identifikasi jenis gas menggunakan … · yang digunakan yaitu dengan melewatkan cahaya pada gas...

8
IDENTIFIKASI JENIS GAS MENGGUNAKAN MONOKROMATOR KISI DIFRAKSI DAN JARINGAN SYARAF TIRUAN Sri Fitria Retnowaty [1] , Muhammad Rivai, Achmad Arifin, Program Studi Teknik Elektro, Program Pascasarjana ITS Kampus ITS, Sukolilo, Surabaya60111, Tel 0315947302, Telp. 085211266956 e-mail:[email protected] ABSTRAK Metode spektroskopi telah banyak digunakan untuk mengidentifikasi gas. Cara yang digunakan yaitu dengan melewatkan cahaya pada gas kemudian dilewatkan pada monokromator. Setiap gas akan menghasilkan pola spektrum yang berbeda.Spektrum yang dihasilkan direkam oleh detektor. Pada penelitian ini dibuat spektroskopi sederhana dengan menggunakan LED putih sebagai sumber cahaya dan kisi difraksi sebagai monokromator. Spektrum yang dihasilkan direkam menggunakan webcam kemudian diolah dengan menggunakan pengolahan citra digital. Citra spektrum warna yang telah didapatkan nilai grey ternormalisasinya dimasukkan kedalam jaringan syaraf tiruan. Sampel yang digunakan pada percobaan ini adalah uap air, uap bensin, uap etanol, dan uap beberapa jenis kopi. Proses identifikasi menggunakan Jaringan Syaraf Tiruan. Metode yang digunakan adalah backpropagation, dengan fungsi aktifasi sigmoid.Terdapat 2 hidden layer dengan jumlah node yang berbeda untuk masing masing sampel dengan monokromator yang berbeda. Untuk kisi 600 line /mm jumlah node layer pertama 100 dan node layer kedua 200 iterasi yang dilakukan sebanyak 4000 iterasi.Tingkat keberhasilan pengujian gas adalah 100%. Sedangkan untuk kisi 300 line/mm jumlah node layer pertama 110 dan node layer kedua 200 dengan iterasi sebanyak 10.000 iterasi. Tingkat keberhasilan pengujian gas adalah 100%. Lain halnya dengan pengujian identifikasi kopi yang berbeda merek, dengan node layer pertama 121 node layer kedua 200 dan jumlah iterasi 60.000 iterasi didapat keberhasilan 88,88% . Kata Kunci :Backpropagation, Jaringan Syaraf Tiruan, Kisi Difraksi, Monokromator. ABSTRACT Spectroscopic methods have been widely used to identify the gas. The method used is passing the light trougt the gas is then passing again to the monochromator. Each gas will produce a different spectrum patterns. Spectrum recorded by the detector. In this research maked simple spectroscopic by using white LEDs as a light source and a diffraction grating as a monochromator. The resulting spectrum was recorded using a webcam and then processed by digital image processing. Image color spectrumthat has been obtained by grey normalization value entered to artificial neural networks. The sample used in this experiment is water vapor, gasoline vapors, ethanol vapors, and steam severa types of coffee. The identification process using Artificial Neural Networks. The method used backpropagation, with sigmoid activation function .Learning system has 2 hidden layer with a different number of nodes for each sample with different monochromators. For the grating 600 line / mm first layer number of node 100 and the second layer 200 iterations are performed as 4000 iterations. The success of gas testing rate is 100% . As for the grating 300 line / mm first layer number of node 110 and the second layer 200 with

Upload: vuonghanh

Post on 11-Mar-2019

226 views

Category:

Documents


0 download

TRANSCRIPT

IDENTIFIKASI JENIS GAS MENGGUNAKAN MONOKROMATOR KISI DIFRAKSI DAN JARINGAN SYARAF TIRUAN

Sri Fitria Retnowaty[1], Muhammad Rivai, Achmad Arifin, Program Studi Teknik Elektro, Program Pascasarjana ITS

Kampus ITS, Sukolilo, Surabaya60111, Tel 0315947302, Telp. 085211266956 e-mail:[email protected]

ABSTRAK

Metode spektroskopi telah banyak digunakan untuk mengidentifikasi gas. Cara yang digunakan yaitu dengan melewatkan cahaya pada gas kemudian dilewatkan pada monokromator. Setiap gas akan menghasilkan pola spektrum yang berbeda.Spektrum yang dihasilkan direkam oleh detektor. Pada penelitian ini dibuat spektroskopi sederhana dengan menggunakan LED putih sebagai sumber cahaya dan kisi difraksi sebagai monokromator. Spektrum yang dihasilkan direkam menggunakan webcam kemudian diolah dengan menggunakan pengolahan citra digital. Citra spektrum warna yang telah didapatkan nilai grey ternormalisasinya dimasukkan kedalam jaringan syaraf tiruan. Sampel yang digunakan pada percobaan ini adalah uap air, uap bensin, uap etanol, dan uap beberapa jenis kopi.

Proses identifikasi menggunakan Jaringan Syaraf Tiruan. Metode yang digunakan adalah backpropagation, dengan fungsi aktifasi sigmoid.Terdapat 2 hidden layer dengan jumlah node yang berbeda untuk masing masing sampel dengan monokromator yang berbeda. Untuk kisi 600 line /mm jumlah node layer pertama 100 dan node layer kedua 200 iterasi yang dilakukan sebanyak 4000 iterasi.Tingkat keberhasilan pengujian gas adalah 100%. Sedangkan untuk kisi 300 line/mm jumlah node layer pertama 110 dan node layer kedua 200 dengan iterasi sebanyak 10.000 iterasi. Tingkat keberhasilan pengujian gas adalah 100%. Lain halnya dengan pengujian identifikasi kopi yang berbeda merek, dengan node layer pertama 121 node layer kedua 200 dan jumlah iterasi 60.000 iterasi didapat keberhasilan 88,88% . Kata Kunci :Backpropagation, Jaringan Syaraf Tiruan, Kisi Difraksi, Monokromator.

ABSTRACT

Spectroscopic methods have been widely used to identify the gas. The method used is passing the light trougt the gas is then passing again to the monochromator. Each gas will produce a different spectrum patterns. Spectrum recorded by the detector. In this research maked simple spectroscopic by using white LEDs as a light source and a diffraction grating as a monochromator. The resulting spectrum was recorded using a webcam and then processed by digital image processing. Image color spectrumthat has been obtained by grey normalization value entered to artificial neural networks. The sample used in this experiment is water vapor, gasoline vapors, ethanol vapors, and steam severa types of coffee.

The identification process using Artificial Neural Networks. The method used backpropagation, with sigmoid activation function .Learning system has 2 hidden layer with a different number of nodes for each sample with different monochromators. For the grating 600 line / mm first layer number of node 100 and the second layer 200 iterations are performed as 4000 iterations. The success of gas testing rate is 100% . As for the grating 300 line / mm first layer number of node 110 and the second layer 200 with

iterations of 10,000 iterations. The success rate is 100% . As with the identification of testing different coffee brands, with 121 number of node in first layer at second layer 200 number of node with iterations 60 000 iterations obtained 88.88% success. Key words :Backpropagation, Neuro Network artificial , Kisi Difraksi, Monokromator.

PENDAHULUAN

1.1. Latar Belakang.

Penelitian tentang analisa gas masih terus dikembangkan untuk berbagai kebutuhan,

kebutuhan lingkungan, kesehatan, industri, dll. Analisa yang biasa digunakan adalah

dengan cara kimiawi yaitu dengan menggunakan spektroskopi. Ada banyak macam

spektroskopi, selain sumbernya yang membedakannya juga adalah hasil yang dianalisa.

Dilihat dari sumbernya ada jenis spektroskopi ultraviolet, visible, infra red dll. Jika dilihat

dari hasil yang dianalisa ada jenis spektroskopi emisi ada juga spektroskopi absorbsi.

Konsep dasar dari spektroskopi adalah penguraian, yang menguraikan suatu berkas,

sinyal atau gelombang menjadi kumpulan sinyal, berkas atau gelombang penyusunnya.

Penguraian tersebut biasanya dengan menggunakan komponen optik, sehingga biasanya

disebut spektroskopi optik. Ada beberapa komponen optik yang biasa digunakan,

diantaranya adalah prisma dan kisi.

Ada banyak kegunaan spektroskopi, pada bidang kimia, biologi, astronomi,

lingkungan, dll. Berangkat dari kebutuhan ini banyak penelitian yang dilakukan untuk

merancang spektroskopi diantaranya yaitu penelitian yang dilakukan oleh Syaifudin[1] ,

ia merancang spektroskopi sederhana dengan menggunakan handycam yang

diaplikasikan untuk menguji cairan. Penelitian lain dilakukan oleh Hendri [2] yang

menyempurnakan penelitian yang dilakukan oleh Syaifudin, dengan cara mengganti

handycam yang harganya relatif mahal dengan webcam, selain itu, Hendri juga

mengganti sumber yang digunakan Syaifudin, Syaifudin menggunakan lampu tungsten

dan Hendri menggunakan LED. Spektroskopi yang telah dirancang oleh Hendri juga

diaplikasikan pada cairan. Untuk proses identifikasi keduanya menggunakan Jaringan

Syaraf Tiruan. Metodologi spektroskopi juga digunakan oleh Jatmiko endro[3] untuk

menentukan kualitas susu, Jatmiko menggunakan photodiode sebagai detektor, dan

jaringan syaraf tiruan untuk proses identifikasi. Dari penelitian yang telah dilakukan oleh

Syaifudin, Hendri, dan Jatmiko seluruhnya menerapkan metode spektroskopi untuk

mengidentifikasi cairan.

Pada penelitian kali ini dirancang sebuah peralatan spektroskopi absorbsi sederhana

yang akan diaplikasikan untuk identifikasi gas. Sumber yang digunakan adalah LED

putih, sedangkan pemisahnya adalah sebuah monokromator kisi difraksi. Pola yang

didapatkan dari kisi ini dideteksi oleh webcam dan kemudian akan dikarakterisasi dan

diklasifikasikan dengan menggunakan Jaringan syaraf tiruan.

Sample gas yang diuji pada penelitian ini adalah gas bensin, gas ethanol, gas air serta

beberapa merek kopi. Semua sampel dihasilkan dari cairan yang diuapkan dengan

menggunakan ultrasonic diffuser.

Metode Penelitian

Sistem kamera spektroskopi ini dirancang untuk menghasilkan citra spektrum absorbsi

dari gas yang diujikan. Kemudian citra spektrum absorbsi ini akan diproses dengan

komputer untuk dikenali jenisnya seperti terlihat pada Gambar 1. Cahaya yang datang

dari lampu LED Putih dilewatkan pada sebuah tabung gas yang terutup dengan akrilik

transparan. Gas dialirkan dari alat ultrasonic diffuser menuju ke tabung gas. Selama gas

dialirkan dari ultrasonic diffuser pompa penyedot yang berada di ujung tabung

dihidupkan untuk memastikan bahwa gas yang masuk ke tabung mengalir merata ke

seluruh tabung dan keluar melalui pipa penyedot. Setelah cahaya melewati tabung,

cahaya tersebut diteruskan ke kisi difraksi untuk diuraikan. Cahaya yang telah diuraikan

oleh kisi difraksi tersebut menghasilkan sebuah citra warna dan kemudian di fokuskan

oleh sebuah lensa cembung. Citra yang telah dihasilkan dan difokuskan kemuadian

diteruskan ke sebuah layar putih dan ditangkap oleh webcam untuk kemudian dikirim ke

komputer. Komputer akan mengolah citra berupa spektrum tersebut untuk kemudian

dapat di proses ke jaringan syaraf tiruan agar dapat diidentifikasi. Selama proses bekerja

pompa penyedot selalu dalam keadaan menyala sampai proses dilakukan selesai. Ini

dimaksudkan agar seluruh gas yang telah dialirkan ke dalam tabung seluruhnya keluar

dan tidak ada yang teringgal, sehingga tabung kembali pada posisi awal kembali.

Gambar 1. Diagram perangkat keras Ultrasonic diffuser

Tabung Gas

Sumber Cahaya

Pompa

Kisi

Lensa

Kamera

Layar

Perancangan Sistem Perangkat Lunak (Software)

Perancangan software dimulai dari pengambilan gambar dari kamera. Pengambilan gambar ini dimulai dengan perintah koneksi ke kamera, jika hasil spektrum yang didapat dianggap sesuai, maka dilanjutkan dengan perintah capture. Gambar yang telah di capture diolah terlebih dahulu. Proses pengolahan hasil capture terdiri dari crop gambar, setelah gambar dipotong, dicari posisi garis tengah pada spektrum, pada posisi inilah dihitung nilai histogramnya, yaitu nilai RGB dan nilai Graynya pada posisi tengah yang telah ditentukan tadi. Ini dialakukan dengan asumsi bahwa titik-titik yang berada pada garis tengah tersebut mewakili seluruh spektrum warna yang dihasilkan. Nilai RGB-Grey yang didapat hasilnya dikurangi dengan nilai RGB-Grey referensi. Nilai mutlak hasil pengurangan kemudian dinormalisasi, hasil normalisasi inilah yang kemudian menjadi masukan pada jaringan syaraf tiruan.

Hasil dan Analisa

Pada penelitian ini sumber cahaya yang digunakan adalah LED putih dan untuk

pendispersi digunakan kisi disperse 600 line/mm . Spektrum yang dihasilkan kemudian

ditangkap oleh kamera webcam yang juga berada di dalam ruang gelap. Hasil capture

kamera dilihat di komputer. Proses pengambilan gambar, capture gambar dan mengolah

gambar semua dilakukan dengan menggunakan Borland Delphi 7. Berikut adalah gambar

citra yang dihasilkan dari dari citra spektrum warna pada kondisi tabung kosong :

Gambar 4.6 Hasil Capture Citra Spektrum reverensi Kisi 600 line/mm

Citra ini kemudian nantinya akan dijadikan sebagai referensi.

4.5 Perhitungan Nilai RGB-Grey

Perhitungan nilai RGB dan Grey untuk setiap sampel dilakukan dengan cara

mengambil gambar dari kamera lalu capture. Hasil capture kemudian dilihat nilai RGB

dan Graynya. Setelah itu Nilai RGB dan Gray yang telah didapat dikurangi dengan nilai

RGB dan Gray referensi yang telah ditentukan sebelumnya. Hasil pengurangan kemudian

di normalisasi. Berikut adalah grafik hasil nilai grey yang telah di normalisasi untuk

setiap gas pada kisi 600 line/mm :

Untuk hasil pengujian sampel kisi dengan jumlah garis 600 line/mm didapatkan hasil

sebagai berikut:

Grafik 4.4 Nilai Gray ternormalisasi untuk Air

Grafik 4.5 Nilai Gray ternormalisasi untuk Bensin

Grafik 4.6 Nilai Gray ternormalisasi untuk Etanol

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1 12 23 34 45 56 67 78 89 100

111

greyN air1

GreyN air2

Grey N air3

Grey N air4

GreyN air5

GreyN air6

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1 14 27 40 53 66 79 92 105

118

greyN bensin1

GreyN bensin2

GreyN bensin3

GreyN bensin4

GreyN bensin5

GreyN bensin6

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1 14 27 40 53 66 79 92 105

118

greyN etanol1

greyN etanol2

GreyN etanol3

GreyN etanol4

GreyN etanol5

GreyN etanol6

Grafik 4.4, Grafik 4.5 dan Grafik 4.6 menunjukkan nilai grey ternormalisasi pada air,

bensin, dan etanol untuk kisi 600 line/mm. Perbedaan pola terlihat pada posisi difraksi ke-

34 sampai posisi ke-80. Untuk etanol dari grafik terlihat tidak menunjukkan konsistensi

pada setiap perngulangan pengambilan data baik pada kisi 300 line/mm maupun kisi 600

line/mm. Ini ditunjukkan dengansangat berfariasinya nilai intensitas pada posisi difraksi

yang sama. Ini disebabkan karena proses pengambilan gambar hanya berdasarkan metode

perkiraan user saja. Untuk gas etanol yang mudah menguap dan mudah berinteraksi

dengan udara maka sulit didapatkan kondisi yang sama pada setiap percobaan. Nilai grey

ternormalisasi yang didapat kemudian menjadi input pada jaringan syaraf tiruan.

4.7 Pengujian Neural network

Nilai-nilai gray yang ternormalisasi yang telah didapatkan pada proses

sebelumnya kemudian dijadikan nilai input pada jaringan syaraf tiruan untuk ditraining

agarselanjutnya dapat dilakukan proses identifikasi.

Beberapa tipe neural network telah dicoba untuk sistem identifikasi pada

percobaan kisi 600 line/mm dan topologi yang paling pas adalah menggunakan 2 hidden

layer, yang masing-masing layernya memiliki 100 nodelayer pertama dan 200 nodelayer

kedua. Sedangkan output layer terluarnya untuk sistem identifikasi gas memiliki 3 output.

Fungsi aktifasi yang digunakan adalah binary sigmoid fungtion. Hasil pengujian

menunjukkan bahwa untuk identifikasi jenis gas dibutuhkan iterasi sebanyak 4000 kali,

dengan nilai error sebesar 0,00268. Tahapan selanjutnya adalah melakukan uji

identifikasi untuk data yang tidak dikenali sebelumnya. Hasil yang didapat dapat

dilihat pada table 4.4 berikut ;

Tabel 4.4 Hasil Uji Identifikasi untuk kisi 600 line/mm

No Input o1 o2 o3 Identifikasi Status 1 data 1 0.10156275 0.33367561 7.29E-01 Bensin Benar 2 data 2 0.02455974 0.32021778 7.68E-01 Bensin Benar 3 data 3 0.04282377 0.39977759 6.08E-01 Bensin Benar 4 data 4 0.03617226 0.88985128 1.53E-01 Air Benar 5 data 5 0.09096322 0.68758436 1.94E-01 Air Benar 6 data 6 0.13264163 0.76349994 9.73E-02 Air Benar 7 data 7 0.72349666 0.19390253 4.10E-02 Etanol Benar 8 data 8 0.96853732 0.18629811 6.51E-02 Etanol Benar 9 data 9 0.7818895 0.03142043 6.17E-01 Etanol Benar

5. Kesimpulan

Dari seluruh percobaan yang telah dilakukan pada penelitian ini dapat

diambil kesimpulan bahwa:

1. Metode spektroskopi dengan LED Putih, monokromator kisi difraksi 600

line/mm dan jaringan syaraf tiruan dapat diaplikasikan untuk identifikasi

gas.

2. Topologi jaringan yang paling efektif untuk kisi 600 line/mm adalah

terdiri dari 2 hidden layer, dengan jumlah node pertama sebanyak 100

node, dan node yang kedua adalah 200 node serta 3 output. Iterasi

dilakukan sebanyak 4000 iterasi dan menghasilkan eror 0,002 mampu

melakukan identifikasi dengan prosentase keberhasilan 100%.

DAFTAR PUSTAKA

1. [1] Syaifudin, (2010), “Perancangan Vidio Spektroskopi Neural Network

Untuk Identifikasi Jenis Cairan “, Tesis, ITS-Surabaya.

2. [2] Hendri Septiyan M, (2011), “Identifikasi Cairan dengan metode

spektroskopi dan Neural Network, Tugas Akhir, ITS-Surabaya, Indonesia

3. [3] Jatmiko Endarko, dkk (2004), “Rancang Bangun Spektroskopi Cahaya

Tampak Untuk Penentuan Kualitas Susu Dengan Menggunakan Jaringan

Syaraf Tiruan”, Berkala Fisika Vol 7 No 2, Indonesia.

4. [4] Josep W. Goodman, (1996),”Introduction to Fourier Optic”

5. [5] Gabriella kisko, “Qualification of Volatile Oils Using near infrared

Spectroscopy and electronic Nose”

6. [6] Daniel Cozzolino, (2005), “ Combining Mass Spectrometry based

Electronic Nose, Visible Near infrared Spectroscopy and Chemometric to

Assess the Sensory Prtoperties of Australian Wine”, Australia.

7. [7] Michael J. Thrope, “ Cavity Enhanced Optical Frequency Comb

Spectroscopy; Aplication to Human Breath Analysis”, USA.

8. [8] Yuli Nurrachman,(2009) “Aplication Segmentation Using Color In

Figure C”, Indonesia

9. [9] Choirul anam, dkk (2007), Analisis Gugus Fungsi Pada Sampel Uji

Bensin Dan Spiritus Dengan Menggunakan Metode Spektroskopi FTIR,

Berkala Fisika Vol 10 no 1,Indonesia.

10. [10] Hanif al Fatta, (2007),“Konversi Format Citra RGB ke Format

Grayscale menggunakan Visual Basic”, Seminar Nasional Teknologi,ISSN

: 978-9777 Yogyakarta, Indonesia.

11. [11] BW Hapsari dkk,(2007), “Sistem Nanosfer Berbasis Ferofluida dan

Polylactic Acid dengan Metode Sonikasi”, Jurnal Sains Materi Indonesia

Vol11 No.2 ISSN : 1411-1098, Indonesia

12. [12] Yusnita Tanjung (2008), “Rancang Bangun Sistem Pendeteksi Jenis

Cairan Menggunakan Deret LED dan Metode Jaringan Syaraf Tiruan,

Proceding Seminar TA Tek. Elektro, ITS ,Surabaya,Indonesia.