artificial lift methods

60
GAS LIFT SUCKER ROD PUMP ELECTRIC SUBMERSIBLE PUMP OTHERS Artificial Lift Methods 1

Upload: purwanti-handayani

Post on 27-Oct-2015

116 views

Category:

Documents


14 download

DESCRIPTION

tpb

TRANSCRIPT

Page 1: Artificial Lift Methods

GAS LIFTSUCKER ROD PUMP

ELECTRIC SUBMERSIBLE PUMPOTHERS

Artificial Lift Methods

1

Page 2: Artificial Lift Methods

PENDAHULUAN (1)

Pwf

Pwh Psep

Pwf

PwhPsep

Pwf=Psep+dPf+dPt

Pwf<Psep+dPf+dPt

Flowing Well No - Flow Well

2

Page 3: Artificial Lift Methods

PENDAHULUAN (2)

Untuk mengangkat fluida sumur:

Menurunkan gradien aliran dalam tubing

Memberikan energy tambahan di dalam sumur untuk mendorong fluida sumur ke permukaan

Pwf

PwhPsep

No - Flow Well

Energy ?

3

Gradien ?

Page 4: Artificial Lift Methods

PENDAHULUAN (3)

Figure 1

Gas Lift Well ESP Well Sucker Rod Pump Well

4

Page 5: Artificial Lift Methods

PENDAHULUAN GAS LIFT (1)

5

Persamaan Umum Pressure Loss

Pengurangan gradien aliran dengan menurunkan densitas fluida

dZ

L

dZ

dv

g

v

g

g

dZ

dp w

cc

dg2

vf)

dL

dp(

c

2

f

Pwf

PwhPsep

Page 6: Artificial Lift Methods

PENDAHULUAN GAS LIFT (2)

Densitas Campuran

Gradient Elevasi Gradient Friksi

Gradient Akselerasi

?

?

6

vd

N Re

Page 7: Artificial Lift Methods

PENDAHULUAN GAS LIFT (3)

Pwf

PwhPsepPwf<Psep+dPf+dPt

7

Pwf>Psep+(dPf+dPt)

Berkurang

Page 8: Artificial Lift Methods

GAS LIFT (1)

8

Gas lift technology increases oil production rate by injection of compressed gas into the lower section of tubing through the casing–tubing annulus and an orifice installed in the tubing string.

Upon entering the tubing, the compressed gas affects liquid flow in two ways:

(a) the energy of expansion propels (pushes) the oil to the surface and

(b) the gas aerates the oil so that the effective density of the fluid is less and, thus, easier to get to the surface.

Page 9: Artificial Lift Methods

9

SURFACE COMPONENTS

SUB-SURFACE COMPONENTS

RESERVOIR COMPONENTS

Page 10: Artificial Lift Methods

10

Page 11: Artificial Lift Methods

Detail Gas Lift Surface Operation

11

InjectedGas

Res. Fluid +Inj. Gas

Page 12: Artificial Lift Methods

12

Sistem Sumur Gas Lift

Gas Injection Line

Pt

Pc

Compressor Subsystem• intake system• outlet system• choke • pressure gauge• injection rate metering

Flow Line

Separator

Wellhead Subsystem :• Production subsystem

• wellhead• production choke• pressure gauge

• Injection subsystem• injection choke

ValveSubsystem

Wellbore Subsystem:• perforation interval• tubing shoe• packer

Separator Subsystem:• separator• manifold• pressure gauges• flow metering

Unloading Gas Lift Mandrells

Gas Injection Valve

Page 13: Artificial Lift Methods

13

Compressor Sub-System

DPgas

Compressor

Wellhead

Separator

Pintake Pdischarge

Horse PowerCompressor

Pinjection@wellhead

Pinjection@wellhead=Pdischarge - DP

QgasQgas

Wellhead

Page 14: Artificial Lift Methods

14

Wellhead Sub-System

ProductionChoke

InjectionChoke

Surface InjectionPressure

WellheadPressure

Gas Injection

Production Fluid

Page 15: Artificial Lift Methods

15

Gas Lift Valve Sub-System

Pt

Pc

Pc

Pt

GasInjeksi

FluidaProduksi

Pc = Pt

Page 16: Artificial Lift Methods

16

Gas Lift Valve

GasInjection

TubingPressure

Close condition Open condition

Page 17: Artificial Lift Methods

Kriteria Operasi Sumur Gas Lift

17

There are four categories of wells in which a gas lift can be considered:

High productivity index (PI), high bottom-hole pressure wells

High PI, low bottom-hole pressure wells

Low PI, high bottom-hole pressure wells

Low PI, low bottom-hole pressure wells

• Wells having a PI of 0.50 or less are classified as low productivity wells.

• Wells having a PI greater than 0.50 are classified as high productivity wells.

• High bottom-hole pressures will support a fluid column equal to 70% of the well depth.

• Low bottom-hole pressures will support a fluid column less than 40% of the well depth.

Page 18: Artificial Lift Methods

Continuous Gas Lift Intermittent Gas Lift

• A continuous gas lift operation is a steady-state flow of the aerated fluid from the bottom (or near bottom) of the well to the surface.

• Continuous gas lift method is used in wells with a high PI (0:5 stb=day=psi) and a reasonably high reservoir pressure relative to well depth.

• Intermittent gas lift operation is characterized by a start-and-stop flow from the bottom (or near bottom) of the well to the surface. This is unsteady state flow.

• Intermittent gas lift method is suitable to wells with (1) high PI and low reservoir pressure or (2) low PI and low reservoir pressure.

18

2 Types of Gas Lift Operation

Page 19: Artificial Lift Methods

Materi Perencanaan Sumur Gas Lift

19

This chapter covers basic system engineering design fundamentals for gas lift operations. Relevant topics include the following:

1. Liquid flow analysis for evaluation of gas lift potential2. Gas flow analysis for determination of lift gas compression

requirements3. Unloading process analysis for spacing subsurface valves4. Valve characteristics analysis for subsurface valve selection5. Installation design for continuous and intermittent lift

systems.

Page 20: Artificial Lift Methods

Evaluation of Gas Lift Potential

20

Evaluation of gas lift potential requires system analyses to determine well operating points for various lift gas availabilities.

The principle is based on the fact that there is only one pressure at a given point (node) in any system; no matter, the pressure is estimated based on the information from upstream (inflow) or downstream (outflow).

The node of analysis is usually chosen to be the gas injection point inside the tubing, although bottom hole is often used as a solution node.

Page 21: Artificial Lift Methods

Gas Injection Rates

21

Four gas injection rates are significant in the operation of gas lift installations:

1. Injection rates of gas that result in no liquid (oil or water) flow up the tubing. The gas amount is insufficient to lift the liquid. If the gas enters the tubing at an extremely low rate, it will rise to the surface in small semi-spheres (bubbly flow).

2. Injection rates of maximum efficiency where a minimum volume of gas is required to lift a given amount of liquid.

3. Injection rate for maximum liquid flow rate at the ‘‘optimum GLR.’’4. Injection rate of no liquid flow because of excessive gas injection.

This occurs when the friction (pipe) produced by the gas prevents liquid from entering the tubing

Page 22: Artificial Lift Methods

THE GAS IS INJECTED CONTINUOUSLY TO ANNULUS

22

CONTINUOUS GAS LIFT

Page 23: Artificial Lift Methods

Continuous Gas Lift Operation

23

The tubing is filled with reservoir fluid below the injection point and with the mixture of reservoir fluid and injected gas above the injection point. The pressure relationship is shown in Fig. 13.4.

Page 24: Artificial Lift Methods

Gas Lift OperationPressure vs Depth

24

Page 25: Artificial Lift Methods

Parameter Design

25

• Jumlah gas injeksi yang tersedia• Jumlah gas injeksi yang dibutuhkan• Tekanan Gas Injeksi yang dibutuhkan di setiap

sumur• Tekanan Kompresor yang dibutuhkan

Page 26: Artificial Lift Methods

GAS LIFT PERFORMANCE CURVE

26

GAS INJEKSI YANG DIPERLUKAN

Page 27: Artificial Lift Methods

Unlimited amount of liftgas Limited amount of gas

• In a field-scale valuation, if an unlimited amount of lift gas is available for a given gas lift project, the injection rate of gas to individual wells should be optimized to maximize oil production of each well.

• If only a limited amount of gas is available for the gas lift, the gas should be distributed to individual wells based on predicted well lifting performance, that is, the wells that will produce oil at higher rates at a given amount of lift gas are preferably chosen to receive more lift gas.

27

Availability amount of Gas Injection

Page 28: Artificial Lift Methods

Kebutuhan Gas Injeksi (1)

28

• Nodal Analysis:– IPR Curve– Tubing Performance

Curve– GLR formasi

• Variasi GLR– GLR-total (assume)– Qg-inj = Qtotal – Qq-f

• Plot Qg-inj vs Qliquid

0

500

1000

1500

2000

2500

0 200 400 600 800 1000

Laju Produksi, stb/d

Tek

anan

Alir

Das

ar S

umu

r, p

si

IPR

200 scf/stb

400 scf/stb

600 scf/stb

800 scf/stb

1000 scf/stb

1200 scf/stb

Page 29: Artificial Lift Methods

Kebutuhan Gas Injeksi (2)

29

• Qg-inj >> maka Qliq >>

• Pertambahan Qliq makin kecil dengan makin meningkatnya Qg-inj

• Sampai suatu saat dengan pertambahan Qg-inj, Qliq berkurang

• Titik puncak dimana Qliq maksimum disebut sebagai Qoptimum

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400

Perbandingan Gas-Cairan, scf/stb

Laj

u P

rodu

ksi,

stb

Page 30: Artificial Lift Methods

Unlimited Gas Injection Case

30

If an unlimited amount of gas lift gas is available for a well, the well should receive a lift gas injection rate that yields the optimum GLR in the tubing so that the flowing bottom-hole pressure is minimized, and thus, oil production is maximized.

The optimum GLR is liquid flow rate dependent and can be found from traditional gradient curves such as those generated by Gilbert (Gilbert, 1954).

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400

Perbandingan Gas-Cairan, scf/stb

Laj

u P

rodu

ksi,

stb

Page 31: Artificial Lift Methods

Unlimited Gas Injection Case

31

• After the system analysis is completed with the optimum GLRs in the tubing above the injection point, the expected liquid production rate (well potential) is known.

• The required injection GLR to the well can be calculated by

Page 32: Artificial Lift Methods

Limited amount of gas injection

32

• If a limited amount of gas lift gas is available for a well, the well potential should be estimated based on GLR expressed as

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400

Perbandingan Gas-Cairan, scf/stb

Laj

u P

rodu

ksi,

stb

Page 33: Artificial Lift Methods

Gas Flow Rate Requirement

33

• The total gas flow rate of the compression station should be designed on the basis of gas lift at peak operating condition for all the wells with a safety factor for system leak consideration, that is,

whereqg = total output gas flow rate of the compression station, scf/daySf = safety factor, 1.05 or higherNw = number of wells

Page 34: Artificial Lift Methods

34

POINT OF INJECTION

Page 35: Artificial Lift Methods

Output Gas Pressure Requirement (1)

35

Kickoff of a dead well (non-natural flowing) requires much higher compressor output pressures than the ultimate goal of steady production (either by continuous gas lift or by intermittent gas lift operations).Mobil compressor trailers are used for the kickoff operations.

Page 36: Artificial Lift Methods

Output Gas Pressure Requirement (2)

36

• The output pressure of the compression station should be designed on the basis of the gas distribution pressure under normal flow conditions, not the kickoff conditions. It can be expressed as

L

fout P

SP

DPgas

Compressor

Wellhead

Separator

Pintake Pdischarge

Horse PowerCompressor

Pinjection@wellhead

Pinjection@wellhead=Pdischarge - DP

QgasQgas

Wellhead

Page 37: Artificial Lift Methods

COMPRESSOR

37

Page 38: Artificial Lift Methods

Output Gas Pressure Requirement (3)

38

• The injection pressure at valve depth in the casing side can be expressed as:

• It is a common practice to use Dpv = 100 psi. The required size of the orifice can be determined using the choke-flow equations presented in Subsection 13.4.2.3

vvtvc PPP ,,

Pt

Pc

Pc

Pt

GasInjeksi

FluidaProduksi

Pc = Pt

Page 39: Artificial Lift Methods

Tekanan Tubing @ Valve Gas Lift

39

Pwf

Dp @ tubing

Page 40: Artificial Lift Methods

Output Gas Pressure Requirement (4)

40

• Accurate determination of the surface injection pressure pc,s requires rigorous methods such as the Cullender and Smith method (Katz et al., 1959).

• However, because of the large cross-sectional area of the annular space, the frictional pressure losses are often negligible.

• Then the average temperature and compressibility factor model degenerates to (Economides et al., 1994)

ProductionChoke

InjectionChoke

Surface InjectionPressure

WellheadPressure

Gas Injection

Production Fluid

Page 41: Artificial Lift Methods

Up-Stream Choke / Injection Choke

41

• The pressure upstream of the injection choke depends on flow condition at the choke, that is, sonic or subsonic flow.

• Whether a sonic flow exists depends on a downstream-toupstream pressure ratio. If this pressure ratio is less than a critical pressure ratio, sonic (critical) flow exists.

• If this pressure ratio is greater than or equal to the critical pressure ratio, subsonic (subcritical) flow exists. The critical pressure ratio through chokes is expressed as

ProductionChoke

InjectionChoke

Surface InjectionPressure

WellheadPressure

Gas Injection

Production Fluid

Page 42: Artificial Lift Methods

Gas Lift Injection Parameters

42

Compressor Pressure

Pwf

Page 43: Artificial Lift Methods

Point of Injection

43

vvfvc PPP ,

Page 44: Artificial Lift Methods

Point of Balanced

44

vvfvc PPP ,

Page 45: Artificial Lift Methods

Unloading ProcessGas Lift Wells

45

UNLOADING VALVES DESIGN

Page 46: Artificial Lift Methods

Persiapan Operasi Sumur Gas Lift

46

Page 47: Artificial Lift Methods

47

• Katup Unloading sudah dipasang.

• Sumur masih diisi killing fluid

• Fluida produksi masih belum mengalir ke dalam tubing

Valve 1 : Terbuka

Valve 2 : Terbuka

Valve 3 : Terbuka

Valve 4 : Terbuka

PermukaanKilling fluid

No flowChokeTutup

TAHAP O

Page 48: Artificial Lift Methods

48

Tahap I

• Pada Gambar 1 ditunjukkan penampang sumur yang siap dilakukan proses pengosongan (unloading). Pada tubing telah dipasang empat katup, yang terdiri dari 3 katup, yaitu katup (1), (2) dan (3), yang akan berfungsi sebagai katup unloading. Sedangkan katup (4) akan berfungsi sebagai katup operasi. Sebelum dilakukan injeksi semua katup dalam keadaan terbuka.

• Sumur berisi cairan work-over, ditunjukkan dengan warna biru, dan puncak cairan berada diatas katup unloading (1).

• Gas mulai diinjeksikan, maka gas akan menekan permukaan cairan work over kebawah, dan penurunan permukaan cairan ini akan mencapai katup unloading (1). Pada saat ini gas akan mengalir dalam tubing melalui katup (1) yang terbuka.

Valve 1 : Terbuka

Valve 2 : Terbuka

Valve 3 : Terbuka

Valve 4 : Terbuka

PermukaanKilling fluid

No flow

Page 49: Artificial Lift Methods

49

Tahap II

• Pada Gambar 2 gas injeksi mendorong permukaan cairan work-over, dan telah me-lampaui katup unloading (1) dan mencapai katup unloading (2). Pada saat ini katup unloading (1) tertutup dan gas injeksi mendorong permukaan cairan kebawah.

• Bagian bawah tubing yang semula berisi cairan work-over ditempati oleh fluida for-masi.

• Pada saat ini gas akan masuk kedalam tubing, melalui katup unloading (2) yang terbuka. Dengan masuknya gas injeksi tersebut kedalam tubing maka kolom cairan dalam tubing akan lebih ringan dan aliran cairan work over ke permukaan akan berlanjut.

Valve 2 : Terbuka

Valve 3 : Terbuka

Valve 4 : Terbuka

Valve 1 : Tertutup

PermukaanKilling fluid

PermukaanFluida Res.

Page 50: Artificial Lift Methods

50

Tahap III

• Pada Gambar 3 gas injeksi mendorong permukaan cairan work-over, sampai me-lampaui katup unloading (1), (2) dan (3). Setiap saat permukaan kolom cairan work-over mencapai katup unloading, maka gas injeksi akan mengalir masuk kedalam tubing dan aliran cairan work-over dalam tubing akan tetap berlangsung. Jika per-mukaan kolom cairan work-over mencapai katup unlaoding (3), maka katup unloading (2) akan tertutup, dan gas injeksi akan masuk melalui katup unloading (3).

• Selama ini pula permukaan cairan formasi akan bergerak ke permukaan. Pada saat cairan work-over mencapai katup terakhir, yaitu katup operasi (4), maka katup unloading (3) akan tertutup dan seluruh cairan work-over telah terangkat semua ke permukaan, dan hanya katup operasi yang terbuka.

PermukaanKilling fluid

PermukaanFluida Res.

Valve 1 : Tertutup

Valve 2 : Tertutup

Valve 3 : Tertutup

Valve 4 : Terbuka

Page 51: Artificial Lift Methods

TAHAP IV

51

• Pada Gambar 4 ditunjukkan bahwa semua cairan work-over telah terangkat dan sumur berproduksi secara sembur buatan.

• Katup operasi (4) akan tetap terbuka, sebagai jalan masuk gas injeksi kedalam tubing. Katup ini diharapkan dapat bekerja dalam waktu yang lama. Dimasa mendatang akan terjadi perubahan perbandingan gas-cairan dari formasi, yang cenderung menurun serta peningkatan produksi air, maka jumlah gas injeksi dapat ditingkatkan dan diharapkan katup injeksi dapat menampung peningkatan laju injeksi gas tersebut. Dengan demikian pemilihan ukuran katup injeksi perlu direncanakan dengan baik.

FluidaProduksi

Valve 1 : Tertutup

Valve 2 : Tertutup

Valve 3 : Tertutup

Valve 4 : Terbuka

Page 52: Artificial Lift Methods

52

Page 53: Artificial Lift Methods

gas lift Valve

gas lift Valve Mechanics

53

UNLOADING VALVES DESIGN

Page 54: Artificial Lift Methods

Gas Lift Valve

54

Page 55: Artificial Lift Methods

Gas Lift Valve

55

Page 56: Artificial Lift Methods

56

Contoh Penampang Sumur Gas Lift

}Gas Lift MandrellGas Lift Valves

Gas Lift Valves:• Mandrell + Dummy Valves• Mandrell + Valves

Valves Operating Conditions:• Casing pressure• Test Rack Opening Pressure• Port Size• Temperature @ Lab.• Jenis Valves

Page 57: Artificial Lift Methods

Gas Lift Valve

57

Pt

Pc

Pc

Pt

GasInjeksi

FluidaProduksi

Pc = Pt

Page 58: Artificial Lift Methods

Penampang Gas Lift Valve

58

Page 59: Artificial Lift Methods

Jenis Gas Lift Valves

59

Page 60: Artificial Lift Methods

Gas Lift Valve

60

GasInjection

TubingPressure

Close condition Open condition