materi kebumian

40

Upload: imma-cii-aslover

Post on 02-Jul-2015

5.991 views

Category:

Documents


85 download

TRANSCRIPT

Page 1: materi kebumian
Page 2: materi kebumian

Materi olimpiade kebumian meliputi : geologi, meteorologi, astronomi, oseanografi. Di SMA ilmu kebumian diajarkan secara parsial dalam pelajaran geografi dan terbatas serta sebagian ilmu astronomi diajarkan dalam fisika (juga terbatas).

Materi Tes Tertulis Olimpiade Kebumian :

GEOLOGI -GEOFISIKA (GEOSFER)

Konsep tektonik lempeng seperti jumlah, jenis dan komposisi lempeng pembentuk kerak bumi dan dinamika lempeng

Sayatan/ struktur dalam bumi , komposisi bumi Batuan beku dan metamorf seperti granit, riolit, basalt, andesit, gabro, sekis,

genes, marmer, kuarsit, beserta struktur dan teksturnya seperti lineasi, foliasi, skoria, pegmatif, porfiri.

Mineral hasil proses pembekuan magma dan metamorfosime seperti kuarsa, ortoklas, plagioklas, biotit, muskovit, garnet

Tubuh batuan beku seperti lava, korok (dike, sill) Pembentukan batuan beku dan metamor dalam konteks tektonik lempeng Batuan sedimen seperti batu pasir, batu lempung, batu gamping, batu kapur, batu

dolomit, batu garam, beserta struktur dan teksturnya seperti pelapisan, gradded bedding, silang siur, ripple marks.

Mineral hasil proses sedimentasi seperti kalsit, lempung, halit, gipsum, pirit. Pembentukan batuan sedimen dalam konteks tektonik lempeng Siklus batuan dalam konsep tektonik lempeng komposisi tanah secara umum struktur geologi seperti lipatan, sesar (patahan), kekar dan proses

pembentukannya Bentukan morfologi permukaan bumi dan proses pembentukannya fosil dan proses pemfosilan sejarah bumi sebagaimana dalam teori-teori pembentukan tata surya (bumi)

sampai munculnya kehidupan sumber daya mineral dan energi, seperti : emas, perak, batubara, minyak dan gas

bumi bencana geologi, seperti : gempa bumi, letusan gunung berapi, tsunami, tanah

longsor

METEOROLOGI-KLIMATOLOGI (Atmosfer)

Temperatur, tekanan, kelembaban Struktur vertikal atmosfer (troposfer, stratosfer, exosfer, mesosfer, dll) terjadinya arah dan jenis angin jenis dan komposisi massa udara terjadinya dan jenis awan serta hujan tephigram pembentukan cuaca dan iklim iklim bumi dan perubahan iklim global bencana meteorologi/ klimatologi seperti badai tropis, siklon, el nino, la nina,

kekeringan observasi dan instrumentasi meteorologi

Page 3: materi kebumian

ASTRONOMI (SISTEM PLANET)

Teori-teori pembentukan tata surya problem dua benda dan orbit benda langit kategori planet besar, massa dan kerapatan planet gerak dan bola langit ekliptika sistem koordinat lintang-bujur, horizon, asensiorekta-deklinasi waktu/ hari matahari dan sideris gaya pasang surut pengaruh matahari pada cuaca dan kehidupan

GEOHIDROLOGI-OSEANOGRAFI (HIDROSFERA)

Penyebaran dan sirkulasi air di bumi Pembentukan dan jenis mata air dan sungai Pembentukan dan karakteristik penyimpanan air (akuifer, akuitar, akuiklud) Pembentukan lautan dan samudera lingkungan/ morfologi pesisir/pantai morfologi dasar laut / samudera komposisi dan sirkulasi air laut

Lebih jelas lagi silakan menuju blog Bapak Mustar (Guru SMAN-25 Bandung)Untuk Seleksi Tingkat Kota maupun Provinsi diberikan dalam bentuk Tes tertulis 100 soal. Sementara Seleksi Tingkat Nasional 70% materi tertulis pada seleksi tingkat sebelumnya (Kabupaten/Kota dan Provinsi) ditambah 30% tes praktikum yang dilaksanakan di laboratorium atau di lapangan. Untuk menjajal kemampuan olimpiade kebumian silakan download soalnya berikut iniBahan-bahan belajar bisa dibaca di blog Bung Doddy

atau pada Blog Jejak Petualang ini atau menuju Blog Bu Ivy

Tentang oseanografi belajar di tempat lautan teduh

Page 4: materi kebumian

Geofisika adalah bagian dari ilmu bumi yang mempelajari bumi menggunakan kaidah atau prinsip-prinsip fisika. Di dalamnya termasuk juga meteorologi, elektrisitas atmosferis dan fisika ionosfer. Penelitian geofisika untuk mengetahui kondisi di bawah permukaan bumi melibatkan pengukuran di atas permukaan bumi dari parameter-parameter fisika yang dimiliki oleh batuan di dalam bumi. Dari pengukuran ini dapat ditafsirkan bagaimana sifat-sifat dan kondisi di bawah permukaan bumi baik itu secara vertikal maupun horisontal.

Dalam skala yang berbeda, metode geofisika dapat diterapkan secara global yaitu untuk menentukan struktur bumi, secara lokal yaitu untuk eksplorasi mineral dan pertambangan termasuk minyak bumi dan dalam skala kecil yaitu untuk aplikasi geoteknik (penentuan pondasi bangunan dll).

Di Indonesia, ilmu ini dipelajari hampir di semua perguruan tinggi negeri yang ada. Biasaya geofisika masuk ke dalam fakultas Matematika dan Ilmu Pengetahuan Alam (MIPA), karena memerlukan dasar-dasar ilmu fisika yang kuat, atau ada juga yang memasukkannya ke dalam bagian dari Geologi. Saat ini, baik geofisika maupun geologi hampir menjadi suatu kesatuan yang tak terpisahkan Ilmu bumi.

Bidang kajian ilmu geofisika meliputi meteorologi (udara), geofisika bumi padat dan oseanografi(laut).

Beberapa contoh kajian dari geofisika bumi padat misalnya seismologi yang mempelajari gempabumi, ilmu tentang gunungapi (Gunung Berapi) atau volcanology, geodinamika yang mempelajari dinamika pergerakan lempeng-lempeng di bumi, dan eksplorasi seismik yang digunakan dalam pencarian hidrokarbon.

Page 5: materi kebumian

Metode-metode geofisika

Secara umum, metode geofisika dibagi menjadi dua kategori yaitu metode pasif dan aktif. Metode pasif dilakukan dengan mengukur medan alami yang dipancarkan oleh bumi. Metode aktif dilakukan dengan membuat medan gangguan kemudian mengukur respons yang dilakukan oleh bumi. Medan alami yang dimaksud disini misalnya radiasi gelombang gempa bumi, medan gravitasi bumi, medan magnetik bumi, medan listrik dan elektromagnetik bumi serta radiasi radioaktivitas bumi. Medan buatan dapat berupa ledakan dinamit, pemberian arus listrik ke dalam tanah, pengiriman sinyal radar dan lain sebagainya.

Secara praktis, metode yang umum digunakan di dalam geofisika tampak seperti tabel di bawah ini:

Metode Parameter yang diukur Sifat-sifat fisika yang terlibat

SeismikWaktu tiba gelombang seismik pantul atau bias, amplitudo dan frekuensi gelombang seismik

Densitas dan modulus elastisitas yang menentukan kecepatan rambat gelombang seismik

GravitasiVariasi harga percepatan gravitasi bumi pada posisi yang berbeda

Densitas

MagnetikVariasi harga intensitas medan magnetik pada posisi yang berbeda

Suseptibilitas atau remanen magnetik

Resistivitas Harga resistansi dari bumi Konduktivitas listrik

Polarisasi terinduksi

Tegangan polarisasi atau resistivitas batuan sebagai fungsi dari frekuensi

Kapasitansi listrik

Potensial diri Potensial listrik Konduktivitas listrik

ElektromagnetikRespon terhadap radiasi elektromagnetik

Konduktivitas atau Induktansi listrik

RadarWaktu tiba perambatan gelombang radar

Konstanta dielektrik

Page 6: materi kebumian

Oseanografi (berasal dari bahasa Yunani oceanos yang berarti laut dan γράφειν atau graphos yang berarti gambaran atau deskripsi juga disebut oseanologi atau ilmu kelautan) adalah cabang dari ilmu bumi yang mempelajari segala aspek dari samudera dan lautan. Secara sederhana oseanografi dapat diartikan sebagai gambaran atau deskripsi tentang laut. Dalam bahasa lain yang lebih lengkap, oseanografi dapat diartikan sebagai studi dan penjelajahan (eksplorasi) ilmiah mengenai laut dan segala fenomenanya. Laut sendiri adalah bagian dari hidrosfer. Seperti diketahui bahwa bumi terdiri dari bagian padat yang disebut litosfer, bagian cair yang disebut hidrosfer dan bagian gas yang disebut atmosfer. Sementara itu bagian yang berkaitan dengan sistem ekologi seluruh makhluk hidup penghuni planet Bumi dikelompokkan ke dalam biosfer.

Para ahli oseanografi mempelajari berbagai topik, termasuk organisme laut dan dinamika ekosistem; arus samudera, ombak, dan dinamika fluida geofisika; tektonik lempeng dan geologi dasar laut; dan aliran berbagai zat kimia dan sifat fisik di dalam samudera dan pada batas-batasnya. Topik beragam ini menunjukkan berbagai disiplin yang digabungkan oleh ahli oceanografi untuk memperluas pengetahuan mengenai samudera dan memahami proses di dalamnya: biologi, kimia, geologi, meteorologi, dan fisika.

Beberapa sumber lain berpendapat bahwa ada perbedaan mendasar yang membedakan antara oseanografi dan oseanologi. Oseanologi terdiri dari dua kata (dalam bahasa Yunani) yaitu oceanos (laut) dan logos (ilmu) yang secara sederhana dapat diartikan sebagai ilmu yang mempelajari tentang laut. Dalam arti yang lebih lengkap, oseanologi adalah studi ilmiah mengenai laut dengan cara menerapkan ilmu-ilmu pengetahuan tradisional seperti fisika, kimia, matematika, dan lain-lain ke dalam segala aspek mengenai laut.

Oseanografi adalah bagian dari ilmu kebumian atau earth sciences yang mempelajari laut,samudra beserta isi dan apa yang berada di dalamnya hingga ke kerak samuderanya. Secara umum, oseanografi dapat dikelompokkan ke dalam 4 (empat) bidang ilmu utama yaitu: geologi oseanografi yang mempelajari lantai samudera atau litosfer di bawah laut; fisika oseanografi yang mempelajari masalah-masalah fisis laut seperti arus, gelombang, pasang surut dan temperatur air laut; kimia oseanografi yang mempelajari masalah-masalah kimiawi di laut, dan yang terakhir biologi oseanografi yang mempelajari masalah-masalah yang berkaitan dengan flora dan fauna atau biota di laut.

Studi menyeluruh (komprehensif) mengenai laut dimulai pertama kali dengan dilakukannya ekspedisi Challenger (1872-1876) yang dipimpin oleh naturalis bernama C.W. Thomson (yang berkebangsaan Skotlandia) dan John Murray (yang berkebangsaan Kanada). Istilah Oseanografi sendiri digunakan oleh mereka di dalam laporan yang diedit oleh Murray. Selanjutnya Murray menjadi pemimpin dalam studi berikutnya mengenai sedimen laut. Keberhasilan dari ekspedisi Challenger dan pentingnya ilmu pengetahuan tentang laut dalam perkapalan/perhubungan laut, perikanan, kabel laut dan studi mengenai iklim akhirnya membawa banyak negara untuk melakukan ekspedisi-ekspedisi berikutnya. Organisasi oseanografi internasional yang pertama kali didirikan adalah The International Council for the Exploration of the Sea (1901).

Page 7: materi kebumian

Meteorologi adalah ilmu yang mempelajari atmosfer bumi khususnya untuk keperluan prakiraan cuaca. Kata ini berasal dari bahasa Yunani meteoros atau ruang atas (atmosfer), dan logos atau ilmu.

Meteorologi adalah ilmu pengetahuan yang mempelajari dan membahas gejala perubahan cuaca yang berlangsung di atmosfer.

Page 8: materi kebumian

Klimatologi (Yunani: κλίμα, Klima, "wilayah, zona"; dan-λογία,-logia) adalah

studi iklim, ilmiah didefinisikan sebagai kondisi cuaca rata-rata selama periode

waktu tertentu, dan merupakan cabang dari ilmu atmosfer . Pengetahuan dasar

iklim dapat digunakan dalam peramalan cuaca jangka pendek dengan

menggunakan teknik analog seperti El Niño - Southern Oscillation (ENSO),

yang Madden-Julian Oscillation (MJO), Osilasi Atlantik Utara (NAO), Annualar

Utara Mode (NAM ), osilasi Arktik (AO), Pasifik Utara (NP) Index, Decadal

Pasifik Oscillation (PDO), dan Pasifik Interdecadal Osilasi (IPO). Model iklim

digunakan untuk berbagai tujuan dari studi mengenai dinamika iklim cuaca dan

sistem untuk proyeksi iklim di masa mendatang.

Sejarah

Mungkin orang yang paling awal untuk mengadakan hipotesa konsep perubahan iklim adalah abad pertengahan ilmuwan Cina Shen Kuo (1031-1095 AD). Shen Kuo berteori bahwa iklim secara alamiah bergeser lebih dari satu rentang waktu yang sangat besar, setelah mengamati bambu membatu ditemukan di bawah tanah dekat Yanzhou (modern Yan'an, provinsi Shaanxi), wilayah iklim kering tidak cocok untuk pertumbuhan pohon bambu.

Peneliti iklim awal termasuk Edmund Halley, yang menerbitkan peta angin perdagangan pada 1686, setelah perjalanan ke belahan bumi selatan. Benjamin Franklin, di abad ke-18, adalah orang pertama yang memetakan jalannya Streaming Teluk untuk digunakan di luar negeri mengirim surat dari Amerika Serikat ke Eropa. Francis Galton menemukan istilah anticyclone. Helmut Landsberg menyebabkan analisis statistik yang digunakan dalam klimatologi, yang menyebabkan evolusinya menjadi ilmu fisik.

Pendekatan

Klimatologi didekati dengan berbagai cara. Paleoklimatologi berusaha untuk merekonstruksi masa lalu dengan memeriksa catatan iklim seperti inti es dan lingkaran pada pohon (dendroclimatology). Paleotempestology menggunakan catatan yang sama ini untuk membantu menentukan frekuensi badai selama ribuan tahun. Studi tentang iklim kontemporer meteorologi menggabungkan data yang terkumpul selama bertahun-tahun, seperti catatan curah hujan, suhu dan komposisi atmosfer. Pengetahuan tentang dinamika atmosfer dan juga diwujudkan dalam model, baik statistik atau matematika, yang membantu dengan mengintegrasikan berbagai pengamatan dan menguji bagaimana mereka cocok bersama. Model ini digunakan untuk memahami masa lalu, sekarang dan masa depan potensi iklim. Klimatologi sejarah adalah studi tentang iklim yang terkait dengan sejarah manusia dan dengan demikian berfokus hanya pada beberapa ribu tahun terakhir.

Penelitian iklim dibuat sulit oleh skala besar, jangka waktu yang panjang, dan proses kompleks yang mengatur iklim. Iklim diatur oleh hukum-hukum fisika yang dapat

Page 9: materi kebumian

dinyatakan sebagai persamaan diferensial. Persamaan ini digabungkan dan nonlinier, sehingga penyelesaian perkiraan diperoleh dengan menggunakan metode numerik untuk menciptakan model-model iklim global. Iklim kadang-kadang dimodelkan sebagai proses stokastik tapi ini secara umum diterima sebagai sebuah pendekatan untuk proses yang sebaliknya terlalu rumit untuk dianalisis.

Indeks

Para ilmuwan menggunakan indeks iklim dalam usaha mereka untuk ciri dan memahami berbagai mekanisme iklim yang berujung pada cuaca sehari-hari kita. Banyak cara Dow Jones Industrial Average, yang didasarkan pada harga saham 30 perusahaan, digunakan untuk mewakili fluktuasi di pasar saham secara keseluruhan, indeks iklim digunakan untuk mewakili unsur-unsur penting iklim. Indeks iklim umumnya dirancang dengan tujuan kembar kesederhanaan dan kelengkapan, dan setiap indeks biasanya mewakili status dan waktu dari faktor iklim yang diwakilinya. Sesuai dengan sifatnya, indeks yang sederhana, dan menggabungkan banyak detail menjadi umum, keseluruhan deskripsi tentang suasana atau laut yang dapat digunakan untuk menandai faktor-faktor yang memengaruhi sistem iklim global.

Models

Model iklim menggunakan metode kuantitatif untuk mensimulasikan interaksi atmosfer, lautan, permukaan tanah, dan es. Mereka digunakan untuk berbagai tujuan dari studi mengenai dinamika iklim cuaca dan sistem untuk proyeksi iklim di masa mendatang. Semua model iklim keseimbangan, atau sangat hampir keseimbangan, energi yang masuk sebagai gelombang pendek (termasuk terlihat) radiasi elektromagnetik ke bumi dengan energi keluar sebagai gelombang panjang (inframerah) radiasi elektromagnetik dari bumi. Setiap hasil ketidakseimbangan dalam perubahan dalam suhu rata-rata bumi.

Yang paling banyak dibicarakan model beberapa tahun terakhir telah temperatur yang berkaitan dengan emisi karbon dioksida (lihat gas rumah kaca). Model ini memprediksi tren kenaikan dalam catatan suhu permukaan, serta lebih cepat peningkatan suhu pada ketinggian yang lebih tinggi.

Model dapat berkisar dari yang relatif sederhana yang cukup kompleks:

Berseri-seri sederhana model perpindahan panas yang memperlakukan bumi sebagai satu titik dan rata-rata energi keluar

Ini dapat diperluas secara vertikal (konveksi radiasi-model), atau horizontal Akhirnya, (ditambah) atmosfer-laut-laut es discretise model iklim global dan

memecahkan persamaan penuh massa dan energi untuk transfer dan pertukaran berseri-seri.

Perbedaan dengan meteorologi

Berbeda dengan meteorologi, yang berfokus pada sistem cuaca jangka pendek yang berlangsung hingga beberapa minggu, klimatologi mempelajari frekuensi dan kecenderungan sistem tersebut. Ini mempelajari periodisitas peristiwa cuaca selama bertahun-tahun untuk milenium, serta perubahan dalam jangka panjang pola cuaca rata-

Page 10: materi kebumian

rata, dalam hubungannya dengan kondisi atmosfer. Climatologists, orang-orang yang praktik klimatologi, mempelajari baik sifat iklim - lokal, regional atau global - dan alam atau manusia yang disebabkan faktor-faktor yang menyebabkan perubahan iklim. Klimatologi mempertimbangkan masa lalu dan masa depan dapat membantu memprediksi perubahan iklim.

Iklim fenomena menarik termasuk lapisan batas atmosfer, pola sirkulasi, perpindahan panas (radiasi, konveksi dan laten), interaksi antara atmosfer dan lautan dan permukaan tanah (terutama vegetasi, penggunaan lahan dan topografi), dan komposisi kimia dan fisik dari atmosfer

Penggunaan di prakiraan cuaca

Cara yang lebih rumit untuk membuat perkiraan, teknik analog memerlukan cuaca sebelumnya mengingat peristiwa yang diharapkan akan ditiru oleh peristiwa yang akan datang. Apa yang membuat teknik yang sulit untuk digunakan adalah bahwa ada analog jarang yang sempurna untuk sebuah event di masa depan. Ada yang menyebut jenis peramalan ini pola pengakuan, yang tetap metode yang berguna untuk mengamati data curah hujan di atas kekosongan seperti lautan dengan pengetahuan tentang bagaimana citra satelit berkaitan dengan tingkat curah hujan atas tanah, dan juga meramalkan jumlah curah hujan dan distribusi di masa depan. Sebuah variasi pada tema ini adalah Medium Range digunakan dalam peramalan, yang dikenal sebagai teleconnections, ketika Anda menggunakan sistem di lokasi lain untuk membantu pin ke lokasi sistem lain dalam rezim sekitarnya. Salah satu metode untuk menggunakan teleconnections adalah dengan menggunakan indeks iklim seperti yang terkait dengan fenomena ENSO.

Bagian luar bumi tertutupi oleh daratan dan lautan dimana bagian dari lautan lebih besar daripada bagian daratan. Akan tetapi karena daratan adalah bagian dari kulit bumi yang dapat kita amati langsung dengan dekat maka banyak hal-hal yang dapat pula kita ketahui dengan cepat dan jelas. Salah satu diantaranya adalah kenyataan bahwa daratan tersusun oleh beberapa jenis batuan yang berbeda satu sama lain. Dari jenisnya batuan-batuan tersebut dapat digolongkan menjadi 3 jenis golongan. Mereka adalah : batuan beku (igneous rocks), batuan sediment (sedimentary rocks), dan batuan metamorfosa/malihan (metamorphic rocks). Batuan-batuan tersebut berbeda-beda materi penyusunnya dan berbeda pula proses terbentuknya.

Batuan beku atau sering disebut igneous rocks adalah batuan yang terbentuk dari satu atau beberapa mineral dan terbentuk akibat pembekuan dari magma. Berdasarkan teksturnya batuan beku ini bisa dibedakan lagi menjadi batuan beku plutonik dan vulkanik. Perbedaan antara keduanya bisa dilihat dari besar mineral penyusun batuannya. Batuan beku plutonik umumnya terbentuk dari pembekuan magma yang relatif lebih lambat sehingga mineral-mineral penyusunnya relatif besar. Contoh batuan beku plutonik ini seperti gabro, diorite, dan granit (yang sering dijadikan hiasan rumah). Sedangkan batuan beku vulkanik umumnya terbentuk dari pembekuan magma yang sangat cepat (misalnya akibat letusan gunung api) sehingga mineral penyusunnya lebih kecil. Contohnya adalah basalt, andesit (yang sering dijadikan pondasi rumah), dan dacite 

Page 11: materi kebumian

Batuan sediment atau sering disebut sedimentary rocks adalah batuan yang terbentuk akibat proses pembatuan atau lithifikasi dari hasil proses pelapukan dan erosi yang kemudian tertransportasi dan seterusnya terendapkan. Batuan sediment ini bias digolongkan lagi menjadi beberapa bagian diantaranya batuan sediment klastik, batuan sediment kimia, dan batuan sediment organik. Batuan sediment klastik terbentuk melalui proses pengendapan dari material-material yang mengalami proses transportasi. Besar butir dari batuan sediment klastik bervariasi dari mulai ukuran lempung sampai ukuran bongkah. Biasanya batuan tersebut menjadi batuan penyimpan hidrokarbon (reservoir rocks) atau bisa juga menjadi batuan induk sebagai penghasil hidrokarbon (source rocks). Contohnya batu konglomerat, batu pasir dan batu lempung. Batuan sediment kimia terbentuk melalui proses presipitasi dari larutan. Biasanya batuan tersebut menjadi batuan pelindung (seal rocks) hidrokarbon dari migrasi. Contohnya anhidrit dan batu garam (salt). Batuan sediment organik terbentuk dari gabungan sisa-sisa makhluk hidup. Batuan ini biasanya menjadi batuan induk (source) atau batuan penyimpan (reservoir). Contohnya adalah batugamping terumbu.

Batuan metamorf atau batuan malihan adalah batuan yang terbentuk akibat proses perubahan temperature dan/atau tekanan dari batuan yang telah ada sebelumnya. Akibat bertambahnya temperature dan/atau tekanan, batuan sebelumnya akan berubah tektur dan strukturnya sehingga membentuk batuan baru dengan tekstur dan struktur yang baru pula. Contoh batuan tersebut adalah batu sabak atau slate yang merupakan perubahan batu lempung. Batu marmer yang merupakan perubahan dari batu gamping. Batu kuarsit yang merupakan perubahan dari batu pasir.Apabila semua batuan-batuan yang sebelumnya terpanaskan dan meleleh maka akan membentuk magma yang kemudian mengalami proses pendinginan kembali dan menjadi batuan-batuan baru lagi.

Proses-proses tersebut berlangsung sepanjang waktu baik di masa lampau maupun masa yang akan datang. Kejadian alam dan proses geologi yang berlangsung sekarang inilah yang memberikan gambaran apa yang telah terjadi

Page 12: materi kebumian

di masa lampau seperti diungkapkan oleh ahli geologi “JAMES HUTTON” dengan teorinya “THE PRESENT IS THE KEY TO THE PAST”

Referensi :

Page 13: materi kebumian

Batuan metamorf

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Belum Diperiksa

Langsung ke: navigasi, cari

Kuarsit, salah satu jenis batuan metamorf

Batuan metamorf adalah salah satu kelompok utama batuan yang merupakan hasil transformasi atau ubahan dari suatu tipe batuan yang telah ada sebelumnya, protolith, oleh suatu proses yang disebut metamorfisme, yang berarti "perubahan bentuk". Protolith yang dikenai panas (lebih besar dari 150 °Celsius) dan tekanan ekstrem akan mengalami perubahan fisika dan/atau kimia yang besar. Protolith dapat berupa batuan sedimen, batuan beku, atau batuan metamorf lain yang lebih tua. Beberapa contoh batuan metamorf adalah gneis, batu sabak, batu marmer, dan skist.

Batuan metamorf menyusun sebagian besar dari kerak Bumi dan digolongkan berdasarkan tekstur dan dari susunan kimia dan mineral (fasies metamorf) Mereka terbentuk jauh dibawah permukaan bumi oleh tegasan yang besar dari batuan diatasnya serta tekanan dan suhu tinggi. Mereka juga terbentuk oleh intrusi batu lebur, disebut magma, ke dalam batuan padat dan terbentuk terutama pada kontak antara magma dan batuan yang bersuhu tinggi.

Penelitian batuan metamorf (saat ini tersingkap di permukaan bumi akibat erosi dan pengangkatan) memberikan kita informasi yang sangat berharga mengenai suhu dan tekanan yang terjadi jauh di dalam permukaan bumi.

Page 14: materi kebumian

Mineral

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Belum Diperiksa

Langsung ke: navigasi, cari

Mineral adalah senyawa alami yang terbentuk melalui proses geologis. Istilah mineral termasuk tidak hanya bahan komposisi kimia tetapi juga struktur mineral. Mineral termasuk dalam komposisi unsur murni dan garam sederhana sampai silikat yang sangat kompleks dengan ribuan bentuk yang diketahui (senyawaan organik biasanya tidak termasuk). Ilmu yang mempelajari mineral disebut mineralogi.

Magma

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Belum Diperiksa

Langsung ke: navigasi, cari

Lava Hawaii yang mengalir (lava adalah magma yang mengalir keluar)

Magma merupakan batu-batuan cair yang terletak di dalam kamar magma di bawah permukaan bumi. Magma di bumi merupakan larutan silika bersuhu tinggi yang kompleks dan merupakan asal semua batuan beku. Magma berada dalam tekanan tinggi dan kadang kala memancut keluar melalui pembukaan gunung berapi dalam bentuk aliran lava atau letusan gunung berapi.

Hasil letupan gunung berapi ini mengandung larutan gas yang tidak pernah sampai ke permukaan bumi. Magma terkumpul dalam kamar magma yang terasing di bawah kerak bumi dan mengandung komposisi yang berlainan menurut tempat magma itu didapati.

Page 15: materi kebumian

Batuan sedimen

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Belum Diperiksa

Langsung ke: navigasi, cari

Batu kapur, jenis umum batuan endapan

Batuan endapan atau batuan sedimen adalah salah satu dari tiga kelompok utama batuan (bersama dengan batuan beku dan batuan metamorfosis) yang terbentuk melalui tiga cara utama: pelapukan batuan lain (clastic); pengendapan (deposition) karena aktivitas biogenik; dan pengendapan (precipitation) dari larutan. Jenis batuan umum seperti batu kapur, batu pasir, dan lempung, termasuk dalam batuan endapan. Batuan endapan meliputi 75% dari permukaan bumi.

Penamaan batuan sedimen biasanya berdasarkan besar butir penyusun batuan tersebut Penamaan tersebut adalah: breksi, konglomerat, batupasir, batu lempung

Breksi adalah batuan sedimen dengan ukuran butir lebih besar dari 2 mm dengan bentuk butitan yang bersudut

Konglomerat adalah batuan sedimen dengan ukuran butir lebih besar dari 2 mm dengan bentuk butiran yang membudar

Batu pasir adalah batuan sedimen dengan ukuran butir antara 2 mm sampai 1/16 mm

Batu lanau adalah batuan sedimen dengan ukuran butir antara 1/16 mm sampai 1/256 mm

Batu lempung adalah batuan sedimen dengan ukuran butir lebih kecil dari 1/256 mm

Geologi struktur

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Belum Diperiksa

Langsung ke: navigasi, cari

Page 16: materi kebumian

Formasi batuan terlipat, salah satu subjek studi geologi struktur

Geologi struktur adalah studi mengenai distribusi tiga dimensi tubuh batuan dan permukaannya yang datar ataupun terlipat, beserta susunan internalnya.

Geologi struktur mencakup bentuk permukaan yang juga dibahas pada studi geomorfologi, metamorfisme dan geologi rekayasa. Dengan mempelajari struktur tiga dimensi batuan dan daerah, dapat dibuat kesimpulan mengenai sejarah tektonik, lingkungan geologi pada masa lampau dan kejadian deformasinya. Hal ini dapat dipadukan pada waktu dengan menggunakan kontrol stratigrafi maupun geokronologi, untuk menentukan waktu pembentukan struktur tersebut.

Secara lebih formal dinyatakan sebagai cabang geologi yang berhubungan dengan proses geologi dimana suatu gaya telah menyebabkan transformasi bentuk, susunan, atau struktur internal batuan kedalam bentuk, susunan, atau susunan intenal yang lain.

Sebelumnya kita sudah tahu bahwa di bumi ada tiga jenis batuan yaitu batuan beku, batuan sedimen, dan batuan metamorf. Ketiga batuan tersebut dapat berubah menjadi batuan metamorf tetapi ketiganya juga bisa berubah menjadi batuan lainnya. Semua batuan akan mengalami pelapukan dan erosi menjadi partikel-partikel atau pecahan-pecahan yang lebih kecil yang akhirnya juga bisa membentuk batuan sedimen. Batuan juga bisa melebur atau meleleh menjadi magma dan kemudian kembali menjadi batuan beku. Kesemuanya ini disebut siklus batuan atau ROCK CYCLE.

 Semua batuan yang ada di permukaan bumi akan mengalami pelapukan. Penyebab pelapukan tersebut ada 3 macam:

1. Pelapukan secara fisika: perubahan suhu dari panas ke dingin akan membuat batuan mengalami perubahan. Hujan pun juga dapat membuat rekahan-rekahan yang ada di batuan menjadi berkembang sehingga proses-proses fisika tersebut dapat membuat batuan pecah menjadi bagian yang lebih kecil lagi.

2. Pelapukan secara kimia: beberapa jenis larutan kimia dapat bereaksi dengan batuan seperti contohnya larutan HCl akan bereaksi dengan batu gamping. Bahkan air pun dapat bereaksi melarutan beberapa jenis batuan. Salah satu contoh yang nyata adalah “hujan asam” yang sangat mempengaruhi terjadinya pelapukan secara kimia.

Page 17: materi kebumian

3. Pelapukan secara biologi: Selain pelapukan yang terjadi akibat proses fisikan dan kimia, salah satu pelapukan yang dapat terjadi adalah pelapukan secara biologi. Salah satu contohnya adalah pelapukan yang disebabkan oleh gangguan dari akar tanaman yang cukup besar. Akar-akar tanaman yang besar ini mampu membuat rekahan-rekahan di batuan dan akhirnya dapat memecah batuan menjadi bagian yang lebih kecil lagi.

Setelah batuan mengalami pelapukan, batuan-batuan tersebut akan pecah menjadi bagian yang lebih kecil lagi sehingga mudah untuk berpindah tempat. Berpindahnya tempat dari partikel-partikel kecil ini disebut erosi. Proses erosi ini dapat terjadi melalui beberapa cara:

1. Akibat grafitasi: akibat adanya grafitasi bumi maka pecahan batuan yang ada bisa langsung jatuh ke permukaan tanah atau menggelinding melalui tebing sampai akhirnya terkumpul di permukaan tanah.

2. Akibat air: air yang melewati pecahan-pecahan kecil batuan yang ada dapat mengangkut pecahan tersebut dari satu tempat ke tempat yang lain. Salah satu contoh yang dapat diamati dengan jelas adalah peranan sungai dalam mengangkut pecahan-pecahan batuan yang kecil ini.

3. Akibat angin: selain air, angin pun dapat mengangkut pecahan-pecahan batuan yang kecil ukurannya seperti halnya yang saat ini terjadi di daerah gurun.

4. Akibat glasier: sungai es atau yang sering disebut glasier seperti yang ada di Alaska sekarang juga mampu memindahkan pecahan-pecahan batuan yang ada.

Pecahan-pecahan batuan yang terbawa akibat erosi tidak dapat terbawa selamanya. Seperti halnya sungai akan bertemu laut, angin akan berkurang tiupannya, dan juga glasier akan meleleh. Akibat semua ini, maka pecahan batuan yang terbawa akan terendapkan. Proses ini yang

sering disebut proses pengendapan. Selama proses pengendapan, pecahan batuan akan diendapkan secara berlapis dimana pecahan yang berat akan diendapkan terlebih dahulu baru kemudian diikuti pecahan yang lebih ringan dan seterusnya. Proses pengendapan ini akan membentuk perlapisan pada batuan yang sering kita lihat di batuan sedimen saat ini. 

Pada saat perlapisan di batuan sedimen ini terbentuk, tekanan yang ada di perlapisan yang paling bawah akan bertambah akibat pertambahan beban di atasnya. Akibat pertambahan tekanan ini, air yang ada dalam lapisan-lapisan batuan akan tertekan sehingga keluar dari lapisan batuan

yang ada. Proses ini sering disebut kompaksi. Pada saat yang bersamaan pula, partikel-partikel yang ada dalam lapisan mulai bersatu. Adanya semen seperti lempung, silika, atau kalsit diantara partikel-partikel yang ada membuat partikel tersebut menyatu membentuk batuan yang lebih keras. Proses ini sering disebut sementasi. Setelah proses kompaksi dan sementasi terjadi pada pecahan batuan yang ada, perlapisan sedimen yang ada sebelumnya berganti

Page 18: materi kebumian

menjadi batuan sedimen yang berlapis-lapis. Batuan sedimen seperti batu pasir, batu lempung, dan batu gamping dapat dibedakan dari batuan lainnya melalui adanya perlapisan, butiran-butiran sedimen yang menjadi satu akibat adanya semen, dan juga adanya fosil yang ikut terendapkan saat pecahan batuan dan fosil mengalami proses erosi, kompaksi dan akhirnya tersementasikan bersama-sama. 

Pada kerak bumi yang cukup dalam, tekanan dan suhu yang ada sangatlah tinggi. Kondisi tekanan dan suhu yang sangat tinggi seperti ini dapat mengubah mineral yang dalam batuan. Proses ini sering disebut proses metamorfisme. Semua batuan yang ada dapat mengalami proses metamorfisme.

Tingkat proses metamorfisme yang terjadi tergantung dari:

1. Apakah batuan yang ada terkena efek tekanan dan atau suhu yang tinggi.

2. Apakah batuan tersebut mengalami perubahan bentuk.3. Berapa lama batuan yang ada terkena tekanan dan suhu yang tinggi.

Dengan bertambahnya dalam suatu batuan dalam bumi, kemungkinan batuan yang ada melebur kembali menjadi magma sangatlah besar. Ini karena tekanan dan suhu yang sangat tinggi pada kedalaman yang sangat dalam. Akibat densitas dari magma yang terbentuk lebih kecil dari batuan

sekitarnya, maka magma tersebut akan mencoba kembali ke permukaan menembus kerak bumi yang ada. Magma juga terbentuk di bawah kerak bumi yaitu di mantle bumi. Magma ini juga akan berusaha menerobos kerak bumi untuk kemudian berkumpul dengan magma yang sudah terbentuk sebelumnya dan selanjutnya berusaha menerobos kerak bumi untuk membentuk batuan beku baik itu plutonik ataupun vulkanik. 

Kadang-kadang magma mampu menerobos sampai ke permukaan bumi melalui rekahan atau patahan yang ada di bumi. Pada saat magma mampu menembus permukaan bumi, maka kadang terbentuk ledakan atau sering disebut volcanic eruption. Proses ini sering disebut proses ekstrusif.

Batuan yang terbentuk dari magma yang keluar ke permukaan disebut batuan beku ekstrusif. Basalt dan pumice (batu apung) adalah salah satu contoh batuan ekstrusif. Jenis batuan yang terbentuk akibat proses ini tergantung dari komposisi magma yang ada. Umumnya batuan beku ekstrusif memperlihatkan cirri-ciri berikut:

1. Butirannya sangatlah kecil. Ini disebabkan magma yang keluar ke permukaan bumi mengalami proses pendinginan yang sangat cepat sehingga mineral-mineral yang ada sebagai penyusun batuan tidak mempunyai banyak waktu untuk dapat berkembang.

2. Umumnya memperlihatkan adanya rongga-rongga yang terbentuk akibat gas yang terkandung dalam batuan atau yang sering disebut “gas bubble”.

Page 19: materi kebumian

Batuan yang meleleh akibat tekanan dan suhu yang sangat tinggi sering membentuk magma chamber dalam kerak bumi. Magma ini bercampur dengan magma yang terbentuk dari mantle. Karena letak magma chamber yang relatif dalam dan tidak mengalami proses ekstrusif, maka magma yang ada

mengalami proses pendinginan yang relatif lambat dan membentuk kristal-kristal mineral yang akhirnya membentuk batuan beku intrusif. Batuan beku intrusif dapat tersingkap di permukaan membentuk pluton. Salah satu jenis pluton terbesar yang tersingkap dengan jelas adalah batholit seperti yang ada di Sierra Nevada – USA yang merupakan batholit granit yang sangat besar. Gabbro juga salah satu contoh batuan intrusif. Jenis batuan yang terbentuk akibat proses ini tergantung dari komposisi magma yang ada. Umumnya batuan beku intrusif memperlihatkan cirri-ciri berikut:

1. Butirannya cukup besar. Ini disebabkan magma yang keluar ke permukaan bumi mengalami proses pendinginan yang sangat lambat sehingga mineral-mineral yang ada sebagai penyusun batuan mempunyai banyak waktu untuk dapat berkembang.

2. Biasanya mineral-mineral pembentuk batuan beku intrusif memperlihatkan angular interlocking.

Proses-proses inilah semua yang terjadi dimasa lampau, sekarang, dan yang

akan datang. Terjadinya proses-proses ini menjaga keseimbangan batuan yang

ada di bumi.

Tektonika lempeng

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

(Dialihkan dari Tektonik)

Langsung ke: navigasi, cari

Page 20: materi kebumian

Lempeng-lempeng tektonik di bumi barulah dipetakan pada paruh kedua abad

ke-20.

Teori tektonika Lempeng (bahasa Inggris: Plate Tectonics) adalah teori dalam bidang geologi yang dikembangkan untuk memberi penjelasan terhadap adanya bukti-bukti pergerakan skala besar yang dilakukan oleh litosfer bumi. Teori ini telah mencakup dan juga menggantikan Teori Pergeseran Benua yang lebih dahulu dikemukakan pada paruh pertama abad ke-20 dan konsep seafloor spreading yang dikembangkan pada tahun 1960-an.

Bagian terluar dari interior bumi terbentuk dari dua lapisan. Di bagian atas terdapat litosfer yang terdiri atas kerak dan bagian teratas mantel bumi yang kaku dan padat. Di bawah lapisan litosfer terdapat astenosfer yang berbentuk padat tetapi bisa mengalir seperti cairan dengan sangat lambat dan dalam skala waktu geologis yang sangat lama karena viskositas dan kekuatan geser (shear strength) yang rendah. Lebih dalam lagi, bagian mantel di bawah astenosfer sifatnya menjadi lebih kaku lagi. Penyebabnya bukanlah suhu yang lebih dingin, melainkan tekanan yang tinggi.

Lapisan litosfer dibagi menjadi lempeng-lempeng tektonik (tectonic plates). Di bumi, terdapat tujuh lempeng utama dan banyak lempeng-lempeng yang lebih kecil. Lempeng-lempeng litosfer ini menumpang di atas astenosfer. Mereka bergerak relatif satu dengan yang lainnya di batas-batas lempeng, baik divergen (menjauh), konvergen (bertumbukan), ataupun transform (menyamping). Gempa bumi, aktivitas vulkanik, pembentukan gunung, dan pembentukan palung samudera semuanya umumnya terjadi di daerah sepanjang batas lempeng. Pergerakan lateral lempeng lazimnya berkecepatan 50-100 mm/a.[1]

Page 21: materi kebumian

Perkembangan Teori

Peta dengan detail yang menunjukkan lempeng-lempeng tektonik dan arah

vektor gerakannya

Pada akhir abad ke-19 dan awal abad ke-20, geolog berasumsi bahwa kenampakan-kenampakan utama bumi berkedudukan tetap. Kebanyakan kenampakan geologis seperti pegunungan bisa dijelaskan dengan pergerakan vertikal kerak seperti dijelaskan dalam teori geosinklin. Sejak tahun 1596, telah diamati bahwa pantai Samudera Atlantik yang berhadap-hadapan antara benua Afrika dan Eropa dengan Amerika Utara dan Amerika Selatan memiliki kemiripan bentuk dan nampaknya pernah menjadi satu. Ketepatan ini akan semakin jelas jika kita melihat tepi-tepi dari paparan benua di sana.[2]

Sejak saat itu banyak teori telah dikemukakan untuk menjelaskan hal ini, tetapi semuanya menemui jalan buntu karena asumsi bahwa bumi adalah sepenuhnya padat menyulitkan penemuan penjelasan yang sesuai.[3]

Penemuan radium dan sifat-sifat pemanasnya pada tahun 1896 mendorong pengkajian ulang umur bumi,[4] karena sebelumnya perkiraan didapatkan dari laju pendinginannya dan dengan asumsi permukaan bumi beradiasi seperti benda hitam.[5] Dari perhitungan tersebut dapat disimpulkan bahwa bahkan jika pada awalnya bumi adalah sebuah benda yang merah-pijar, suhu Bumi akan menurun menjadi seperti sekarang dalam beberapa puluh juta tahun. Dengan adanya sumber panas yang baru ditemukan ini maka para ilmuwan menganggap masuk akal bahwa Bumi sebenarnya jauh lebih tua dan intinya masih cukup panas untuk berada dalam keadaan cair.

Teori Tektonik Lempeng berasal dari Hipotesis Pergeseran Benua (continental drift) yang dikemukakan Alfred Wegener tahun 1912.[6] dan dikembangkan lagi dalam bukunya The Origin of Continents and Oceans terbitan tahun 1915. Ia mengemukakan bahwa benua-benua yang sekarang ada dulu adalah satu bentang muka yang bergerak menjauh sehingga melepaskan benua-benua tersebut dari inti bumi seperti 'bongkahan es' dari granit yang bermassa jenis rendah yang mengambang di atas lautan basal yang lebih padat.[7][8] Namun, tanpa adanya bukti terperinci dan perhitungan gaya-gaya yang dilibatkan, teori ini dipinggirkan. Mungkin saja bumi memiliki kerak yang padat dan inti yang cair, tetapi tampaknya tetap saja tidak mungkin bahwa bagian-bagian kerak tersebut dapat bergerak-gerak. Di kemudian hari, dibuktikanlah teori yang dikemukakan

Page 22: materi kebumian

geolog Inggris Arthur Holmes tahun 1920 bahwa tautan bagian-bagian kerak ini kemungkinan ada di bawah laut. Terbukti juga teorinya bahwa arus konveksi di dalam mantel bumi adalah kekuatan penggeraknya.[3][9][10]

Bukti pertama bahwa lempeng-lempeng itu memang mengalami pergerakan didapatkan dari penemuan perbedaan arah medan magnet dalam batuan-batuan yang berbeda usianya. Penemuan ini dinyatakan pertama kali pada sebuah simposium di Tasmania tahun 1956. Mula-mula, penemuan ini dimasukkan ke dalam teori ekspansi bumi,[11] namun selanjutnya justeru lebih mengarah ke pengembangan teori tektonik lempeng yang menjelaskan pemekaran (spreading) sebagai konsekuensi pergerakan vertikal (upwelling) batuan, tetapi menghindarkan keharusan adanya bumi yang ukurannya terus membesar atau berekspansi (expanding earth) dengan memasukkan zona subduksi/hunjaman (subduction zone), dan sesar translasi (translation fault). Pada waktu itulah teori tektonik lempeng berubah dari sebuah teori yang radikal menjadi teori yang umum dipakai dan kemudian diterima secara luas di kalangan ilmuwan. Penelitian lebih lanjut tentang hubungan antara seafloor spreading dan balikan medan magnet bumi (geomagnetic reversal) oleh geolog Harry Hammond Hess dan oseanograf Ron G. Mason [12] [13] [14] [15] menunjukkan dengan tepat mekanisme yang menjelaskan pergerakan vertikal batuan yang baru.

Seiring dengan diterimanya anomali magnetik bumi yang ditunjukkan dengan lajur-lajur sejajar yang simetris dengan magnetisasi yang sama di dasar laut pada kedua sisi mid-oceanic ridge, tektonik lempeng menjadi diterima secara luas. Kemajuan pesat dalam teknik pencitraan seismik mula-mula di dalam dan sekitar zona Wadati-Benioff dan beragam observasi geologis lainnya tak lama kemudian mengukuhkan tektonik lempeng sebagai teori yang memiliki kemampuan yang luar biasa dalam segi penjelasan dan prediksi.

Penelitian tentang dasar laut dalam, sebuah cabang geologi kelautan yang berkembang pesat pada tahun 1960-an memegang peranan penting dalam pengembangan teori ini. Sejalan dengan itu, teori tektonik lempeng juga dikembangkan pada akhir 1960-an dan telah diterima secara cukup universal di semua disiplin ilmu, sekaligus juga membaharui dunia ilmu bumi dengan memberi penjelasan bagi berbagai macam fenomena geologis dan juga implikasinya di dalam bidang lain seperti paleogeografi dan paleobiologi.

[sunting] Prinsip-prinsip Utama

Bagian luar interior bumi dibagi menjadi litosfer dan astenosfer berdasarkan perbedaan mekanis dan cara terjadinya perpindahan panas. Litosfer lebih dingin dan kaku, sedangkan astenosfer lebih panas dan secara mekanik lemah. Selain itu, litosfer kehilangan panasnya melalui proses konduksi, sedangkan astenosfer juga memindahkan panas melalui konveksi dan memiliki gradien suhu yang hampir adiabatik. Pembagian ini sangat berbeda dengan pembagian bumi secara kimia menjadi inti, mantel, dan kerak. Litosfer sendiri mencakup kerak dan juga sebagian dari mantel. Suatu bagian mantel bisa saja menjadi bagian dari litosfer atau astenosfer pada waktu yang berbeda, tergantung dari suhu, tekanan, dan kekuatan gesernya. Prinsip kunci tektonik lempeng adalah bahwa litosfer terpisah menjadi lempeng-lempeng tektonik yang berbeda-beda. Lempeng ini bergerak menumpang di atas astenosfer yang mempunyai viskoelastisitas sehingga bersifat seperti fluida. Pergerakan lempeng biasanya bisa mencapai 10-40

Page 23: materi kebumian

mm/a (secepat pertumbuhan kuku jari) seperti di Mid-Atlantic Ridge, ataupun mencapai 160 mm/a (secepat pertumbuhan rambut) seperti di Lempeng Nazca.[16][17] Lempeng-lempeng ini tebalnya sekitar 100 km dan terdiri atas mantel litosferik yang di atasnya dilapisi dengan hamparan salah satu dari dua jenis material kerak. Yang pertama adalah kerak samudera atau yang sering disebut dengan "sima", gabungan dari silikon dan magnesium. Jenis yang kedua yaitu kerak benua yang sering disebut "sial", gabungan dari silikon dan aluminium. Kedua jenis kerak ini berbeda dari segi ketebalan di mana kerak benua memiliki ketebalan yang jauh lebih tinggi dibandingkan dengan kerak samudera. Ketebalan kerak benua mencapai 30-50 km sedangkan kerak samudera hanya 5-10 km.

Dua lempeng akan bertemu di sepanjang batas lempeng (plate boundary), yaitu daerah di mana aktivitas geologis umumnya terjadi seperti gempa bumi dan pembentukan kenampakan topografis seperti gunung, gunung berapi, dan palung samudera. Kebanyakan gunung berapi yang aktif di dunia berada di atas batas lempeng, seperti Cincin Api Pasifik (Pacific Ring of Fire) di Lempeng Pasifik yang paling aktif dan dikenal luas.

Lempeng tektonik bisa merupakan kerak benua atau samudera, tetapi biasanya satu lempeng terdiri atas keduanya. Misalnya, Lempeng Afrika mencakup benua itu sendiri dan sebagian dasar Samudera Atlantik dan Hindia. Perbedaan antara kerak benua dan samudera ialah berdasarkan kepadatan material pembentuknya. Kerak samudera lebih padat daripada kerak benua dikarenakan perbedaan perbandingan jumlah berbagai elemen, khususnya silikon. Kerak samudera lebih padat karena komposisinya yang mengandung lebih sedikit silikon dan lebih banyak materi yang berat. Dalam hal ini, kerak samudera dikatakan lebih bersifat mafik ketimbang felsik.[18] Maka, kerak samudera umumnya berada di bawah permukaan laut seperti sebagian besar Lempeng Pasifik, sedangkan kerak benua timbul ke atas permukaan laut, mengikuti sebuah prinsip yang dikenal dengan isostasi.

[sunting] Jenis-jenis Batas Lempeng

Tiga jenis batas lempeng (plate boundary).

Ada tiga jenis batas lempeng yang berbeda dari cara lempengan tersebut bergerak relatif terhadap satu sama lain. Tiga jenis ini masing-masing berhubungan dengan fenomena yang berbeda di permukaan. Tiga jenis batas lempeng tersebut adalah:

Page 24: materi kebumian

1. Batas transform (transform boundaries) terjadi jika lempeng bergerak dan mengalami gesekan satu sama lain secara menyamping di sepanjang sesar transform (transform fault). Gerakan relatif kedua lempeng bisa sinistral (ke kiri di sisi yang berlawanan dengan pengamat) ataupun dekstral (ke kanan di sisi yang berlawanan dengan pengamat). Contoh sesar jenis ini adalah Sesar San Andreas di California.

2. Batas divergen/konstruktif (divergent/constructive boundaries) terjadi ketika dua lempeng bergerak menjauh satu sama lain. Mid-oceanic ridge dan zona retakan (rifting) yang aktif adalah contoh batas divergen

3. Batas konvergen/destruktif (convergent/destructive boundaries) terjadi jika dua lempeng bergesekan mendekati satu sama lain sehingga membentuk zona subduksi jika salah satu lempeng bergerak di bawah yang lain, atau tabrakan benua (continental collision) jika kedua lempeng mengandung kerak benua. Palung laut yang dalam biasanya berada di zona subduksi, di mana potongan lempeng yang terhunjam mengandung banyak bersifat hidrat (mengandung air), sehingga kandungan air ini dilepaskan saat pemanasan terjadi bercampur dengan mantel dan menyebabkan pencairan sehingga menyebabkan aktivitas vulkanik. Contoh kasus ini dapat kita lihat di Pegunungan Andes di Amerika Selatan dan busur pulau Jepang (Japanese island arc).

[sunting] Kekuatan Penggerak Pergerakan Lempeng

Pergerakan lempeng tektonik bisa terjadi karena kepadatan relatif litosfer samudera dan karakter astenosfer yang relatif lemah. Pelepasan panas dari mantel telah didapati sebagai sumber asli dari energi yang menggerakkan tektonik lempeng. Pandangan yang disetujui sekarang, meskipun masih cukup diperdebatkan, adalah bahwa kelebihan kepadatan litosfer samudera yang membuatnya menyusup ke bawah di zona subduksi adalah sumber terkuat pergerakan lempeng. Pada waktu pembentukannya di mid ocean ridge, litosfer samudera pada mulanya memiliki kepadatan yang lebih rendah dari astenosfer di sekitarnya, tetapi kepadatan ini meningkat seiring dengan penuaan karena terjadinya pendinginan dan penebalan. Besarnya kepadatan litosfer yang lama relatif terhadap astenosfer di bawahnya memungkinkan terjadinya penyusupan ke mantel yang dalam di zona subduksi sehingga menjadi sumber sebagian besar kekuatan penggerak pergerakan lempeng. Kelemahan astenosfer memungkinkan lempeng untuk bergerak secara mudah menuju ke arah zona subduksi [19] Meskipun subduksi dipercaya sebagai kekuatan terkuat penggerak pergerakan lempeng, masih ada gaya penggerak lain yang dibuktikan dengan adanya lempeng seperti lempeng Amerika Utara, juga lempeng Eurasia yang bergerak tetapi tidak mengalami subduksi di manapun. Sumber penggerak ini masih menjadi topik penelitian intensif dan diskusi di kalangan ilmuwan ilmu bumi. Pencitraan dua dan tiga dimensi interior bumi (tomografi seismik) menunjukkan adanya distribusi kepadatan yang heterogen secara lateral di seluruh mantel. Variasi dalam kepadatan ini bisa bersifat material (dari kimia batuan), mineral (dari variasi struktur mineral), atau termal (melalui ekspansi dan kontraksi termal dari energi panas). Manifestasi dari keheterogenan kepadatan secara lateral adalah konveksi mantel dari gaya apung (buoyancy forces) [20] Bagaimana konveksi mantel berhubungan secara langsung dan tidak dengan pergerakan planet masih menjadi bidang yang sedang dipelajari dan dibincangkan dalam geodinamika. Dengan satu atau lain cara, energi ini

Page 25: materi kebumian

harus dipindahkan ke litosfer supaya lempeng tektonik bisa bergerak. Ada dua jenis gaya yang utama dalam pengaruhnya ke pergerakan planet, yaitu friksi dan gravitasi.

[sunting] Gaya Gesek

Basal drag

Arus konveksi berskala besar di mantel atas disalurkan melalui

astenosfer, sehingga pergerakan didorong oleh gesekan antara

astenosfer dan litosfer.

Slab suction

Arus konveksi lokal memberikan tarikan ke bawah pada lempeng di zona

subduksi di palung samudera. Penyerotan lempengan (slab suction) ini

bisa terjadi dalam kondisi geodinamik di mana tarikan basal terus

bekerja pada lempeng ini pada saat ia masuk ke dalam mantel,

meskipun sebetulnya tarikan lebih banyak bekerja pada kedua sisi

lempengan, atas dan bawah

[sunting] Gravitasi

Runtuhan gravitasi: Pergerakan lempeng terjadi karena lebih tingginya

lempeng di oceanic ridge. Litosfer samudera yang dingin menjadi lebih

padat daripada mantel panas yang merupakan sumbernya, maka

dengan ketebalan yang semakin meningkat lempeng ini tenggelam ke

dalam mantel untuk mengkompensasikan beratnya, menghasilkan

sedikit inklinasi lateral proporsional dengan jarak dari sumbu ini. :Dalam

teks-teks geologi pada pendidikan dasar, proses ini sering disebut

sebagai sebuah doronga. Namun, sebenarnya sebutan yang lebih tepat

adalah runtuhan karena topografi sebuah lempeng bisa jadi sangat

berbeda-beda dan topografi pematang (ridge) yang melakukan

pemekaran hanyalah fitur yang paling dominan. Sebagai contoh,

pembengkakan litosfer sebelum ia turun ke bawah lempeng yang

bersebelahan menghasilkan kenampakan yang bisa memengaruhi

topografi. Lalu, mantel plume yang menekan sisi bawah lempeng

tektonik bisa juga mengubah topografi dasar samudera.

Slab-pull (tarikan lempengan)

Pergerakan lempeng sebagian disebabkan juga oleh berat lempeng

yang dingin dan padat yang turun ke mantel di palung samudera.[21] Ada

Page 26: materi kebumian

bukti yang cukup banyak bahwa konveksi juga terjadi di mantel dengan

skala cukup besar. Pergerakan ke atas materi di mid-oceanic ridge

mungkin sekali adalah bagian dari konveksi ini. Beberapa model awal

Tektonik Lempeng menggambarkan bahwa lempeng-lempeng ini

menumpang di atas sel-sel seperti ban berjalan. Namun, kebanyakan

ilmuwan sekarang percaya bahwa astenosfer tidaklah cukup kuat untuk

secara langsung menyebabkan pergerakan oleh gesekan gaya-gaya itu.

Slab pull sendiri sangat mungkin menjadi gaya terbesar yang bekerja

pada lempeng. Model yang lebih baru juga memberi peranan yang

penting pada penyerotan (suction) di palung, tetapi lempeng seperti

Lempeng Amerika Utara tidak mengalami subduksi di manapun juga,

tetapi juga mengalami pergerakan seperti juga Lempeng Afrika, Eurasia,

dan Antarktika. Kekuatan penggerak utama untuk pergerakan lempeng

dan sumber energinya itu sendiri masih menjadi bahan riset yang

sedang berlangsung

[sunting] Gaya dari luar

Dalam studi yang dipublikasikan pada edisi Januari-Februari 2006 dari buletin Geological Society of America Bulletin, sebuah tim ilmuwan dari Italia dan Amerika Serikat berpendapat bahwa komponen lempeng yang mengarah ke barat berasal dari rotasi Bumi dan gesekan pasang bulan yang mengikutinya. Mereka berkata karena Bumi berputar ke timur di bawah bulan, gravitasi bulan meskipun sangat kecil menarik lapisan permuikaan bumi kembali ke barat. Beberapa juga mengemukakan ide kontroversial bahwa hasil ini mungkin juga menjelaskan mengapa Venus dan Mars tidak memiliki lempeng tektonik, yaitu karena ketiadaan bulan di Venus dan kecilnya ukuran bulan Mars untuk memberi efek seperti pasang di bumi.[22] Pemikiran ini sendiri sebetulnya tidaklah baru. Hal ini sendiri aslinya dikemukakan oleh bapak dari hipotesis ini sendiri, Alfred Wegener, dan kemudian ditentang fisikawan Harold Jeffreys yang menghitung bahwa besarnya gaya gesek oasang yang diperlukan akan dengan cepat membawa rotasi bumi untuk berhenti sejak waktu lama. Banyak lempeng juga bergerak ke utara dan barat, bahkan banyaknya pergerakan ke barat dasar Samudera Pasifik adalah jika dilihat dari sudut pandang pusat pemekaran (spreading) di Samudera Pasifik yang mengarah ke timur. Dikatakan juga bahwa relatif dengan mantel bawah, ada sedikit komponen yang mengarah ke barat pada pergerakan semua lempeng

Page 27: materi kebumian

[sunting] Signifikansi relatif masing-masing mekanisme

Pergerakan lempeng berdasar pada data satelit GPS NASA JPL. Vektor di sini

menunjukkan arah dan magnitudo gerakan.

Vektor yang sebenarnya pada pergerakan sebuah planet harusnya menjadi fungsi semua gaya yang bekerja pada lempeng itu. Namun, masalahnya adalah seberapa besar setiap proses ambil bagian dalam pergerakan setiap lempeng Keragaman kondisi geodinamik dan sifat setiap lempeng seharusnya menghasilkan perbedaan dalam seberapa proses-proses tersebut secara aktif menggerakkan lempeng. satu cara untuk mengatasi masalah ini adalah dengan melihat laju di mana setiap lempeng bergerak dan mempertimbangkan bukti yang ada untuk setiap kekuatan penggerak dari lempeng ini sejauh mungkin. Salah satu hubungan terpenting yang ditemukan adalah bahwa lempeng litosferik yang lengket pada lempeng yang tersubduksi bergerak jauh lebih cepat daripada lempeng yang tidak. Misalnya, Lempeng Pasifik dikelilingi zona subduksi (Ring of Fire) sehingga bergerak jauh lebih cepat daripada lempeng di Atlantik yang lengket pada benua yang berdekatan dan bukan lempeng tersubduksi. Maka, gaya yang berhubungkan dengan lempeng yang bergerak ke bawah (slab pull dan slab suction) adalah kekuatan penggerak yang menentukan pergerakan lempeng kecuali untuk lempeng yang tidak disubduksikan. Walau bagaimanapun juga, kekuatan penggerak pergerakan lempeng itu sendiri masih menjadi bahan perdebatan dan riset para ilmuwan

[sunting] Lempeng-lempeng utama

Page 28: materi kebumian

Peta lempeng-lempeng tektonik

Lempeng-lempeng tektonik utama yaitu:

Lempeng Afrika , meliputi Afrika - Lempeng benua Lempeng Antarktika , meliputi Antarktika - Lempeng benua Lempeng Australia , meliputi Australia (tergabung dengan Lempeng India

antara 50 sampai 55 juta tahun yang lalu)- Lempeng benua Lempeng Eurasia , meliputi Asia dan Eropa - Lempeng benua Lempeng Amerika Utara , meliputi Amerika Utara dan Siberia timur laut -

Lempeng benua Lempeng Amerika Selatan , meliputi Amerika Selatan - Lempeng benua Lempeng Pasifik , meliputi Samudera Pasifik - Lempeng samudera

Lempeng-lempeng penting lain yang lebih kecil mencakup Lempeng India, Lempeng Arabia, Lempeng Karibia, Lempeng Juan de Fuca, Lempeng Cocos, Lempeng Nazca, Lempeng Filipina, dan Lempeng Scotia.

Pergerakan lempeng telah menyebabkan pembentukan dan pemecahan benua seiring berjalannya waktu, termasuk juga pembentukan superkontinen yang mencakup hampir semua atau semua benua. Superkontinen Rodinia diperkirakan terbentuk 1 miliar tahun yang lalu dan mencakup hampir semua atau semua benua di Bumi dan terpecah menjadi delapan benua sekitar 600 juta tahun yang lalu. Delapan benua ini selanjutnya tersusun kembali menjadi superkontinen lain yang disebut Pangaea yang pada akhirnya juga terpecah menjadi Laurasia (yang menjadi Amerika Utara dan Eurasia), dan Gondwana (yang menjadi benua sisanya)