambali, dkk 84

A case study was done in order toverify if the EOB prediction was closeenough to the experimental results. Thedata were taken from the experimentsconducted by R. C. Barrall, et al [12] inwhich they bombarded a 300-µm-electroplated Tellurium target with 11.5 MeVand 15 MeV proton beams at a current of133 µA for 2 hours. As shown in Table 1,the calculated results are very close to theexperimental data with accuracy of 10% orless. Nevertheless the calculated EOByields in Table 1 are not the optimum yieldsthey should have gotten. Based on theSRIM simulation, with a 11.5-MeV protonbeam, the optimum target thickness shouldhave been 0.56 mm to get a maximum EOByield of 2.1 mCi/µA.hr, whereas at a protonbeam of 15 MeV, the optimum targetthickness should have been 0.87 mm to getnearly 9.9 mCi/µA.hr. Therefore a hugefraction of the yields must have been lostdue to improper target thickness (too thin Tetargets) in the experiments.

Table 1 Comparison of experimental andcalculated EOB yields

CONCLUSIONEnriched Ni target thickness, proton

beam current and irradiation time areamong the very important parameters toconsider for the purpose of successful 64Cu,123I and 124I production using the BATAN’scs-30 cyclotron. For a 26.5-MeV protonbeam, the optimum target thickness isnearly 1.5 mm which yields up to 560mCi/µA.hr at the end of thebombardment.The calculated resultsindicate that for 123Te(p,n)123I, 124Te(p,n)124Iand 124Te(p,2n)123I nuclear reactions, thetargets should be made thinner with largerincidence angles.The calculated EOB yieldcould reach up to 13.62 Ci of 123I at protonenergy of 22 MeV, beam current of 30 µA if

the 124Te is irradiated over a period of 3hours. Comparisons with some selectedexperimental data indicate that the much-lower-than-expected EOB yields are mainlydue to incorrect target thickness preparedfor the irradiation. Nevertheless thesecalculations are in good agreement with theprevious predicted data with a maximumdifference of less than 10%.

ACKNOWLEGEMENTSThe authors gratefully acknowledge

the Indonesian National Nuclear EnergyAgency (BATAN) for financially supportingthis research program. Meaningfuldiscussion with Mr. Rajiman, Parwanto andSerly A. Sarungallo is also greatlyappreciated.

REFERENCES1. Van So Le, J. Howse, M. Zaw, P.

Pellegrini, A. Katsifis, I.Greguric andR.Weiner, “Alternative method for 64Curadioisotope production”, AppliedRadiation and Isotopes 67 (2009) 1324–1331.

7. M. A. Avila-Rodrigueza, J. A. Nyeb andR. J. Nickles, “Simultaneous productionof high specific activity 64Cu and 61Cowith 11.4 MeV protons on enriched 64Ninuclei” Applied Radiation and Isotopes65 (2007) 1115–1120.

8. E. Rault, S. Vandenberghe, R. VanHolen, J. De Beenhouwer, S. Staelens, I.Lemahieu, (2007), “Comparison of imagequality of different iodine isotopes (I-123,I-124, and I-131)”. Cancer BiotherRadiopharm. 3:423-30.

9. H. T. T. Phan, P. L. Jager, A. M. J.Paans, J. T. M. Plukker, M. G. G.Sturkenboom, W. J. Sluiter, B. H. R.Wolffenbuttel, R. A. J. O. Dierckx, P.Thera, (2008), “The diagnostic value of124I-PET in patients with differentiatedthyroid cancer”. Eur J Nucl Med MolImaging 35:958–965.

10. A. J. Koning, D. Rochman, S. V. D.Marck, et al. (2013) “"TENDL-2013:TALYS-based evaluated nuclear datalibrary", www.talys.eu/tendl-2013.html.Retrieved on 20 September 2014.

Ep(MeV)

Ep(µA)

t(hr)

Thick-ness(µm)

EOB Yield (mCi/µA.hr)Experi-

ment [14]Calcula-

tion11.515

3333

22

300300

1.03.2

1.13.4

Page 17: PERTEMUAN ILMIAH RADIOISOTOP, RADIOFARMAKA, …repo-nkm.batan.go.id/3413/1/Imam.pdf · sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah ... Optimasi Pemisahan

Prosiding Pertemuan Ilmiah Radioisotop, Radiofarmaka, Siklotron dan Kedokteran NuklirTahun 2014

ISSN : 2087-9652

Imam Kambali, dkk 85

11. A. H. Al Rayyes and Y. Ailouti,(2013) “Production and Quality Control of64Cu from High Current Ni Target”, WorldJournal of Nuclear Science andTechnology 3: 72-77.

12. D. Graham, I. C. Trevena, B.Webster, and D. Williams, (1985),Production of High Purity Iodine-123Using Xenon-124. J. Nucl. Med. 26:105.

13. K. Zarie, M. A. Hammad, A. Azzam,(2006), Excitation functions of (p,xn)reactions on natural tellurium at lowenergy cyclotron: relevance to theproduction of medical radioisotope 123I.Journal of Nuclear and Radiation Physics1(2):93-100.

14. J. F. Ziegler, M. D. Ziegler and J. P.Biersack, (2010), “SRIM – The Stoppingand Range of Ions in Matter (2010)”,Nucl. Inst. Meth. Phys. Res. B 268:1818–1823. (SRIM-2013 version isavailable from www.srim.org).

15. J. F. Ziegler, J. P. Biersack and M.D. Ziegler. (2008). “Stopping and Rangeof Ions in Matter”. SRIM Co., Chester,MD.

16. H. Paul, (2012), “Comparingexperimental stopping power data forpositive ions with stopping tables, usingstatistical analysis”, Nucl. Inst. Meth.Phys. Res. B 273: 15–17.

17. H. Suryanto and Silakhuddin, (2013),“Prediksi Secara Teori Aktivitas 18F dariHasil Reaksi 18O(p,n)18F pada BeberapaSiklotron Medik”. Prosiding Pertemuandan Presentasi Ilmiah TeknologiAkselerator dan Aplikasinya. PTAPB-BATAN, Yogyakarta 15: 53-59.

18. F. Szelecsenyi, G. Blessing, S.M.Qaim, (1993), “Excitation functions ofproton induced nuclear reaction onenriched 61Ni and 64Ni: Possibility ofproduction of no-carrier-added 61Cu and64Cu at a small cyclotron,” Appl. Radiat.Isot. 44: 575–580.

19. Atsushi Obata, Shingo Kasamatsu,Deborah W. McCarthy, Michael J. Welch,Hideo Saji, Yoshiharu Yonekura,Yasuhisa Fujibayashi, (2003),“Production of therapeutic quantities of64Cu using a 12 MeV cyclotron”, NuclearMedicine and Biology 30: 535–539.