pembuatan nanoselulosa dari limbah padat …digilib.unila.ac.id/24497/3/skripsi tanpa bab...

60
PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT TAPIOKA (ONGGOK) DENGAN METODE HIDROLISIS ASAM ( Skipsi) Oleh Tiara Dewi Astuti FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016

Upload: buinhi

Post on 24-Feb-2018

286 views

Category:

Documents


14 download

TRANSCRIPT

Page 1: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT TAPIOKA(ONGGOK) DENGAN METODE HIDROLISIS ASAM

( Skipsi)

Oleh

Tiara Dewi Astuti

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS LAMPUNG

BANDAR LAMPUNG

2016

Page 2: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

ABSTRAK

PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT TAPIOKA(ONGGOK) DENGAN METODE HIDROLISIS ASAM

Oleh

Tiara Dewi Astuti

Pada penelitian ini telah dilakukan pembuatan nanoselulosa dari limbah padattapioka (onggok) dengan metode hidrolisis asam. Proses pembuatan α-selulosamenghasilkan 20 gram dari 75 gram sampel menggunakan metode delignifikasi.α-selulosa diproses dengan metode hidrolisis asam untuk mendapatkannanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, tingkatkristalinitas dan ukuran partikel dari nanoselulosa dengan selulosa. Analisis FTIRmenunjukkan tidak adanya perubahan gugus fungsi selulosa setelah dihidrolisisasam menjadi nanoselulosa. Melalui PSA, ukuran partikel dari nanoselulosa danselulosa berturut-turut 11 nm sebanyak 10 % dan 500 nm sebanyak 10 %. HasilSEM menunjukan morfologi selulosa yang padat sedangkan nanoselulosamemiliki morfologi yang berongga. Berdasarkan difraktogram XRD, selulosayang dihasilkan 48,2 % dan nanoselulosa yang dihasilkan memiliki persenkristalinitas sebesar 61,9 %.

Kata Kunci : Limbah Padat Tapioka, Nanoselulosa, Hidrolisis Asam

Page 3: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

ABSTRACT

PRODUCTION OF NANOCELLULOSE FROM TAPIOCA SOLIDWASTE USING ACID HYDROLYSIS METHOD

By

Tiara Dewi Astuti

This study has using acid hydrolysis method of nanocellulose production fromtapioca solid waste. Amount of 20 gr α-cellulose was obtained throughdelignification method for 75 gr of sample. The cellulose was converted intonanocellulose by using acid hydrolysis and the product was compared withcellulose. Including of functional groups, morphology, cristhallinity rate, andparticle size. FTIR analysis of both compounds showed no different of functionalgroup after acid hydrolysis. This Particle size analyzer (PSA) of the acidhydrolysis product revealed contents of 10 % of nanocellulose in 11 nm size and10 % of 500 nm size of cellulose. The SEM presented morphology result of solidcellulose meanwhile nanocellulose has hollow morphology. Based on XRDdiffractogram, showed crystallinity of cellulose 48,2 % and 61,9 % fornanocellulose.

Key Word: Tapioca Solid Waste, Nanocellulose, Acid Hydrolysis

Page 4: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT TAPIOKA

(ONGGOK) DENGAN METODE HIDROLISIS ASAM

(Skripsi)

Oleh

TIARA DEWI ASTUTI

Skripsi

Sebagai Salah Satu Syarat untuk Memperoleh Gelar

SARJANA SAINS

Pada

Jurusan Kimia

Fakultas Matematika dan Ilmu Pengetahuan Alam

Universitas Lampung

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS LAMPUNG

BANDAR LAMPUNG

2016

Page 5: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum
Page 6: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum
Page 7: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

RIWAYAT HIDUP

Penulis dilahirkan di Kalianda pada tanggal 26 April 1994, anak

kedua dari tiga bersaudara, dari Bapak Tamjid dan Ibu Tuwuh

Rahayu. Penulis mulai menempuh pendidikan dimulai pada

tahun 1999 di TK Pertiwi Kalianda lalu melanjutkan di SD

Negeri 1 Kalianda kecamatan Kalianda kabupaten Lampung

Selatan dan lulus pada tahun 2006, Kemudian penulis

melanjutkan pendidikan di SMP Negeri 1 Kalianda dan lulus pada tahun 2009. Pada

tahun yang sama penulis melanjutkan pendidikan di SMA Negeri 2 Kalianda dan lulus

tahun 2012. Penulis melanjutkan pendidikan di Universitas Lampung Fakultas

Matematika dan Ilmu Pengetahuan Alam jurusan Kimia pada tahun 2012 melalui Jalur

Ujian Mandiri Lokal (UML)

Selama menempuh pendidikan di kampus penulis pernah menjadi Asisten Dosen pada

praktikum Kimia Organik I pada tahun 2015/2016 dan Kimia Organik II pada tahun

2015/2016. Pengalaman organisasi penulis dimulai sejak menjadi Kader Muda Himaki

tahun 2012-2013 FMIPA Unila. Penulis pernah menjadi Anggota Biro Kesektretariatan

(Kestari) HIMAKI FMIPA Unila dan Anggota Biro Usaha Mandiri (BUM) HIMAKI

FMIPA Unila pada tahun 2013-2014.

Page 8: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

Atas Rahmat Allah SWTKupersembahkan Karya sederhanaku ini

Teruntuk

Bapak dan Ibuku tercintayang senantiasa memberikan do’a, kasih sayang, dukungan,

motivasidan semangat kepada ananda selama ini

Dr. Eng. Suripto Dwi Yuwono, M.T dan semua DosenJurusan Kimia yang telah membimbing dan mendidik ananda

selama menempuh pendidikan di kampus

Seluruh keluarga besarku, sahabatku danPartner yang akan mendampingi hidupku

Almamater tercintaUniversitas Lampung

Page 9: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

MOTTO HIDUP

“Tidak ada satu kesuksesan pun yang tidak disertai kegagalan, maka

habiskanlah jatah kegagalanmu”

“Learn from yesterday, Live for today, Hope for tomorrow”

‘’Barang siapa keluar untuk mencari ilmu maka dia berada di jalan Allah ‘’

(HR.Tirmidzi)

“ Jangan hanya menjalani hidup, tetapi berkembanglah bersama

kehidupan.

Page 10: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

SANWACANA

Alhamdulillah tsummal hamdulillah, segala puji hanya bagi Allah, Rabb semesta

alam yang telah memberikan nikmat-Nya kepada penulis sehingga penulis dapat

menyelesaikan skripsi yang berjudul PEMBUATAN NANOSELULOSA DARI

LIMBAH PADAT TAPIOKA (ONGGOK) DENGAN METODE

HIDROLISIS ASAM. Bacaan Allahumma sholli wasallim wabaarik ‘alaihi

semoga tetap terlimpahkan kepada Nabi Muhammad SAW yang memberikan

syafa’atnya kepada seluruh umatnya di dunia dan di akhirat, Aamiin.

Teriring do’a yang tulus, penulis mengucapkan terimakasih yang sebesar-

besarnya kepada :

1. Bapak Dr. Eng. Suripto Dwi Yuwono, M.T. selaku pembimbing I penulis

yang telah membimbing, mendidik, dan mengarahkan penulis dengan

kesabaran dan kasih sayang yang tulus sehingga skripsi ini dapat

terselesaikan. Semoga barokah Allah selalu menyertai Beliau.

2. Ibu Noviany, Ph.D. selaku pembimbing II penulis yang telah membimbing

penulis dengan penuh kesabaran dan keikhlasan sehingga skripsi ini dapat

terselesaikan. Semoga Allah membalasnya dengan kebaikan.

Page 11: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

3. Bapak Mulyono, Ph.D. selaku pembahas penulis yang telah memberikan

bimbingan, arahan, dan nasihat kepada penulis sehingga skripsi ini dapat

terselesaikan. Semoga Allah membalasnya dengan keberkahan.

4. Bapak Dr. Rudy T. Mangapul Situmeang, Ph.D. selaku pembimbing akademik

penulis yang telah memberikan motivasi, arahan, dan nasihat sehingga penulis

dapat menempuh pendidikan dengan baik di Jurusan Kimia FMIPA Unila.

Semoga Allah selalu memberikan rahmat kepadanya.

5. Bapak Prof. Warsito, Ph.D. selaku dekan Fakultas Matematika dan Ilmu

Pengetahuan Alam Universitas Lampung.

6. Bapak Dr. Eng. Suripto Dwi Yuwono, M.T. selaku Ketua Jurusan Kimia

FMIPA Unila dan seluruh Bapak/Ibu dosen Jurusan Kimia FMIPA Unila.

7. Mbak Wiwit, Pak Gani, Mbak Ani, Mbak Liza, Uni Kidas, Mas Nomo, Pak

Man, Pak John, dan Uni Gus.

8. Bapak Tamjid dan Ibu Tuwuh Rahayu, S.K.M. yang telah membesarkan,

merawat, dan mendidik penulis dengan segala cinta, kasih sayang, dan

kesabaran yang tulus, serta Mas Hari Agung Batara, S.E dan Alex Bagas

Rivaldo yang telah memberikan semangat, dukungan, dan keceriaan kepada

penulis, semoga barokah Allah selalu menyertai mereka.

9. Terimakasih juga kepada Ibu Tati Fatimah, S.Pd. M.Si, Ibu Sri

Purwatiningsih, S.Pd.M.Si, dan Mba Endah Wahyuningsih, S.Pd yang telah

memberikan motivasi, dukungan, dan semangat kepada penulis.

10. Kakak-kakakku semua Ridho Nahrowi, S.Si., Yulia Ningsih Nasution, S.Si.,

Mirfat Salim Abdat, S.Si., Junaidi Permana, S.Si., Rahmadya Teta Parasta,

S.Si., Mbak Mardiyah, S.Si., Kak M. Nurul Fajri, Mbak Chyntia Gustiyanda

Page 12: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

Patraini, S.Si., Kak Rahmat Kurniawan, S.Si. yang telah memberikan arahan,

wejangan, dan motivasi kepada penulis.

11. Partner penelitianku Yepi Triapriani dan Tazkia Nurul yang telah memberikan

semangat dan dukungan kepada penulis, semoga Allah selalu memberikan

kelancaran dan barokah kepada mereka.

12. Rekan kerja Laboratorium Kimia organik Ajeng Wulandari, Susy Isnaini, Ismi

Khomsiah, Putri Ramadhona, Arif Nurhidayat, Ayu Setianingrum, Radius Uly

Arta semoga barokah Allah selalu menyertai mereka.

13. Spesial teruntuk teman terbaik dalam segala perkara Bayu Dwi Saputra, A.Md

yang selalu ada saat susah maupun senang, yang selalu memberikan nasihat,

keceriaan serta mengingatkan penulis dengan ketulusan hati dan kesabaran

apabila penulis melakukan kesalahan. Semoga Allah membalasnya dengan

keberkahan.

14. Spesial teruntuk sahabat-sahabatku Yepi Triapriani, Debora Jovita, Derry

Vardela, Handri Sanjaya, Fidela Adisti Kurnia yang selalu memberikan

keceriaan dan kasih sayang kepada penulis. Semoga Allah membalasnya

dengan keberkahan.

15. Spesial juga untuk keluargaku tercinta kimia 2012, Yepi (Bunda Imitasi),

Tazkia (Mama), Ismi (Nenek), Susy (Dedek), Ajeng, Dona (Bunda Asli), Arif,

Ayu Ninggrum, Radius, Tri Marital, Dewi AF (Dewong), Intan, Sukamto

(Kamtil), Murni (Racun), Jean (Jeje), Adi, Nila, Reno, Anwar, Siti Aisah,

Rifki, Imah, Indry, Indah (Iin), Fenti, Tiurma Deborah, Ferdinan, Ruli, Sofian,

Dela, Arya, Edi, Ana, Feby (Lem), Ruwai (Mak Tiri), Erlita, Maria Ulfa, Ayu

Imani (AIM), Rijal, Meta, Diani, Wiwin, Fifi, Putri, Syatira, Eka, Ulfatun,

Page 13: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

Dwi, Derry, Debby, Adit, Ubai, Febita, Elsa, Atma, Yunsi, Riandra, Rio,

Welda yang selalu memberikan keceriaan dan kasih sayang kepada penulis.

Semoga Allah membalasnya dengan keberkahan.

16. Spesial juga untuk teman-teman KKN Desa Margoyoso, Rini Mega Putri, Sari

Dewi, M. Didi Eka Fazri, Senna T.C. Pamungkas, Andreas Lukita, Ajeng Dini

Utami yang pernah memberikan keceriaan, semangat, dan dukungan kepada

penulis. Semoga Allah membalasnya dengan keberkahan.

17. Adik-adik bimbinganku Dona Mailani Pangestika, Shela A. Septiana, Aulia

Pertiwi, Siti Mudmainah dan Khalimatus Sakdiah serta adik-adik penelitian

Laboratorium Kimia Organik.

18. Seluruh mahasiswa kimia angkatan 2011, 2012, 2013, dan 2014.

19. Semua pihak yang telah membantu penulis dalam menyelesaikan skripsi ini.

Akhir kata, penulis memohon maaf kepada semua pihak apabila skripsi ini masih

terdapat kesalahan dan kekeliruan, semoga skripsi ini dapat berguna dan

bermanfaat sebagaimana mestinya, Aamiin.

Bandar Lampung, November 2016Penulis

Tiara Dewi Astuti

Page 14: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

i

DAFTAR ISI

HalamanLEMBAR PENGESAHAN .......................................................................... i

DAFTAR ISI ................................................................................................. ii

DAFTAR TABEL ........................................................................................ iii

DAFTAR GAMBAR .................................................................................... iv

I. PENDAHULUAN ................................................................................ 1A. Latar Belakang ................................................................................ 1B. Tujuan Penelitian ........................................................................... 4C. Manfaat Penelitian ......................................................................... 4

II. TINJAUAN PUSTAKA ....................................................................... 5A. Limbah Industri Tapioka ................................................................. 5

1. Limbah Cair Industri Tapioka..................................................... …..52. Limbah Padat Industri Tapioka................................................... …..6

a. Meniran Kulit Singkong ....................................................... …..6b. Onggok ................................................................................. …..6

1. Selulosa..................................................................... …..72. Hemiselulosa ............................................................ ….133. Pati ............................................................................ ….14

B. Nanoselulosa .................................................................................... 151. Identifikasi Selulosa .................................................................... 162. Sintesis Nanoselulosa .................................................................. 163. Kegunaan Nanoselulosa .............................................................. 20

C. Karakterisasi Nanoselulosa dari Onggok......................................... 211. Spektroskopi Infra Merah (IR) .................................................... 212. Particel Size Analyzer (PSA)....................................................... 243. Scaning Electron Micrascope (SEM).......................................... 254. X-Ray Diffraction (XRD) ............................................................ 27

III. METODELOGI PENELITIAN ......................................................... 29A. Waktu dan Tempat Penelitian ........................................................ 29

Page 15: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

ii

B. Alat dan Bahan................................................................................. 29C. Prosedur ........................................................................................... 30

1. Preparasi Sampel ......................................................................... 302. Isolasi α-Selulosa dari Onggok.................................................... 303. Penentuan Kadar α-Selulosa Menggunakan Metode Uji SNI 04

44:2009 ........................................................................................ 314. Pembuatan Nanoselulosa dari α-Selulosa dengan Metode

Hidrolisis Asam ........................................................................... 325. Particel Size Analyzer (PSA) ..................................................... 336. Analisis SEM............................................................................... 337. Analisis XRD............................................................................... 338. Analisis FT-IR ............................................................................. …34

IV. HASIL DAN PEMBAHASAN ............................................................ 35A. Preparasi Sampel .............................................................................. 35B. Isolasi α-Selulosa dari Onggok .......................................................... 36C. Penentuan Kadar α-Selulosa Menggunakan Metode Uji SNI 04

44:2009 .............................................................................................. 38D. Pembuatan Nanoselulosa dari α-Selulosa dengan Metode

Hidrolisis Asam ............................................................................... 38E. Analisis FTIR Nanoselulosa ............................................................ 40F. Particel Size Analyzer (PSA) ............................................................ 42G. Analisis SEM .................................................................................. 44H. Analisis XRD ................................................................................... 45

V. SIMPULAN DAN SARAN .................................................................. 48A. Simpulan .......................................................................................... 48B. Saran ................................................................................................. 48

DAFTAR PUSTAKA ................................................................................... 49

LAMPIRAN

Page 16: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

DAFTAR TABEL

Halaman1. Baku Mutu Air Limbah Industri Tapioka ................................................. 5

2. Komposisi Kimia Onggok ........................................................................ 7

3. Kadar α-Selulosa....................................................................................... 38

4. Perbandingan Data Analisis FTIR ............................................................ 41

5. Perbandingan Data PSA ........................................................................... 43

6. Nilai Difraktogram Selulosa dan Nanoselulosa ........................................ 46

Page 17: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

DAFTAR GAMBAR

Halaman1. Struktur Selulosa ..................................................................................... 8

2. Struktur α-Selulosa .................................................................................. 9

3. Skema Reaksi Isolasi α-Selulosa ............................................................ 10

4. Reaksi Peruraian Lignin oleh H2O2 ........................................................ 11

5. Struktur β-Selulosa .................................................................................. 12

6. Struktur Hemiselulosa ............................................................................. 13

7. Struktur Amilosa....................................................................................... 14

8. Struktur Amilopektin ................................................................................ 14

9. Mekanisme Hidrolisis Asam ................................................................... 17

10. Hidrolisis Asam Menghilangkan Bagian Amorf .................................... 18

11. Mekanisme Pembentukan Nanoselulosa dengan Ultrasonikasi .............. 19

12. Skema SEM .............................................................................................. 28

13. Hasil Preparasi Sampel ............................................................................. 35

14. Hasil Tahapan Pembuatan α-Selulosa ..................................................... 37

15. Tahapan Pembuatan Nanoselulosa............................................................ 39

16. Spektrum FTIR ........................................................................................ 41

17. Hasil Analisis PSA ................................................................................... 42

18. Hasil Analisis SEM ................................................................................. 44

19. Difraktogram XRD ................................................................................... 47

Page 18: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

1

I. PENDAHULUAN

A. Latar Belakang

Indonesia merupakan salah satu negara agraris sebagai penghasil singkong

terbesar di dunia. Pada tahun 2011, total produksi singkong di Indonesia

mencapai 24.044.025 ton dengan luas lahan 1.184.696.00 ha sehingga produksi

rata-rata mencapai 202,96 kwintal/ha (BPS, 2012). Menurut badan pusat statistik

(2011), provinsi lampung merupakan salah satu daerah pusat penghasil singkong

di Indonesia, dengan total luas lahan yang ditanami singkong di Provinsi

Lampung adalah 368.096 ha dengan total produksi 9.193.676 ton yang berarti

produktivitas lahan sekitar 24,976 ton/ha. Luas lahan yang ditanami singkong

dari tahun 2007 sampai 2011 terus meningkat.

Dalam proses pengolahan singkong menjadi tepung tapioka memiliki hasil

samping yang berupa limbah padat dan limbah cair. Limbah padat yang

dihasilkan dari produksi tepung tapioka tersebut yaitu berupa onggok. Selain

onggok memiliki kandungan karbohidrat yang tinggi sehingga banyak digunakan

sebagai pakan ternak dan pembuatan bioetanol, ini ditinjau dari kandungan limbah

onggok itu sendiri, limbah onggok mengandung air sebesar 14,51 %, protein

sebesar 8,11 %, lemak sebesar 1,29 %, abu sebesar 0,89 %, serat kasar sebesar

15,20 %, dan pati sebesar 60 % (Wikanastri, 2012). Kandungan penyusun onggok

Page 19: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

2

yang terbesar selain pati adalah serat kasar yang berupa lignoselulosa. Serat kasar

yang berupa lignoselulosa mengandung selulosa sebesar 59,9 %, hemiselulosa

sebesar 20 %, dan lignin sebesar 10,7 % (Akaracharanya et al., 2011).

Selulosa tersusun dari unit-unit anhidroglukopiranosa yang tersambung dengan

ikatan β-1,4-glikosidik membentuk suatu rantai makromolekul tidak bercabang.

Setiap unit anhidroglukopiranosa memiliki tiga gugus hidroksil (Potthast et al.,

2006; Zugenmaier, 2008). Selulosa mempunyai rumus empiris (C6H10O5)n

dengan n~1500 dan berat molekul ~243.000 (Rowe et al., 2009). Berdasarkan

jenis ikatannya selulosa dibedakan menjadi 3 yaitu, α- selulosa, β-selulosa dan γ-

selulosa. Kandungan α-selulosa yang terdapat pada onggok yang dapat

dimanfaatkan sebagai bahan dasar pembuatan nanoselulosa.

Nanoselulosa adalah suatu material yang dapat diperbarui dalam banyak aplikasi

berbeda, seperti dalam bidang kimia, makanan, farmasi, dan lain-lain.

Nanopartikel distabilkan dalam suspensi melalui proses hidrolisis dengan asam.

Suspensi nanokristal selulosa dapat dibentuk menjadi suatu fase kristalin likuid.

Modifikasi kimia sederhana dalam permukaan nanoselulosa dapat mengalami

dispersabilitas dalam pelarut yang berbeda. Nanoselulosa diperoleh dari proses

hidrolisis menggunakan asam dari α- selulosa, diklasifikasikan dalam pembahasan

baru nanomaterial. Proses isolasi nanoselulosa memiliki banyak pengkajian,

seperti dimensi skala nanometer, tinggi kekuatan spesifik dan modulus, dan tinggi

daerah permukaan (Habibiet al., 2010). Adanya perubahan ukuran dan sifat dari

nanoselulosa maka nanoselulosa dapat digunakan sebagai filler penguat pada

berbagai polimer antara lain polietilen (Prachayawarakorn et al., 2010), karet alam

Page 20: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

3

(Pasquini et al., 2010), dan polipropilen (Reddy et al., 2009), aditif untuk

pembawa obat (Ioelovich, 2012).

Penelitian sebelumnya telah dilakukan pembuatan nanoselulosa menggunakan

metode kimia terdiri dari metode asam, metode pelarut alkali, metode oksidasi,

dan metode dengan menggunakan cairan ionik. Zhou (2012) telah menggunakan

metode hidrolisis dengan asam kuat, yaitu asam sulfat (H2SO4) 64 % berat. Pada

suhu reaksi 45⁰C dengan pengadukan 500 rpm selama 120 menit, nanoselulosa

yang dihasilkan berukuran 115 nm. Brito et al., (2012) telah melaporkan dengan

menggunakan metode hidrolisis asam dengan asam kuat, yaitu asam sulfat 64 %

berat. Nanoselulosa yang dihasilkan berukuran 100-130 nm. Zhang et al., (2007)

telah menggunakan metode hidrolisis asam dengan asam kuat, yaitu campuran (air

deionized dengan asam klorida dan asam sulfat) pada bahan serat selulosa,

nanoselulosa yang dihasilkan berukuran 60 nm.

Wawro et al., (2009) telah membuat nanoselulosa dengan pelarut alkali, yaitu

NaOH. Nanoselulosa yang dihasilkan memiliki rentang derajat polimerisasi (DP)

sebesar 290-405. Montanari et al., (2005) membuat nanoselulosa dengan agen

pengoksidasi, yaitu 2,2,6,6,-tetrametil-1-piperidiniloksi radikal (TEMPO).

Nanoselulosa yang dihasilkan berukuran 50-200 nm. Man (2011) menggunakan

metode hidrolisis dengan cairan ionik BMIMHSO4 sebagai pelarut dan

mikrokristalin selulosa (MCC) sebagai sumber selulosa awal yang digunakan.

Nanoselulosa yang dihasilkan berukuran 50-300 nm.

Pada penelitian ini telah dilakukan pembuatan nanoselulosa dari onggok singkong

menggunakan metode hidrolisis asam dan ultrasonikasi. Setelah didapatkan

Page 21: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

4

nanoselulosa dilakukan analisis kualitatif menggunakan FTIR, PSA (Particle Size

Analyzer), SEM (Scanning Electron Microscope), dan XRD (X-Ray Diffraction).

B.Tujuan Penelitian

Adapun tujuan dari Penelitian ini, yaitu:

1. Mengisolasi α-selulosa dari onggok dengan metode delignifikasi.

2. Membuat nanoselulosa dari α-selulosa melalui metode hidrolisis asam.

C. Manfaat Penelitian

Sedangkan manfaat dari Penelitian ini adalah:

1. Mengurangi limbah padat yang dihasilkan dari pengolahan Tepung

Tapioka dari Singkong.

2. Mengubah limbah onggok singkong menjadi produk yang bernilai jual

yang tinggi.

3. Menjadikan limbah onggok singkong sebagai bahan baku utama pada

pembuatan selulosa menjadi nanoselulosa.

Page 22: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

5

II. TINJAUAN PUSTAKA

A. Limbah Industri Tapioka

1. Limbah Cair Industri Tapioka

Limbah cair industri tapioka merupakan limbah yang bersumber dari proses pencucian

singkong, pencucian alat, dan pemisahan larutan pati (Ciptadi et al., 1978). Pengolahan

1 ton singkong menjadi tepung tapioka menghasikan sekitar 4.000-6.000 liter limbah

cair (Djarwati et al., 1993). Kualitas limbah cair industri tapioka biasanya diukur dari

konsentrasi padatan tersuspensi, pH, COD (Chemical Oxygen Demand) dan BOD

(Biochemical Oxygen Demand). Baku mutu untuk limbah cair industri tapioka dapat

dilihat pada Tabel 1.

Tabel 1. Baku mutu air limbah industri tapioka

(Peraturan Gubernur Lampung Nomor 7, 2010).

Parameter Kadar Maksimal

BOD (5 Hari, 20⁰C) 100 mg/LCOD 250 mg/LTotal Padatan Tersuspensi 60 mg/LpH 6-9Sianida 0,2 mg/LDebit 25 m3 per ton produk

Page 23: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

6

2. Limbah Padat Industri Tapioka

a. Meniran kulit singkong

Limbah padat industri tapioka berupa meniran kulit singkong (potongan singkong dan

kulit singkong) yang bersumber dari proses pengupasan. Limbah meniran terdiri dari

80-90% kulit dan 10-20% potongan singkong dan bonggol. Persentase jumlah limbah

kulit singkong bagian luar (berwarna coklat dan kasar) sebesar 0,5-2% dari berat total

singkong segar dan limbah kulit singkong bagian dalam (berwarna putih kemerah-

merahan dan halus) sebesar 8-15% (Hikmiyatiet al., 2009).

b. Onggok

Limbah padat industri tapioka adalah ampas tapioka (onggok) yang bersumber dari

pengekstraksian dan pengepresan.Komponen penting yang terdapat dalam onggok

adalah pati dan selulosa. Onggok juga mengandung air dan karbohidrat yang cukup

tinggi serta kandungan protein kasar dan lemak yang rendah.Jumlah kandungan ini

berbeda dan dipengaruhi oleh daerah tempat tumbuh, jenis ubikayu, dan teknologi

pengolahan yang digunakan dalam pengolahan ubikayu menjadi tapioka. Onggok

merupakan limbah dari industri tapioka yang berbentuk padatan yang diperoleh pada

proses ekstraksi. Pada proses ekstraksi ini diperoleh suspensi pati sebagai filtratnya dan

ampas yang tertinggal sebagai onggok.

Limbah padat industri tapioka adalah ampas tapioka (onggok) yang bersumber dari

pengekstraksian dan pengepresan. Komponen penting yang terdapat dalam onggok

adalah pati dan selulosa. Onggok juga mengandung air dan karbohidrat yang cukup

Page 24: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

7

tinggi serta kandungan protein kasar dan lemak yang rendah. Jumlah kandungan ini

berbeda dan dipengaruhi oleh daerah tempat tumbuh, jenis ubikayu, dan teknologi

pengolahan yang digunakan dalam pengolahan ubikayu menjadi tapioka.pengetahuan

dan teknologi yang dimiliki masih sangat rendah maka onggok masih mengandung pati

dengan konsentrasi yang cukup tinggi (Chardialani, 2008). Berikut komposisi kimia

onggok singkong dapat dilihat pada Tabel 2.

Tabel 2. Komposisi Kimia Onggok Singkong

Komposisi Kimia (%)A

(Lamiya etal.,2010)

B(Prabawati, 2011)

C(Wikanastri,

2012)Air 20,00 60,00 14,51Protein 1,57 1,0 8,11Lemak 0,26 0,5 1,29Abu - 1,0 0,89Serat Kasar 10,00 2,5 15,20Pati 68,00 35,00 60,00

1. Selulosa

Selulosa merupakan serat tumbuhan yang tidak dapat larut dalam air. Serat kasar yang

terdapat pada onggok mengandung hemiselulosa dan selulosa yang merupakan bagian

terbesar dari komponen polisakarida non pati (Arnata, 2009). Selulosa merupakan

senyawa organik penyusun utama dinding sel tumbuhan. Polimer selulosa umumnya

tersusun oleh monomer-monomer glukopiranosa yang saling berhubungan pada posisi

atom karbon 1 dan 4 oleh ikatan β-glikosida. Selulosa termasuk homopolimer linier

dengan monomer berupa D-anhidroglukosa yang saling berkaitan dengan ikatan β-1,4-

glikosidik. Rumus empiris selulosa adalah (C6H10O5)n dengan n adalah jumlah satuan

Page 25: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

8

glukosa yang berikatan atau derajat polimerisasi dari selulosa. Selulosa murni memiliki

derajat polimerisasi sekitar 14.000, namun dengan pemurnian biasanya akan berkurang

menjadi sekitar 2.500 (Nevell et al., 1985). Struktur selulosa dapat dilihat pada Gambar

1.

Gambar 1. Struktur Selulosa (Zamora, 2011).

Struktur yang linier menyebabkan selulosa bersifat kristalin dan tidak mudah larut.

Selulosa tidak mudah didegradasi secara kimia maupun mekanis. Di alam, biasanya

selulosa bergabung dengan polisakarida lain seperti hemiselulosa atau lignin membentuk

kerangka utama dinding sel tumbuhan (Holtzapple et al., 2003).

Unit penyusun (building block) selulosa adalah selobiosa karena unit keterulangan

dalam molekul selulosa adalah 2 unit gula (D-glukosa). Selulosa adalah senyawa yang

tidak larut di dalam air dan ditemukan pada dinding sel tumbuhan terutama pada

tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan. Selulosa

merupakan polisakarida struktural yang berfungsi untuk memberikan perlindungan,

bentuk, dan penyangga terhadap sel, dan jaringan (Janes et al., 1996; Judoamidjojo et

al., 1989; Fessenden dan Fessenden, 1982).

Page 26: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

9

Berdasarkan derajat polimerisasi dan kelarutan dalam senyawa natrium hidroksida

(NaOH) 17,5%, selulosa dapat dibedakan atas tiga jenis yaitu :

A. Alfa selulosa

Selulosa-α (Alpha Cellulose) adalah selulosa berantai panjang, tidak larut dalam larutan

NaOH 17,5% atau larutan basa kuat dengan derajat polimerisasi 600 - 1500. Selulosa-α

dipakai sebagai penduga dan atau penentu tingkat kemurnian selulosa. Selulosa-α

merupakan kualitas selulosa yang paling tinggi (murni). Selulosa α > 92% memenuhi

syarat untuk digunakan sebagai bahan baku utama pembuatan propelan dan atau bahan

peledak, sedangkan selulosa kualitas dibawahnya digunakan sebagai bahan baku pada

industri kertas dan industri sandang/kain. Semakin tinggi kadar alfa selulosa, maka

semakin baik mutu bahannya. Stuktur alfa selulosa dapat dilihat pada Gambar 2.

Gambar 2. Struktur α-selulosa (Yusuf, 2004).

Proses isolasi α-selulosa dari onggok melalui proses reaksi yang ditunjukkan pada

skema yang disajikan pada Gambar 3.

Page 27: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

10

Gambar 3. Skema reaksi isolasi α-selulosa (Nahrowi, 2015).

Alfa selulosa dapat disintesis menggunakan metode delignifikasi, delignifikasi

merupakan proses pemisahan lignoselulosa dari onggok sehingga selulosa, lignin, dan

Page 28: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

11

hemiselulosa terpisah. Proses delignifikasi dilakukan dengan penambahan HNO3 dan

NaNO2, fungsi untuk menghilangkan hemiselulosa dan zat ekstraktif. Selanjutnya

sampel ditambah NaOH 2 % dan Na2SO32 %. Dalam proses ini komposisi struktur

onggok, yang berupa lignin sebagai lapisan luar akan rusak akibat adanya interaksi

dengan basa sehingga selulosa, dan lignin akan terpisah.

Proses selanjutnya adalah pemutihan dengan NaOCl yang berfungsi untuk memecah

ikatan eter pada struktur lignin, sehingga selulosa yang didapat berupa pulp semakin

putih, namun bila berwarna coklat kemungkinan masih ada sisa lignin hasil

depolimerisasi. Sisa kromofor ini dapat dihilangkan dengan proses bleaching

(pemutihan).

Kemudian sampel di tambah dengan NaOH 17,5 % yang bertujuan untuk

menghilangkan lignin yang tersisa serta menghilngkan β-selulosa dan γ-selulosa. Proses

terakhir pemutihan atau bleaching. Mekanisme reaksi proses bleaching menggunakan

hidrogen peroksida terdapat dalam Gambar 4.

Gambar 4. Reaksi Peruraian Lignin oleh H2O2

Page 29: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

12

Pada proses ini digunakan hidrogen peroksida (H2O2) yang mempunyai kemampuan

melepaskan oksigen yang cukup kuat dan mudah larut dalam air. Hidrogen peroksida

dapat memutus ikatan Cα - Cβ molekul lignin dan mampu membuka cincin lignin dan

reaksi lain (Othmer, 1992).

B. Beta selulosa

Beta selulosa adalah selulosa berantai pendek, larut dalam larutan NaOH 17,5% atau

basa kuat dengan DP 15–90, dapat mengendap bila dinetralkan.Berikut struktur dari β-

selulosa dapat dilihat pada Gambar 5.

Gambar 5. Struktur β-selulosa (Yusuf, 2004).

C. Gamma selulosa

Gama selulosa adalah sama dengan beta selulosa, tetapi Derajat polimerisasinya kurangdari 15.

Page 30: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

13

2. Hemiselulosa

Hemiselulosa merupakan polisakarida yangmempunyai berat molekul lebih kecil

dibandingkan selulosa. Berbeda dengan selulosa yang hanya tersusun atas glukosa,

hemiselulosa tersusun dari bermacam-macam jenis gula. Terdapat lima gula netral,

yaitu glukosa, mannosa, dan galaktosa (heksosa) serta xilosa dan arabinosa (pentosa)

merupakan konstituen utama hemiselulosa. Molekul hemiselulosa lebih mudah

menyerap air, bersifat plastis, dan mempunyai permukaan lebih luas dari selulosa.

Hemiselulosa merupakan istilah umum bagi polisakarida yang larut dalam alkali.

Hemiselulosa sangat berdekatan posisinya dengan selulosa dalam dinding sel tanaman

(Fengel dan Wegener, 1995). Berikut struktur hemiselulosa dapat dilihat pada Gambar

6.

Gambar 6. Struktur Hemiselulosa (Saha, 2003).

Hemiselulosa tidak larut dalam air pada suhu rendah. Hidrolisis hemiselulosa dimulai

pada suhu yang lebih rendah dari pada selulosa yang mana kelarutannya akan bertambah

seiring dengan naiknya suhu (Harmsenet al., 2010).

Page 31: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

14

3. Pati

Pati merupakan polimer dari glukosa yang tersusun atas ikatan α-glikosida. Pati terdiri

dari dua komponen utama, yaitu amilosa dan amilopektin. Amilosa merupakan polimer

linear dengan ikatan α-1,4-glikosida. Amilopektin memilikimolekul yang berukuran

lebih besar dari amilosa, memiliki ikatan α-1,4-glikosida dan berbentuk cabang pada

ikatan α-1,6-glikosida, serta pati alami biasanya mengandung amilopektin lebih banyak

daripada amilosa. Butiran pati mengandung amilosa berkisar 15% - 30%, sedangkan

amilopektin berkisar antara 70% - 85% (Jane et al., 1992). Perbandingan antara amilosa

dan amilopektin akan berpengaruh terhadap sifat kelarutan dan derajat gelatinisasi pati

(Jane et al., 1992). Berikut struktur amilosa dapat dilihat pada Gambar 7.

Gambar 7. Struktur Amilosa (Suriadi, 1985).

Berikut struktur amilopektin dapat dilihat pada Gambar 8.

Gambar 8. Struktur Amilopektin (Suriadi, 1985).

Page 32: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

15

B. Nanoselulosa

Nanoselulosa merupakan selulosa yang memiliki ukuran diameter dalam nanometer (2–

20 nm) dan panjangnya antara ratusan sampai ribuan nanometer, termasuk

nanokomposit yang ringan dan memiliki kekuatan besar dengan biaya yang cukup

rendah (Helbert et al., 1996) dan banyak digunakan sebagai filler penguat pada berbagai

polimer antara lain polietilen (Prachayawarakorn et al., 2010), karet alam (Pasquini et

al.,2010), dan polipropilen (Reddy et al., 2009), aditif untuk pembawa obat

(Ioelovich,2012).

1. Identifikasi Nanoselulosa

a. Struktur Nanoselulosa

Partikel selulosa yang mengalami perubahan yaitu nanoselulosa, perubahan ini berupa

peningkatan kristalinitas, luas permukaan, peningkatan dispersi dan biodegradasi.

Dengan adanya perubahan dari selulosa menjadi nanoselulosa menyebabkan terjadinya

perubahan sifat dari selulosa. Perubahan sifat dari selulosa juga mempengaruhi bentuk

dari struktur nanoselulosa (Isdin, 2010).

b. Sifat Nanoselulosa

Ditinjau dari strukturnya, nanoselulosa mempunyai kelarutan yang besar dalam air

karena banyaknya kandungan gugus hidroksil yang dapat membentuk ikatan hidrogen

dengan air. Akan tetapi tidak demikian karena nanoselulosa tidak larut dalam air tetapi

juga dalam pelarut lain. Penyebabnya ialah struktur dari nanoselulosa yang kompleks

Page 33: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

16

dan kuat serta bagian amorf yang hilang pada proses hidrolisis oleh asam. Faktor ini

menjadi penyebab kristalinitas yang tinggi dari serat selulosa. Selain tingkat

kristalinitas, nanoselulosa juga memiliki peningkatan luas permukaan, kemampuan

dispersi, biodegrasi dan aspek rasio.

2. Sintesis Nanoselulosa

Penelitian tentang nanoselulosa telah banyak dilakukan dengan berbagai metode. Salah

satunya sintesis dari α- selulosa yang terdiri dari empat tahap yaitu hidrolisis asam

menggunakan asam kuat, sentrifuse, ultrasonikasi dan freeze drying yang telah

dilakukan oleh Arup Mandal (2011). Pada tahap hidrolisis asam, α-selulosa ditambah

H2SO4 dan dibantu oleh proses pemanasan selama 5 jam dengan suhu 50oC sambil

diaduk. Sedangkan menurut Teixeraet al., (2009) proses sintesis nanoselulosa dari

selulosa memiliki empat tahapan yaitu hidrolisis asam, sentrifuse, dialisis dan

ultrasonikasi. pada saat hidrolisis menggunakan asam kuat yaitu H2SO4dengan

konsentrasi 6,5 M dan dibantu dengan pemanasan dengan suhu 60⁰ C selama 40 menit.

Menurut Peng (2011) Asam sulfat sering digunakan dalam produksi nanoselulosa,

namun dispersabilitas dari nanoselulosa yang diperoleh dari jenis asam ini berbeda

dengan jenis asam lainnya, karena kelimpahan dari gugus sulfat pada permukaan,

nanoselulosa yang diperoleh dari hidrolisis menggunakan asam sulfat dapat terdispersi

dengan mudah di dalam air dibanding dengan menggunakan asam kuat lainnya.

Mekanisme hidrolisis asam secara reaksi kimia dapat dilihat pada Gambar 9.

Page 34: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

17

Gambar 9. Mekanisme hidrolisis asam (Yue et al., 2007).

Setelah proses hidrolisis lalu ditambahkan aquades untuk menghentikan proses reaksi

yang berlebih saat hidrolisis asam tersebut. Asam kuat dapat menghilangkan bagian

amorf dari suatu rantai selulosa sehingga isolasi pada bagian kristalin selulosa dapat

dilakukan (Isdin, 2010).

Hidrolisis asam merupakan proses utama yang digunakan dalam memproduksi

nanoselulosa, dimana susunan blok kecil dilepaskan dari serat selulosa. Selulosa terdiri

dari daerah amorf dan daerah kristalin. Daerah amorf memiliki densitas lebih rendah

dibandingkan daerah kristalin, sehingga ketika selulosa diberikan perlakuan dengan

menggunakan asam kuat maka daerah amorf akan putus dan melepaskan daerah kristalin

(Peng, 2011). Berikut mekanisme hidrolisis asam dapat dilihat pada Gambar 10.

Page 35: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

18

Gambar 10. Hidrolisis asam menghilangkan bagian amorf dari selulosa (Peng,2011).

Selanjutnya, tahap sentrifus dilakukan bertujuan untuk memisahkan endapan dan filtrat

yang telah di hidrolisis sebelumnya. Lalu dipisahkan berdasarkan perbedaan berat

molekulnya. Tahap sentrifus juga dilakukan untuk menetralkan filtrat sehingga pada

saat proses freeze drying tidak gosong akibat masih terkandung asam sulfat di dalamnya.

Tahap berikutnya, ultrasonikasi yang dilakukan dengan bantuan gelombang

ultrasonikasi yang menyebabkan penurunan pada ukuran nanoselulosa. Semakin lama

waktu yang digunakan dalam proses sonikasi semakin tinggi pula penurunan tingkat

ukuran pada nanoselulosa yang dihasilkan (Li et al., 2012). Mekanisme proses

pembentukan nanoselulosa dengan ultrasonikasi dapat dilihat pada Gambar 11.

Page 36: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

19

.

Gambar 11. Proses pembentukan nanoselulosa dengan ultrasonikasi ( Liet al.,2012).

Tahap yang terakhir pada pembentukan nanoselulosa adalah freeze drying .penggunaan

freeze drying bertujuan untuk memisahkan nanoselulosa dari akuades yang tersisa. Cara

kerja dari freeze drying adalah berdasarkan proses liofilisasi yaitu pengeringan yang

tidak dilakukan dengan cara pemanasan melainkan dengan pengeringan beku.

Digunakan freeze drying untuk pengeringan karena freeze drying dapat

mempertahankan stabilitas dari nanoselulosa, khususnya nanoselulosa yang sensitif

terhadap panas dan mudah teroksidasi. Prinsip dari alat ini merubah dari padat menjadi

uap (David et al., 2006).

Page 37: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

20

3. Kegunaan Nanoselulosa

Nanoselulosa telah banyak digunakan dalam bidang industri maupun kehidupan sehari-

hari. Nanoselulosa banyak digunakansebagai filler penguat pada berbagai polimer

antara lain polietilen (Prachayawarakorn et al., 2010), karet alam (Pasquini et al., 2010),

dan polipropilen (Reddy et al., 2009), aditif untuk pembawa obat (Ioelovich,2012).

Beberapa aplikasi nanoselulosa diantaranya adalah sebagai berikut :

a. Modifikasi permukaan hidrofobik nanoselulosa dengan garam amonium

Dilakukan modifikasi pada permukaan hidrofobik dari nanoselulosa. Metode yang

digunakan untuk memodifikasi permukaan nanoselulosa ini adalah penggabungan

adsorpsi dari garam ammonium dengan kation. Rantai alkil panjang, phenyl, glycidyl,

dan kelompok diallyl melalui proses pertukaran ion dalam larutan yang mengandung air

(Salajková et al., 2012).

b. Nanokomposit selulosa dengan asam polilaktik (PLA)

Nanokomposit dibuat dari gabungan antara nanoselulosa dengan asam polilaktik (PLA).

Namun, pada penelitian kali ini tidak adanya perbaikan sifat mekanik apabila

dibandingkan dengan PLA murni dikarenakan penambahan aditif yang tidak cocok

(DMAc/LiCl) (Oksman et al., 2006).

Dibuat nanokomposit asam polilaktik (PLA) dengan adanya penambahan

nanoselulosa.Adanya penambahan nanoselulosa dapat memperkuat sifat penghalang

(barrier) pada hasil polimer komposit. Kedepannya komposit ini dapat menjadi bahan

aktif anti racun (Fortunati et al.,2012)

Page 38: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

21

c. Nanokomposit selulosa dengan poliuretan

Nanokomposit dibuat dari poliuretan dengan fraksi volume rendah dari nanoselulosa.

Cao et al.,(2007) menyatakan bahwa dengan penambahan filler nanoselulosa sebanyak

1% berat dapat meningkatkan modulus young, kekuatan tarik, dan keuletan dari polimer

komposit yang dihasilkan.

d. Nanokomposit polioksietilen

Nanokomposit dari polioksietilen (POE) dengan nanoselulosa. Samir et al., (2004),

menyatakan bahwa pembentukan jaringan selulosa antar ikatan hidrogennya berperan

penting dalam peningkatan sifat mekanik dari komposit.

C. Karakterisasi Nanoselulosa dari Onggok Singkong

1. Spektroskopi Infra Merah (IR)

Spektroskopi IR merupakan salah satu dari teknik penentuan struktur yang didasarkan

pada vibrasi atom dalam molekul. Spektrum inframerah didapatkan dengan melewatkan

radiasi inframerah ke dalam sampel dan menentukan fraksi radiasi yang diserap pada

energi tertentu. Energi yang muncul pada spektrum absorbansi sebagai beberapa puncak

menggambarkan frekuensi vibrasi dari bagian molekul. Atom-atom di dalam suatu

molekul tidak dapat diam melainkan bervibrasi (bergetar).

Bila radiasi infra merah dilewatkan melalui suatu cuplikan, maka molekul-molekulnya

dapat menyerap (mengabsorpsi) energi dan terjadilah transisi diantara tingkat vibrasi

(ground state) dan tingkat vibrasi tereksitasi (excited state).Contoh suatu ikatan C–H

Page 39: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

22

yang bervibrasi 90 triliun kali dalam satu detik harus menyerap radiasi infra merah pada

frekuensi tersebut (9,0 x 1013 Hz, 3000 cm –1) untuk pindah ke tingkat vibrasi tereksitasi

pertama. Pengabsorpsian energi pada berbagai frekuensi dapat dideteksi oleh

spektrofotometer infrared, yang memplot jumlah radiasi infra merah yang diteruskan

melalui cuplikan sebagai fungsi frekuensi (atau panjang gelombang) radiasi. Plot

tersebut adalah spektrum infra merah yang memberikan informasi penting tentang gugus

fungsional suatu molekul (Nurdin, 1986).

Adapun jenis-jenis vibrasi molekul ada 2 yaitu:

1. Vibrasi ulur/regangan (stretching vibrations).

Vibrasi stretching adalah pergerakan atom yang teratur sepanjang sumbu ikatan antara

dua atom sehingga jarak antara atom dapat bertambah ataau berkurang. Vibrasi

stretching meliputi :

a. Stretching simetri, yaitu unit struktur bergerak bersamaan dan searah dalam satu

bidang datar (ṽ = 2853/cm).

b. Stretching asimetri, yaitu unit struktur yang bergerak bersamaan dan tidak searah

tetepi masih dalam satu bidang datar (ṽ = 2926/cm).

2. Vibrasi tekuk/bengkok (bending vibrations).

Vibrasi Bending adalah pergerakan atom yang menyebabkan perubahan sudut ikatan

antara dua ikatan atau pergerakan dari sekelompok atom terhadap atom lainnya. Vibrasi

bending meliputi:

a. Scissoring(vibrasi gunting), unit struktur bergerak mengayun simetridan masih

dalam bidang datar (ṽ = ~ 1450 /cm).

Page 40: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

23

b. Rocking (vibrasi goyang), unit struktur bergerak mengayun asimetritetapi masih

dalam bidang datar (ṽ = ~ 720 /cm).

c. Wagging (vibrasi kibasan), unit struktur bergerak mengibas keluar dari bidang

datar (ṽ = ~ 1250 /cm).

d. Twisting (vibrasi pelintir), unit struktur berputar mengelilingi ikatanyang

menghubungkan dengan molekul induk dan berada di luar bidangdatar (ṽ = ~

1250 /cm).

Dari keempat vibrasi bending, vibrasi scissoring dan rocking terletak pada satu bidang

sedangkan vibrasi wagging dan twisting terletak di luar bidang (Pavia,2001).

Prinsip kerja spektroskopi IR adalah adanya interaksi energi dengan materi. Misalkan

dalam suatu percobaan berupa molekul senyawa kompleks yang ditembak dengan energi

dari sumber sinar yang akan menyebabkan molekul tersebut mengalami vibrasi. Sumber

sinar yang digunakan adalah keramik, yang apabila dialiri arus listrik maka keramik ini

dapat memancarkan infrared.

Berikut instrumentasi dari alat spekroskopi inframerah adalah :

1. Sumber

Energi inframerah yang dipancarkan berasal dari sumber cahaya inframerah. Cahaya ini

melewati celah dengan jumlah energi tertentu menuju sampel.

2. Interferometer

Cahaya masuk ke dalam interferometer dimana terjadi kode spektral. Hasil sinyal

interferogram selanjutnya keluar dari interferometer.

Page 41: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

24

3. Sampel

Cahaya masuk ke dalam kamar sampel dimana cahaya akan ditransmitansikan ke

permukaan sampel, tergantung pada jenis analisis yang dikerjakan.

4. Detektor

Sinar akhirnya melewati detektor untuk pengukuran akhir. Detektor yang digunakan

memiliki desain spesial untuk mengukur sinyal interferogram spesial.

5. Komputer

Sinyal pengukuran didigitalisasi dan dikirim menuju komputer. Spektrum inframerah

ditampilkan untuk interpretasi dan manipulasi lebih lanjut (Sri, 2012).

2. PSA (Particel Size Analyzer)

Pengukuran partikel dengan menggunakan PSA biasanya menggunakan metode basah.

Metode ini dinilai lebih akurat jika dibandingkan dengan metode kering ataupun

pengukuran partikel dengan metode ayakan dan analisa gambar. Terutama untuk sampel

yaitu.:

1. Sampel dalam orde nanometer dan submicron yang biasanya memliki

kecenderungan aglomerasi yang tinggi. Hal ini dikarenakan partikel

didispersikan ke dalam media sehingga partikel tidak saling beraglomerasi

(menggumpal). Dengan demikian ukuran partikel yang terukur adalah ukuran

dari single partikel. Selain itu hasil pengukuran dalam bentuk distribusi,

sehingga hasil pengukuran dapat diasumsikan sudah menggambarkan

keseluruhan kondisi sampel. Beberapa analisa yang dilakukan, antara lain:

Page 42: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

25

1). Menganalisa ukuran partikel.

2). Menganalisa nilai zeta potensial dari suatu larutan sampel.

3). Mengukur tegangan permukaan dari partikel clay bagi industri keramik dan

sejenisnya. Dimana hal ini akan berpengaruh pada struktur lapisan clay.

Struktur lapisan clay ini sangat berpengaruh pada metode slip casting.

4). Mengetahui zeta potensial coagulant untuk proses coagulasi partikel

pengotor bagi industri WTP ( Water Treatment Plant).

5). Mengetahui ukuran partikel tegangan permukaan dari densitas pada emulsi

yang digunakan pada produk.

2. produk industri beverage. (Nanortim, 2010).

3. SEM (Scanning Electron Microscope)

SEM (Scanning Electron Microscope) adalah salah satu jenis mikroskop elektron yang

menggunakan berkas elektron untuk menggambarkan bentuk permukaan dari material

yang dianalisis. Fungsi SEM adalah dengan memindai terfokus balok halus elektron ke

sampel. Elektron berinteraksi dengan sampel komposisi molekul.Energi dari elektron

menuju ke sampel secara langsung dalam proporsi jenis interaksi elektron yang

dihasilkan dari sampel. Serangkaian energi elektron terukur dapat dihasilkan yang

dianalisis oleh sebuah mikroprosesor yang canggih yang menciptakan gambar tiga

dimensi atau spektrum elemen yang unik yang ada dalam sampel dianalisis.

Penggunaan SEM diawali dengan merekatkan sampel dengan stab yang terbuat dari

logam spesimen palladium. Kemudian sampel dibersihkan dengan alat peniup, sampel

Page 43: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

26

di lapisi dengan emas dan palladium dalam mesin dionspater yang bertekanan 1492 x

10-2 atm. Sampel selanjutnya dimasukkan ke dalam ruangan yang khusus dan kemudian

disinari dengan pancaran electron bertenaga 10 kV sehingga sampel mengeluarkan

elektron sekunder dan elektron terpental yang dapat di deteksi dan detector scientor

yang kemudian diperkuat dengan suatu rangkaian listrik yang menyebabkan timbulnya

gambar CRT (Chatode Ray Tube). Pemotretan dilakukan setelah memilih bagian

tertentu dari objek (sampel) dan perbesaran yang diinginkan sehingga diperoleh foto

yang baik dan jelas (Fenny et al., 2013). Berikut skema dari SEM dapat dilihat pada

Gambar 12.

Gambar 12. Skema SEM.

Adapun kelebihan teknik SEM yaitu terdapat sistem vakum pada electron-optical

column dan sample chamber yang bertujuan antara lain:

Page 44: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

27

a. Menghilangkan efek pergerakan elektron yang tidak beraturan karena adanya

molekul gas pada lingkungan tersebut, yang dapat mengakibatkan penurunan

intensitas dan stabilitas.

b. Meminimalisasi gas yang dapat bereaksi dengan sampel atau mengendap pada

sampel, baik gas yang berasal dari sampel atau pun mikroskop. Karena apabila

hal tersebut terjadi, maka akan menurunkan kontras dan membuat gelap detail

pada gambar.

Sedangkan kelemahan dari teknik SEM antara lain:

a. Memerlukan kondisi vakum.

b. Hanya menganalisa permukaan

c. Resolusi lebih rendah dari TEM.

d. Sampel harus bahan yang konduktif, jika tidak konduktor maka perlu dilapis

logam seperti emas (Prasetyo, 2011).

4. XRD (X-Ray Diffraction)

Difraksi sinar-X digunakan untuk mengidentifikasi struktur kristal suatu padatan dengan

membandingkan nilai jarak d (bidang kristal) dan intensitas puncak difraksi dengan data

standar. Sinar-X merupakan radiasi elektromagnetik dengan panjang gelombang sekitar

100 pm yang dihasilkan dari penembakkan logam dengan elektron berenergi tinggi.

Melalui analisis XRD diketahui dimensi kisi (d = jarak antar bidang ) dalam struktur

mineral. Sehingga dapat ditentukan apakah suatu material mempunyai kerapatan yang

tinggi atau tidak, dan difraksi sinar-X suatu kristal. Hal ini dapat diketahui dari

Page 45: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

28

persamaan Bragg yaitu nilai sudut difraksi θ yang berbanding terbalik dengan nilai jarak

d (jarak antar bidang) dalam kristal. Sesuai dengan persamaan Bragg :

n.λhkl = 2d sin θ

dengan :dhkl = jarak antar bidang

θ = sudut pengukuran (sudut difraksi)

λ = panjang gelombang sinar-X

Prinsip dasar dari XRD adalah hamburan elektron yang mengenai permukaan kristal.

Bila sinar dilewatkan ke permukaan kristal, sebagian sinar tersebut akan terhamburkan

dan sebagian lagi akan diteruskan ke lapisan berikutnya. Sinar yang dihamburkan akan

berinterferensi secara konstruktif (menguatkan) dan destruktif (melemahkan).

Hamburan sinar yang berinterferensi inilah yang digunakan untuk analisis.Difraksi sinar

X hanya akan terjadi pada sudut tertentu sehingga suatu zat akan mempunyai pola

difraksi tertentu. Pengukuran kristalinitas relatif dapat dilakukan dengan

membandingkan jumlah tinggi puncak pada sudut-sudut tertentu dengan jumlah tinggi

puncak pada sampel standar (Callister, 2009).

Page 46: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

29

III. METODOLOGI PENELITIAN

A. Waktu dan Tempat Penelitian

Penelitian ini dilakukan pada bulan April sampai dengan bulan Agustus 2016 di

Laboratorium Kimia Organik Jurusan Kimia Fakultas Matematika dan Ilmu

Pengetahuan Alam Universitas Lampung, analisis FTIR dilakukan di Institut

Teknologi Bandung, analisis PSA (Particle Size Analyzer) dilakukan di PT

Nanotech Herbal Indonesia, analisis SEM (Scanning Electron Microscope) dan

analisis XRD (X-Ray Diffraction) dilaksanakan di Institut Teknologi Bandung.

B. Alat dan Bahan

Adapun alat-alat yang digunakan adalah gelas beker, erlenmeyer, corong pemisah,

pipet tetes, gelas ukur, oven, refluks, kertas saring, indikator universal,

alumunium foil, neraca analitik, pengaduk, gunting, blender, penangas, saringan, ,

stopwatch, buret, batang pengaduk, hot plat stirrer, termometer, lemari asam,

sentrifuse, ultrasonikasi, freezer-drying, FTIR, PSA (Particle Size Analyzer),

SEM (Scanning Electron Microscope), dan XRD (X-Ray Diffraction). Sedangkan

bahan-bahan yang digunakan adalah Onggok singkong, larutan HNO3 35%,

NaNO2, larutan NaOH 2%,larutan Na2SO3 2%, larutan NaOCl 1,75%, larutan

Page 47: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

30

NaOH 17,5%, H2O2 10%, larutan K2Cr2O7 0,5 N, larutan FAS 0,1 N, larutan

H2SO4, dan akuades.

C. Prosedur

1. Preparasi Sampel

Sampel yang diambil dari pabrik Tapioka di Desa Raman Endra Pc 12 Kecamatan

Raman Utara, Lampung Timur dijemur di bawah sinar matahari selama tiga hari,

agar sampel kering dan siap memasuki proses selanjutnya.

2. Isolasi α-Selulosa Dari Onggok Singkong

Sebanyak75 gram onggok singkong dimasukkan ke dalam gelas beaker, kemudian

ditambahkan 1 L campuran HNO3 3,5% dan 10 mg NaNO2, dipanaskan di atas

hot plate pada suhu 90oC selama 2 jam. Setelah itu disaring dan ampas dicuci

hingga filtrat netral. Selanjutnya di refluks dengan 750 ml larutan yang

mengandung NaOH 2% dan Na2SO3 2% pada suhu 50oC selama 1 jam.

Kemudian disaring dan ampas dicuci sampai netral. Selanjutnya dilakukan

pemutihan dengan 250 ml larutan NaOCl 1,75% pada temperatur mendidih

selama 0,5 jam. Kemudian disaring dan ampas dicuci sampai pH filtrat netral.

Setelah itu dilakukan pemurnian α-selulosa dari sampel dengan 500 ml larutan

NaOH 17,5% pada suhu 80oC selama 0,5 jam. Kemudian disaring, dicuci hingga

filtrat netral dan diputihkan dengan H2O2 10% pada suhu 60oC dalam oven selama

1 jam.

Page 48: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

31

3. Penentuan Kadar α-selulosa menggunakan metode uji SNI 0444:2009

Timbang sampel 1,5 g ± 0,1 g dengan ketelitian 0,1 mg. Sampel dimasukkan ke

dalam gelas piala tinggi 300 mL dan tambahkan 75 mL larutan natrium hidroksida

17,5%, sebelumnya sesuaikan dulu pada suhu 25⁰C ± 0,2O C. Catat waktu pada

saat larutan natrium hidroksida ditambahkan. Aduk pulp dengan alat sampai

terdispersi sempurna. Hindari terjadinya gelembung udara dalam suspensi pulp

selama proses pengadukan. Ketika pulp telah terdispersi, angkat pengaduk dan

bersihkan pulp yang menempel pada ujung batang pengaduk.

Bilas batang pengaduk dengan 25 mL larutan natrium hidroksida 17,5%,

tambahkan ke dalam gelas piala, sehingga total larutan yang ditambahkan ke

dalam pulp adalah 100 mL. Aduk suspensi pulp dengan batang pengaduk dan

simpan dalam penangas 25⁰C ± 0,2⁰ C. Setelah 30 menit dari penambahan

pertama larutan natrium hidroksida, tambahkan 100 mL akuades suhu 25⁰C ± 0,2⁰

C pada suspensi pulp dan aduk segera dengan batang pengaduk. Simpan gelas

piala dalam penangas untuk 30 menit berikutnya sehingga total waktu ekstraksi

seluruhnya sekitar 60 menit ± 5 menit. Setelah 60 menit, aduk suspensi dengan

batang pengaduk dan tuangkan ke dalam corong masir. Buang 10 mL sampai 20

mL filtrat pertama, kemudian kumpulkan filtrat sekitar 100 mL dalam labu yang

kering dan bersih. Pulp jangan dibilas atau dicuci dengan akuades dan jaga agar

tidak ada gelembung yang melewati pulp pada saat menyaring. Pipet filtrat 25

mL dan 10 mL larutan kalium dikromat 0,5 N ke dalam labu 250 mL.

Tambahkan dengan hati-hati 50 mL asam sulfat pekat dengan menggoyang labu.

Biarkan larutan tetap panas selama 15 menit, panaskan pada suhu 125⁰C sampai

135⁰C kemudian tambahkan 50 mL aquades dan dinginkan pada suhu ruangan.

Page 49: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

32

Tambahkan 2 tetes sampai 4 tetes indikator ferroin dan titrasi dengan larutan ferro

ammonium sulfat(FAS) 0,1 N sampai berwarna ungu. Pada kelarutan pulp tinggi

(kandungan selulosa alfa rendah), titrasi balik dikromat kurang dari 10 mL,

volume filtrat dikurangi menjadi 10 mL dan penambahan asam sulfat menjadi 30

mL. Lakukan titrasi blanko dengan mengganti filtrat pulp dengan 12,5 mL larutan

natrium hidroksida 17,5% dan 12,5 mL akuades. Hasil analisis yang dapat

ditentukan keadaan yang paling optimum menggunakan rumus berikut:

Dimana: X= α-selulosa, dinyatakan dalam persen (%);

V1 = volume titrasi blanko, dinyatakan dalam mililiter (mL);

V2 = volume titrasi filtrat pulp, dinyatakan dalam mililiter (mL);

N = normalitas larutan ferro ammonium sulfat;

A = volume filtrat pulp yang dianalisa, dinyatakan dalam mililiter (mL);

W = berat kering oven contoh uji pulp, dinyatakan dalam gram (g).

4. Pembuatan Nanoselulosa Dari α-Selulosa dengan Metode Hidrolisis Asam

Sebanyak 10 gram sampel, dimasukkan kedalam labu bundar 1000 mL, ditambah

200 mL H2SO4 dengan konsentrasi 6.5 M direfluks selama 5 jam dengan suhu 60⁰

C sambil diaduk, setelah itu tambahkan 100 mL akuades dan didinginkan.

Kemudian disentrifuse 12000 rpm selama 15 menit, dicuci dengan akuades sambil

disentrifuse. Setelah itu suspense koloid diultrasonikasi selama 5 menit dalam ice

bath dan difreeze-drying.

Page 50: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

33

5. PSA (Particle Size Analyzer)

Nanoselulosa kemudian dikarakterisasi dengan menggunakan PSA untuk

mengetahui distribusi ukuran partikelnya. Sejumlah sampel nanoselulosa

dimasukkan ke dalam chamber yang telah berisi air pada Wet Dispersion Unit

hingga indikator menunjukkan angka 10-12 (berwarna hijau).

6. Analisis SEM

Analisis SEM dilakukan dengan cara membekukan sampel diatas permukaan

alumuniun hingga kering. Selanjutnya memercikkan emas ke dalam sampel

selama 30 detik dengan alat polaron. Kemudian menampilkan hasil dengan

stereoscan.

7. Analisis XRD

Analisis XDR digunakan untuk menentukan % kristalinitas dan juga ukuran

kristal seperti yang diterangkan oleh Mohkami and Talaepour (2011). Nilai %

kristalinitas ditentukan dengan rumus (I002-Iam/I002) x 100 %, sedangkan ukuran

kristal ditentukan dengan rumus Dhkl = kλ/(Bhkl cos Ө).

Keterangan :

I002 = intensitas maksimum puncak kristal pada 2 Ө antara 22o dan 23o

Iam = intensitas maksimum puncak kristal pada 2 Ө antara 18o dan 19o

Dhlk = ukuran kristal

k = konstanta Scherrer (0,84)

λ = panjang gelombang X-Ray

Bhkl = refleksi hkl yang diukur pada 2 Ө

Page 51: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

34

8. Analisis FT-IR

Analisis α-selulosa menggunakan FT-IR dilakukan dengan cara 0,2 mg selulosa

dicampur dengan 2 mg KBr dan dibentuk menjadi pellet. Pellet dari sampel

kemudian dimasukkan ke instrumen FT-IR dengan λ 4000-400 cm-1.

Page 52: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

V. SIMPULAN DAN SARAN

A. Simpulan

Adapun simpulan dari penelitian ini sebagai berikut:

1. Hasil analisis PSA ukuran partikel selulosa yang diperoleh 500 nm sebanyak

10 % dan nanoselulosa yang diperoleh yaitu 11 nm sebanyak 10 %.

2. Hasil SEM selulosa yang diperoleh memiliki morfologi yang padat,

sedangkan nanoselulosa yang diperoleh memiliki morfologi yang berongga

akibat hilangnya bagian amorf pada selulosa.

3. Hasil difraktogram XRD selulosa yang diperoleh 48,2 % dan nanoselulosa

yang diperoleh yaitu 61,9 %, Namun hasil yang diperoleh belum memenuhi

standar dari nanoselulosa komersial yaitu 79 %.

B. Saran

Adapun saran untuk penelitian berikutnya yaitu perlu dilakukan penambahan

waktu pada saat hidrolisis asam agar ukuran partikel yang didapat lebih homogen,

dan perlu dilakukan penambahan konsentrasi dari H2S04 yang digunakan.

Page 53: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

49

DAFTAR PUSTAKA

Akaracharanya, A., W. Lorliam., S. Tanasupawat., K.C. Lee., J.S Lee. 2011.Paenibacillus cellulositrophicus sp. Nov., a cellulolytic bacterium from Thai soil.International Journal of Systematic and Evolutionary Mircobiology. 56: 2680-2684.

Arnata, I.W. 2009. Pengembangan Alternatif Teknologi Bioproses PembuatanBioetanol dari Ubi Kayu Menggunakan Trichoderma viride, Aspergillus nigerdan Saccharomyces cerevisiae. Program Studi Teknologi Industri Pertanian,Institut Pertanian Bogor.

Arup, Mandal. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB)and its characterization. Carbohydrate Polymers. 86, 1291-1299.

BPS. 2011. Lampung dalam Angka. Badan Pusat Statistik Provinsi Lampung.

Lampung.

Badan Pusat Statistik Republik Indonesia. 2012. Luas Tanaman Perkebunan BesarMenurut Jenis Tanaman. Badan Pusat Statistik Republik Indonesia. Jakarta.

Brito S. L. Bernardo., Fabiano V. Pereira., Jean-Luc Putaux., Bruno Jean. 2012.Preparation, morphology and structure of cellulose nanocrystals from bamboofibers. Cellulose. 19, 1527-1536.

Bohari.Y, Amiluddin, Chairul.S, dan Desy.R.2014. Pembuatan Selulosa dari KulitSingkong Termodifikasi 2-Merkapto Benzaltiazol untuk Pengendalian

Page 54: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

50

Pencemaran Logam Kadmium (II). Jurusan Kimia Fakultas Matematika danIlmu Pengetahuan Alam . Universitas Mulawarman. Samarinda.

Callister, W.D. 2009. Materials Science and Engineering An Introduction 8Th . JohnWiley and Sons Inc.

Cao, X., Chen, Y., Chang, P. R., Muir, A. D., Falk, G. 2008. Starch-basednanocomposites reinforced with flax cellulose nanocrystals. Express Poly merLetters. 2(7), 502–510.

Chardialani, A. 2008. Studi Pemanfaatan Onggok Sebagai BioimmobilizerMikrooerganisme Dalam Produksi Biogas Dari Limbah Cair Industri Tapioka.(Skripsi). Universitas Lampung. Bandar Lampung.

Cherian, B. M, Leao, A. L, de Souza, S. F, Thomas, S, Pothan, L. A, Kottaisamy, M.2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion.Carbohyd Polym 81: 720–725.

Ciptadi, W., and M.Z. Nasution, 1978. Pengolahan Kopi. Departemen TeknologiHasil Pertanian. Fatemeta-IPB. Bogor.

David E.; Derek G. 2006. Morphological and Optical Characterization ofPolyelectrolyte Multilayers Incorporating Nanocrystalline Cellulose.Biomacromolecules. 7, 2522-2530.

Delmifiana, B. A. 2013. Pengaruh Sonikasi terhadap Struktur dan MorfologiNanopartikel Magnetik yang disintesis dengan Metode Korpresipitasi. JurusanFisika Fakultas Matematika dan Ilmu Pengertahuan Alam. Universitas Andalas.Padang.

Djarwati dan Sukani. 1993. Pengolahan Air Limbah Industri Tapioka Secara KimiaFisika (Laporan Penelitian). Departemen Perindustrian RI. Semarang.

Page 55: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

51

F. Fahma, S. Iwamoto, N. Hori, T. Iwata, and A. Takemura, “Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskersfrom coconut husk,” Cellulose, vol. 18, no. 2, pp. 443–450, 2011.

Feng, W., Bai, X.D.; Lian, Y.Q., Liang, J., Wang, X.G. dan Yoshino, K. 2003.Well Aligned Polyaniline/Carbon Nanotube Composite Films Grown by in-Situ Aniline Polymerization, Carbon. 41: 1551 –1557.

Fengel, D. dan G.Wegener. 1995. Kayu, Kimia, Ultrastruktur, Reaksi-reaksi.edisi 1. Gajah Mada Press. Yogyakarta.

Fenny, R. D, Virdiocrid, M, Hans E. V. 2013. Microskop Electron.http://id.wikipedia.org/wiki/mikroskop_elektron. Diakses pada tanggal 10 Maret2016.

Fortunati, E.; Peltzer, M.; Armentano, I.; Torre, L.; Jiménez, A.; Kenny, J. M. 2012.Effects of modified cellulose nanocrystals on the barrier and migrationproperties of PLA nano-biocomposites. Carbohydrate Polymers. 90, 948-956.

Harahap, Mahyuni, Thamrin, dan Saharman Gea. 2012. Pembuatan Selulosa Asetat

Dari α-Selulosa Yang Diisolasi Dari Tandan Kosong Kelapa Sawit. Jurnal

FMIPA USU.

Habibi, Y., Lucia, L.A., dan Rojas, O.J. 2010. Cellulose Nanocrystals: Chemistry,Self-Assembly, and Applications. Chemical Reviews. 110: 3479 – 3500.

Hafiz, M., Eichorn. S. J., Hasan, A., Jawaid, M. 2013. Isolation and characterizationof nanocrystalline cellulosefrom oil alm biomass residue. UniversitiTeknologiMalaysia. Johar.

Harmsen, P. F. H., W. J. J. Huijgen., L. M. B. Lopez., and R. R. C. Bakker. 2010.Literature Review of Physical and Cemical Pretreatment Processes ForLignocellulosic Biomass. Food & Biodased Research.10. 013.

Page 56: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

52

Helbert W.; Cavaille J. Y.; Dufresne A. 1996. Thermoplatic Nanocomposites Filledwith Wheat Starw Cellulose Whiskers. Part 1 : Processing and Mechanicalbehavior. Polymers Compos. 17 (4) 604-611.

Hikmiyati, N. dan Yanie, N. S. 2009. Pembuatan Bioetanol dari Limbah KulitSingkong melalui Proses Hidrolisis Asam (Skripsi). Universitas Diponegoro.Semarang.

Ioelovich, M. 2012. Optimal Conditions for Isolation of Nanocrystalline CelluloseParticles. Nanocrystals and Nanotechnology. 2(2), 9-13.

Isdin, O. 2010. Nanoscience in nature: cellulose nanocrystals. Surg. 3(2).

Jane, J. L. and J. F. Chen. 1992. Effect of amylose molecular size and amylopectinbranch chain length on paste properties of starch. J. CereaChem. 69 (1): 60-65.

Jonoobi, A. M. Khazaeian, P. M. Tahir, S. S. Azry, and K. Oksman, “Characteristicsof cellulose nanofibers isolated from rubberwood and empty fruit bunches of oilpalm using chemomechanical process,” Cellulose, vol. 18, no. 4, pp. 1085–1095,2011.

Lamiya, dan Mareta. 2010. Penyiapan Bahan Baku dalam Proses Fermentasi untukPakan Ternak. http:// eprints.undip.ac.id/11310/1/Laporan_final_Lamiya%26Mareta.pdf. Diakses pada tanggal 3 Maret 2016.

Lani. N. S, N. Ngadi, A. Johari, M. Jusoh. 2014. Isolation, Characterization, andApplication of Nanocellulose from Oil Palm Empty Fruit Bunch Fiber asNanocomposites. Jurnal Teknik Kimia Universitas Teknologi Malaysia

Li, J., Wei, X., Wang, Q. 2012. Homogeneous isolation of nanocellulose fromsugarcare bagasse by high pressure homogenization. Carbohydrate Polmers.90(4), 1069-1613.

Page 57: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

53

Li, W., Yue, J., Liu, S. 2012 Preparation of nanocrystalline cellulose via ultrasoundand its reinforcement capability for poly(vinyl alcohol) composites. UltrasonicsSonochemistr. 19, 479-485.

Man, Z., Nawshad, M., Ariyanti, S., Mohamad, A. B., Vignesh, K. M., Sikander, R.2011. Preparation of Cellulose Nanocrystals Using an Ionic Liquid. Journal ofPolymer and the Environment. 19, 726-731.

Montanari, S., Mohamad, R., Laurent, H., Michel, R. V. 2005. Topochemistry ofCarboxylated Cellulose Nanocrystals Resulting from Tempo-MediatedOxidation. Macromolecules. 38, 1665-1671.

Nahrowi, Ridho. 2015. Konversi Selulosa Menjadi Karboksimetil Selulosa dariTandan Kosong Sawit. FMIPA Unila. Lampung.

Nanortim. 2010. Jasa Analisa dan Pengujian Sample,http://nano.or.id/index.php?option=com_content&task=blogcategory&id=32&Itemid=58 . Diakses 5 Maret 2016.

Nevell, T.P., and S.H. Zeronian. 1985. Cellulose Chemistry and Its Applications. EllisHerwood United. Chicester.

Nurdin, D. 1986. Eludasi Struktur Senyawa Organik. Bandung. Angkasa.

Oksman, K., Mathew, A. P., Bondeson, D., Kvien, I. 2006. Manufacturing process ofcellulose whiskers polylactic acid nanocomposites. Composites Science andTechnology. 66, 2776–2784

Pasquini D, Teixeira EM, Curvelo AAS, Belgacem MN, Dufresne A. 2010.Extraction of cellulose whiskers from cassava bagasse and their applications asreinforcing agent in natural rubber. Ind Crop Prod. 32: 486–490.

Pavia. 2001. Introduction to Spectroscopy. Philadephia. Saunders.

Page 58: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

54

Peng, B. L., Dhar, N., Liu H.L., K. C. Tam. 2011. Chemistry Applications ofNanocrystalline Cellulose and Its derivate : A Nanotechnology Perspective.Matter Lett. 61, 5050-5052.

Peraturan Gubernur Lampung No 7. 2010. Tentang Baku Mutu Air Limbah BagiUsaha dan Kegiatan. Provinsi Lampung.

Prabawati, Sulusi. 2011. Manfaat Singkong. Balai Besar Penelitian danPengembangan Pascapanen Pertanian. Bogor.

Prachayawarakorn, J., Sangnitidej, P., and Boonpasith, P. 2010. Properties ofthermoplastic rice starch composites reinforced by cotton fiber or low-densitypolyethylene. Carbohyd Polym. 81: 425-433.

Prasetyo , Y. 2011. Scanning Electron Microscope and Optical EmissionSpectroscope. http://yudiprasetyo53.wordpress.com/2011/11/07/scanning-electron-microscope-sem-dan-optical-emmisison-spectroscope-oes. Diakses 8Maret 2016.

Potthast, A., Rosenau, T., and Kosma, P. 2006. Analysis of Oxidized Functionaties inCellulose. Advanced Polymer Science. 1–6.

Reddy, N. and Yang, Y. 2009. Properties and potential applications of naturalcellulose fibers from the bark of cotton stalks. Bioresource Technol. 100: 3563-3569.

Rowe, R.C., Sheskey, P.J. and Quinn, M.E. 2009. Handbook of PharmaceuticalExcipients Edisi keenam. Pharmaceutical Press. London. Hal. 129–133, 136–138.

Saha, B. C. 2003. Hemicellulose Bioconvension. Society for Industrial Microbiology.30. 279-291.

Page 59: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

55

Salajková, M., Lars, A. B., Qi, Z. 2012. Hydrophobic cellulose nanocrystals modifiedwith quaternary ammonium salts. Journal of Materials Chemistry. 22, 19798.

Samir, M. A. S. A., Fannie A., Jean, Y. S., Alain, D. 2004. Cellulose nanocrystalsreinforced poly(oxyethylene). Elsevier Polymer. 45, 4149–4157.

Sri, Bandiyah. 2012. Spektrofotometer IR. http://bandiyahsriaprillia-fst09.web.unair.ac.idartikel_detail-48339-Umum-Spektrofotometer-IR.html.Diakses pada 18 Maret 2016.

Sumanda, K. Tamara, P.E. Alqani.F.2011. Kajian Proses Isolasi α-selulosa dariLimbah Batang Tanaman Manihot Escullenta Crantz yang Efisien . JurusanTeknik Kimia Fakultas Teknologi Industri. UPN. Jawa Timur.

Suriadi. 1985. Mempelajari Pengaruh Dosis Enzim Alfa Amilase danAmiloglukosidase Pada Proses Pembuatan Sirup Glukosa dari Tepung Talas(Colocasia esculeenta (L) Schott) (Skripsi). IPB. Bogor.

Teixeira D. M. E., Daniel P., Antônio A.S. C., Elisângela C., Mohamed N. B., AlainD. 2009. Cassava bagasse cellulose nanofibrils reinforced thermoplasticcassava starch. Journal Elsevier Carbohydrate Polymers. 422-431.

Triapriani, Y. 2016. Pembuatan Nanoselulosa dari Tandan Kosong Sawit (TKS)dengan Metode Hidrolisis Asam. Jurusan Kimia Fakultas Matematika dan IlmuPengetahuan Alam. Universitas Lampung. Bandar Lampung.

Wardiyati, S. 2004. Pemanfaatan Ultrasonik dalam bidang kimia. Puslitbang IptekBahan BATAN. Tangerang.

Wawro, D., Włodzimierz, S., Andrzej, B. 2009. Manufacture of Cellulose Fibresfrom Alkaline Solutions of Hydrothermally Treated Cellulose Pulp. Fibers &Textiles in Eastern Europe. 17(74), 18-22.

Page 60: PEMBUATAN NANOSELULOSA DARI LIMBAH PADAT …digilib.unila.ac.id/24497/3/SKRIPSI TANPA BAB PEMBAHASAN.pdf · nanselulosa dan dilakukan perbandingan gugus fungsi, morfologi, ... praktikum

56

Wikanastri, H. dan Aminah, Siti. 2012. Karakteristik Kimia Tepung KecambahSerelia dan Kacang-kacangan dengan Variasi Blanching (Seminar HasilPenelitian). UNIMUS Press. Malang.

Yue, Y. 2007. A Comparative Study of Cellulose I and II Fibers and Nanocrystals.Louisiana Heilongjiang Institute of Science and Technology. Japan.

Yusuf, M. 2004. Perubahan Kadar Air, Ca, P,dan α – Selulosa Tandan Kosong SawitSelama Pengomposan Menggunakan Limbah Cair Pabrik Kelapa Sawit.Universitas Sumatera Utara. Medan.

Zamora, A .2011. Carbohydrates.http://www.scientificpsychic.com/fitness/carbohydrates.html. Diakses padatanggal 28 November 2015.

Zhang, I., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., and Farokhzad, O.C.2008. Nanoparticles in Medicine: Therapeutic Applications and Development.Clinical Pharmacology & Therapeutics. 83 (5): 761-765.

Zhou, Q., Brumer, H. and T. T. Teeri. 2012. Self-Organisation of CelluloseNanocrystals Adsorbed with Xyloglucan Oligosaccharide-Poly(ethyleneglycol)-Polystyrene Triblock Copolymer. Macromolecules. 42, 5430–5432.

Zugenmaier, P. 2008. Crystalline Cellulose and Derivatives. Heidelberg:

Springer-Verlag. Hal. 2, 7-8.