k 033425672 bosku

Upload: rokhmadmahardhika

Post on 06-Jan-2016

216 views

Category:

Documents


0 download

DESCRIPTION

jomblo

TRANSCRIPT

  • Pertemuan-13 & 14

    Transformasi Laplace

    2.1 RUMUS-RUMUS PEMBUKTIAN TRASFORMASI LAPLACE

    PENGERTIAN TRANSFORMASI LAPLACE

    Transformasi Laplace adalah proses mengubah fungsi F(t) dari fungsi waktu ke

    fungsi kompleks f(s) dari operasi kompleks S.

    Transformasi Laplace dari suatu fungsi F(t) didefinisikan sebagai:

    { } dttFesfL st == )()(F(t) 0 Transformasi Laplace untuk beberapa fungsi dasar:

    No.

    1. 1

    s1

    s > 0

    2. nt ; (m = 1, 2, 3, K 1ns

    !n+

    s > 0

    3. pt ; (p > -1) 1p

    )1p(

    s ++ s > 0

    4. ate as

    1

    s > a

    5. t cos 22 +s

    s

    s > 0

    No.

    6. t sin 22

    +s

    s > 0

    7. Cosh at 22 as

    s

    s > a

    8. Sinh at 22 as

    a

    s > a

    Buktikan: { } !s

    11 L =

    Bukti:

  • = 0 st dt)t(Fe)}t(F{L [ ] dt e lim dt )1( 1

    o

    st-

    o

    ==

    steL

    s1- lim )ed( e

    s1- lim st-

    o

    st-

    o

    ste

    ==

    ( ) ( )s11-0

    s1 -e e lim

    s1 - os- ===

    Buktikan: 2s

    1}t{L =

    Bukti :

    ( )[ ]

    dt )( o = tFetFL st

    [ ] dt t.e lim dt )( o

    st-

    o

    ==

    tetLst

    .d(t)]e -e[t.lim

    s1 - )t.d(e

    lims1 -

    oo

    st-

    o

    st-st-

    ===

    =+=

    o

    st-

    o

    st (1)dtelims1]e[t/.lim

    s1 -

    =+=

    o

    st-

    o

    st (1)dtelims1]e[1/s.lim

    s1 -

    s1

    s1.

    s1]1[.

    s10dt 1)(

    s1 )0(

    s1 - 2

    o

    ==+=+= Le st

    Buktikan: 3

    2

    s

    2)t{L =

    Bukti:

    dttetL

    dttFetFL

    st

    st

    2

    0

    2

    0

    }(

    )()}({

    ==

  • =

    =

    p st

    p

    stp

    p

    stdets

    dtet

    0

    2

    0

    2

    )(1lim

    lim

    =

    =

    p stpst

    p

    p st

    p

    tdeets

    edts

    0

    20

    2

    0

    2

    )( lim1

    )( lim1

    =

    =

    00.

    22

    00

    2

    20limlim1

    )2(limlim1

    dtteee

    ps

    dtteet

    s

    stspspp

    p st

    p

    pstp

    { }[ ]

    =

    =

    2

    121

    2001

    ss

    tLs

    32 2}(

    stL =

    Buktikan: 1n

    n

    s

    !n}{t L +=

    Bukti:

    1nn

    121232

    112

    10n

    s

    !n}(t L

    s

    !2

    s

    12

    s

    2}{t L

    s

    !1

    s

    1 {t} L

    s

    !031

    }{t L {1} L

    +

    ++

    +

    +

    =

    ===

    ==

    ===

    M

    Buktikan [ ] ( )11 ++= nn sntL Bukti:

    Fungsi Gamma: dxx e 1nx0)n(

    = ( ) +=+

    o

    1-1n dx 1 xen x

  • ( ) =+o

    n dx 1 xen x misalkan : x = st

    dx = s.dt

    ( )

    =+o

    n s.dt st)( 1 sten

    ( ) =+o

    nn s.dt ts 1 sten

    ( )

    +=+o

    n1n dt ts1 sten ( ) ][.s1 1n ntLn +=+

    [ ] ( )11 ++= nn sntL

    maka [ ] ( )11+n 1Sn! ++== nn sntL [terbukti]

    Buktikan : as

    L =1}{e at

    Bukti:

    dt)t(Fe{F(t)} L st0

    = [ ] dt lim dt )(

    oo +

    ==

    atstatstat eeeeL

    a)]-d[-s(t lima)-(s-

    1 dt lim o

    )(

    o

    )( ==

    tastas ee

    ]e

    1[lima)-(s-

    1 ]e[lima)-(s-

    1

    o)(o

    )(

    tastas

    ==

    ]1lim1lim[a)-(s-

    10).()( asas ee

    =

    ]10.[a)-(s-

    1]1lim0[a)-(s-

    10 == e

    a-s1}{e at =L [terbukti]

  • RUMUS FULER

    biabia eee =+ ) sin (cos bibee abia +=+

    +=+=+=

    beibeibe

    bi

    bi

    bi

    cos2ebsin cos

    bsin cos

    bi

    2ee

    bcosbibi +=

    2ee

    t costiti +=

    ==+=

    bieibeibe

    bi

    bi

    bi

    sin 2ebsin cos

    bsin cos

    bi

    ieeb

    bibi

    2sin

    = ie ti

    2e t sin

    ti

    =

    Buktikan 22s

    st) (cos L +=

    Bukti:

    ( )

    [ ][ ]

    ++=

    +=+=

    +=+=

    +=

    ==

    is1

    is1

    21

    }e{L}e{L21

    }e{L}e{L21

    dteedtee21

    dt eee21

    dt2

    eee

    dttcoset} {cosL

    dt)t(Fe)}t(F{L

    itit

    titi

    tist

    0

    tist

    0

    ititst

    0

    ititst

    0

    st

    0

    st

    0

  • [terbukti] }{cos

    )1(

    221

    ))((21}{cos

    22

    22

    222

    +==

    =

    +++=

    sstL

    ss

    iss

    isisisistL

    Buktikan: 22s

    }t{sinL +=

    ( )

    [ ]

    [terbukti] s

    )t{sinL

    )1(s

    i2i2

    1is

    )isisi2

    1

    )is)(is()is(is

    i21

    is1

    is1

    i21

    }e{L}e{Li2

    1

    dteedteei2

    1

    dt eeei2

    1

    dt2i

    eee

    dttsinet} {sinL

    dt)t(Fe)}t(F{L

    22

    22

    222

    itit

    itst

    0

    itst

    0

    ititst

    0

    ititst

    0

    st

    0

    st

    0

    +=

    =

    ++=++=

    +=

    =

    =

    =

    =

    ==

    Buktikan: 22 as

    s}at{coshL =

    Bukti:

  • { }{ } { }[ ]

    [terbukti] as

    s}at{coshL

    as

    s221

    )as)(as(as as

    21

    e Le L21

    ee L 21

    2ee

    L}at{coshL

    22

    22

    atat

    atat

    atat

    ==

    +++=

    +=

    +=

    +=

    Buktikan: 22 as

    a at}{sinh L =

    Bukti:

    { }{ } { }[ ]

    [terbukti] as

    a at}(sinh L

    as

    a221

    as

    asas21

    )as)(as()a(s as

    21

    as1

    as1

    21

    e Le L21

    ee L 21

    2ee

    L at}{sinh L

    22

    22

    22

    at-at

    atat

    atat

    ==

    ++=++=

    +=

    ==

    =

    2.2 BEBERAPA SIFAT PENTING DARI TRANSFORMASI LAPLACE 1. Kelinearan

    { } { } { })()(

    )(F )(F )(c)(c

    2211

    22112211

    sfcsfctLctLctFtFL

    +=+=+

    Contoh:

  • { }

    15

    438

    )1(15

    23!24

    }{ 5}2{cos 3}{t L 452cos34t

    23

    2212

    2

    2

    +++=++=

    +=+

    +

    sss

    s

    sss

    s

    eLtLetL

    t

    t

    2. Translasi Pertama atau pergeseran

    Jika f(s) {F(t)} L = Maka { } )as(f)t(Fe L at = Contoh:

    5s2s

    2

    41s2s

    2

    4)1s(

    2

    1)f(s2t}sin {e L

    4s

    2

    2s

    2 2t}{sin L f(s)

    2t}sin {e L

    222

    t

    222

    t

    ++=+++=++=+=

    +=+===

    K

    3. Translasi Kedua atau Pergeseran

    Jika f(s) {F(t)} L = dan

    =

    at0

    at)at(F)t(G

    Maka )s(fe {G(t)} L -as =

    Contoh:

    44133 6123!3}{)(

    ssstLsf ==== +

    dan

    =atatt

    tG0

    )2()(

    3

    4

    s2

    4s2

    -as

    s

    e6

    s

    6e

    )s(fe{G(t)} L maka ==

    =

    4. Perubahan Skala

    Jika f(s){F(t)} L =

    Maka

    =as

    fa1

    {F(a.t) L

  • Contoh:

    93

    99

    31

    31

    31 3t}{sin L

    99

    99

    1

    19

    1

    13

    13

    11

    1s1 L{sin t}f(s)

    3t}{sin

    22

    2

    222

    222

    +=+=

    =+=

    +=+=

    +

    =

    +=+==

    =

    ss

    f

    s

    ssssf

    s

    L K

    Soal:

    1. K= }3{5t L 2. K= }et2{ L t2 3. K 5t} cos {3 L = 4. K 2t} cos 5 2tsin {6 L = 5. { } K=+ 22 )1(t L 6. K= }t2cos{e L t 7. K= }t2cos{t L 3 8. { } K=+ t2 e2)(t L 9. { } K=2t coshe L -4t 10. { }

    )52(21

    )1(21 sine L 2

    2

    ++++=

    ss

    ss

    tt K

    11. Jika

    >

    =

    5t,1

    5tt,2t)t(F

    16. Tentukan L {F(t)} jika =1t0,0

    1t,1)-(t)t(F

    2

  • 2.3 TRANSFORMASI LAPLACE TURUNAN DAN INTEGRAL Transformasi Laplace dari Turunan

    )0(F{F(t)} LsdtdF

    L =

    dst

    )0(dt

    Fd)0(

    dt

    Fds)0(

    dtdf

    s)0(Fs{F(t)} Lsdt

    Fd L

    )0(dt

    Fd)0(

    dtdf

    s)0(Fs{F(t)} Lsdt

    Fd L

    )0(dtdf

    )0(Fs{F(t)} Lsdt

    Fd L

    3

    3

    2

    2234

    4

    4

    2

    223

    3

    3

    22

    2

    M

    =

    =

    =

    Bukti :

    Transformasi Laplace dari Derivatif

    Jika ( )[ ] ( )sftFL = maka a) ( )0)]([. FtFLS

    dtdFL =

    Bukti:

    ( )[ ]

    dt )( o = tFetFL st

    dt )]([ o = dt

    tFdedtdFL st

    ( )

    ]td[F e lim o

    st-=

    dtdFL

    ( ) ( )

    ]d[e tF lim-]tF [elim o

    st-o

    st- =

    dtdFL

    ( ) ( )

    dt (-s).etF lim-]e

    tF [lim o

    st-ost =

    dtdFL

  • ( ) ( )

    dt.etF lim.]e

    F [lim o

    st-s +=

    s

    dtdFL

    ( ) ( )

    dttFe .]e

    F(0)[lim]e

    F [lim o

    st-s.0s += sdt

    dFL

    L[F(t)] .F(0)0 sdtdFL +=

    Jadi :

    F(0)L[F(t)] . =

    sdtdFL

    Sehingga (0)]L[ . 22

    dtdF

    dtdFs

    dtFdL =

    (0)F(0)]L[F(t)] .[ . 22

    dtdFss

    dtFdL =

    (0)F(0).L[F(t)]. 222

    dtdFss

    dtFdL =

    juga (0)(0).L[F(t)]. 22

    23

    3

    dtFd

    dtdFss

    dtFdL =

    (0)(0)..F(0)L[F(t)]. 22

    233

    3

    dtFd

    dtdFsss

    dtFdL =

    Kesimpulan :

    F(0)L[F(t)] . =

    sdtdFL

    (0)F(0).L[F(t)]. 222

    dtdFss

    dtFdL =

    (0)(0)..F(0)L[F(t)]. 22

    233

    3

    dtFd

    dtdFsss

    dtFdL =

    b) Analog:

    ( ) ( )( ) (0)...(0)..)]([. 11

    21

    =

    n

    nnnn

    n

    n

    dtFd

    dtdFsoFstFLs

    dtFdL

    Transformasi Laplace di atas dipakai untuk menyelesaikan PD yang mempunyai syarat-syarat awal (initial condition)

  • Contoh:

    Selesaikanlah transformasi Laplace texdtdx =+ dengan syarat awal 0 (0) =x !

    0 x(0) ==+ texdtdx

    ( )1)1(1 {x} L

    11 {x} L )1(

    1s1 {x} L 0 {x} Ls

    1s1 {x} L (0) x {x} Ls

    }{e {x} dtdx

    }{e dtdx

    t

    t

    +==+=+=+

    =+

    =

    +

    ss

    ss

    LLL

    LxL

    Misal: L {x} = y

    )1()1(1

    11)1)(1(1

    ++=

    ++=+=

    sBsA

    sB

    sA

    ssy

    = 1suntuk

    21

    A A21

    0A21

    )11( B)11( A 1

    ==+=

    ++=

    = 1suntuk

    21

    B B21

    B201

    )11( B)11( A 1

    ==+=

    ++=

    1s21

    1s21

    )1s)(1s(1

    ++

    =+

  • 121

    121

    )1)(1(1

    ++

    =

    +=

    ssy

    ssy

    ++

    =

    ==

    121

    121

    }{}{

    1

    1

    ssLx

    yLxyxL

    tt eex

    sL

    sLx

    21

    21

    11

    21

    11

    21 11

    +=

    ++

    +=

    Contoh 2:

    Selesaikan dengan transformasi Laplace t22

    2

    exdt

    xd = dengan syarat awal

    ==

    0)0(dtdx

    0)0(x

    { }{ }2-s

    1 {x} )0()0( {x}

    e }{

    e

    2

    2t2

    2

    2t2

    2

    22

    2

    =

    =

    =

    =

    LdtdxxsLs

    LxLdtxdL

    LxdtxdL

    exdtxd t

    Misal: L {x} = y

  • )1)(1)(2()1)(2()1)(2()1)(1(1

    112)1)(1)(2(1

    )1)(2(1

    21)1(

    21

    2100.

    2

    2

    2

    2

    +++++=+++=+=

    ====

    sssssCssBssA

    sC

    sB

    sA

    sssy

    ssy

    sys

    syys

    sysys

    = 1suntuk

    21

    B B21

    0B201

    )11)(21(A )11)(21( B)11)(11( A 1

    ==+=

    +++++=

    = 1suntuk

    61

    C C61

    c6001

    )11)(21( C)11)(21( B)11)(11( A 1

    ==++=

    +++++=

    = 2suntuk

    31 A 31

    0031)12)(22(A )12)(22( )12)(12(A 1

    ==++=

    +++++=

    A

    AB

    1s61

    1s21

    2s31

    y

    1sC

    1sB

    1sA

    y

    )1s)(1s)(2s(1

    y

    ++

    +=

    +++=+=

    ++

    +

    =

    ++

    +=

    ==

    1s71

    L1s

    21

    L1s

    31

    Lx

    1s61

    1s21

    2s31

    Lx

    }y{Lx

    y}x{L

    1

    1

    1

  • ttt

    1

    e61

    e21

    e31

    x

    1s1

    L61

    1s1

    L21

    2s1

    L31

    x

    +=

    ++

    +

    =

    Tranformasi Laplace dari Integral

    Jika L {F(t)} = f(s), maka:

    s)s(f

    du )u(F Lt

    0=

    Contoh: { }

    { }

    )4(2

    42

    )(du2u sin

    42)(

    2s22t}{sin

    du2u sin

    2

    2

    t

    0

    2

    22

    t

    0

    +=

    =

    =+=+=

    =

    ss

    ss

    ssfL

    ssf

    L

    L K

    Perkalian dengan nt

    Jika L {F(t)} = f(s),

    maka ( )[ ] ( ) ( )[ ] ( ) ( )sfsfdsdtL nnn

    nnn )(.11tF ==

  • Contoh :

    { }

    2

    2

    '11

    1

    2

    2

    2

    )2(1

    )1()2(1)2()2(1)(

    )2(2

    1)(

    21}{)}({

    )(

    t

    ==

    =====

    =

    =

    s

    ssssf

    ss

    sf

    seLtFL

    etF

    eL

    t

    t

    t K

    2

    2

    12t

    )2s(

    1)2s(

    11

    )s(f)1(}e{t L

    ===

    Pembagian dengan t

    Jika L{F(t)} = f(s), maka:

    du )(t

    )F( ftLs=

  • Contoh:

    s tg2

    s tgarc tg

    tgarc

    1

    11

    d )(t

    sin t

    11)(

    11

    11f(s)

    {sint t} )}({t

    sin t

    2

    2

    2

    222

    arc

    arc

    d

    d

    fL

    f

    ss

    LtFL

    L

    s

    s

    s

    s

    ==

    =+=

    +

    =

    +=+=+=

    ==

    K

    =

    =

    =

    =

    tgarc 2

    2

    01

    2

    90 cos90sin 90 tg 0

    00

    tg

    tg

    Soal:

    1. K= at}sin {t L 2. K= at} cos{t L 3. K 3t}cosh {t L = 4. K dt tsin et 3t-

    0=

    5. K=

    tee

    Lbt-at

    6. K=

    ttsinh

    L

    7. K dt t

    ee t6t3

    0=

    8. Jika

    >=

    1t,t

    1t0,t2)t(F maka K {F(t)} L =

  • 10. K= dtt tsin22

    0