analisis genetik dan molekuler adaptasi kedelai terhadap ... · perguruan tinggi manapun. ... amino...

173
ANALISIS GENETIK DAN MOLEKULER ADAPTASI KEDELAI TERHADAP INTENSITAS CAHAYA RENDAH BERDASARKAN KARAKTER MORFO-FISIOLOGI DAUN KISMAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2007

Upload: dangkiet

Post on 21-Mar-2019

235 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

ANALISIS GENETIK DAN MOLEKULER ADAPTASI KEDELAI TERHADAP INTENSITAS CAHAYA

RENDAH BERDASARKAN KARAKTER MORFO-FISIOLOGI DAUN

KISMAN

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR

BOGOR 2007

Page 2: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

PERNYATAAN MENGENAI DISERTASI DAN SUMBER INFORMASI

Dengan ini saya menyatakan bahwa disertasi “Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap Intensitas Cahaya Rendah berdasarkan Karakter Morfo-fisiologi Daun” adalah karya saya sendiri dengan arahan Komisi Pembimbing dan belum diajukan dalam bentuk apapun kepada Perguruan Tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir disertasi ini.

Bogor, Juli 2007

Kisman NIM A361030061

Page 3: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

ABSTRACT

KISMAN. Genetic and Molecular Analyses of Soybean Adaptation to Low Light Intensity based on Leaf Morpho-physiological Characters. Supervised by DIDY SOPANDIE, SOBIR, TRIKOESOEMANINGTYAS, and NURUL KHUMAIDA

In order to increase soybean production in Indonesia, developing soybean as intercrop under estate crops or agroforestry systems are required. The main problem, however, is low light intensity due to neighbour shade. Therefore, low light intensity tolerance genotypes or varieties of soybean are needed. Development of new low light intensity tolerance varieties of soybean, however, is still very slow. The reason is that very little understanding on the comprehensive mechanism of soybean tolerance to low light intensity condition in such of the aspect of morpho-physiology, genetics, and molecular. The main objective of this study was to obtain the comprehensive knowledge on the mechanism of adaptation through morpho-physiological, genetic and molecular approaches to strengthen the breeding efforts in developing new low light intensity tolerance variety of soybean.

This study was comprised in four topics of research. (1) Response of leaf morpho-physiological characters, conducted using two tolerant genotypes (Ceneng, Pangrango) and two sensitive genotypes (Godek, Slamet) under various treatments of light intensity. (2) Genetic analysis of adaptation of soybean to low light intensity based on leaf morpho-physiological characters, conducted using tolerant genotype of Ceneng and sensitive genotype of Godek under 50% shade. (3) Analysis of full length sequence of low light intensity adaptation related genes (JJ3), conducted using bioinformatics tools. (4) Analysis of gene expression of the low light intensity adaptation related genes, carried out using the method of RT-PCR to the tolerant genotype of Ceneng and sensitive genotype of Godek under various treatments of light intensity.

The results of this study revealed that: leaf morpho-physiological characters (leaf area, specific leaf weight, chlorophyll content) were highly correlated to adaptation of soybean to low light intensity. The character of leaf area might be used as selection criterion for improvement of adaptation of soybean to low light intensity since additively heritable, high broad sense heritability, and highly positive correlated to yield. Full length sequence of JJ3 with the size of 841 bp on nucleotides homologue to gene psaD photosystem I (PSI) subunit. The genes of JJ3, CAB, phyB, and ATHB-2 could not be used for DNA genome marker because they were expressed in both shade tolerance and sensitive genotypes of soybean. Increase of leaf area to efficiently light capture was assumed to be controlled and related to the genes corresponding with phyB. The character of chlorophyll content is not appropriate marker for selection of soybean lines since the genes controlling the character were isoepistatic mode of action. The character, however, could be used to screen the tolerant or sensitive genotypes for parental candidates. Keywords: soybean, low light intensity, genetic analyses, molecular analyses,

morphological characters, physiological characters

Page 4: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

RINGKASAN KISMAN. Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap Intensitas Cahaya Rendah berdasarkan Karakter Morfo-fisiologi Daun. Dibimbing oleh DIDY SOPANDIE, SOBIR, TRIKOESOEMANINGTYAS, dan NURUL KHUMAIDA

Pengembangan kedelai sebagai tanaman sela di bawah tegakan tanaman perkebunan, lingkungan agroforestri, atau tumpang sari dengan tanaman pangan lain merupakan alternatif andalan untuk meningkatkan produksi kedelai nasional yang masih sangat rendah. Kendala utama pengembangan kedelai sebagai tanaman sela adalah intensitas cahaya rendah akibat naungan. Untuk itu diperlukan genotipe atau varietas baru kedelai yang toleran terhadap intensitas cahaya rendah. Sejauh ini upaya pemuliaan untuk mendapatkan genotipe atau varietas baru toleran intensitas cahaya rendah masih belum berkembang dengan baik karena belum tersedianya informasi lengkap mekanisme adaptasi di bidang morfo-fisiologi, genetik, dan molekuler bagi perakitan varietas toleran naungan. Untuk mendukung upaya perakitan varietas kedelai toleran intensitas cahaya rendah, diperlukan pengetahuan komprehensif tentang mekanisme adaptasi kedelai terhadap intensitas cahaya rendah baik dari aspek morfo-fisiologi, genetika dan molekuler.

Penelitian ini secara umum bertujuan untuk memperoleh pengetahuan dan pemahaman komprehensif tentang mekanisme adaptasi kedelai terhadap cekaman intensitas cahaya rendah melalui pendekatan morfo-fisiologi, genetik dan molekuler yang dibutuhkan bagi perakitan varietas untuk adaptasi kedelai terhadap intensitas cahaya rendah. Secara khusus, penelitian ini bertujuan untuk: (i) memperoleh karakter morfo-fisiologi daun sebagai penciri adaptasi kedelai terhadap intensitas cahaya rendah, (ii) melakukan pendugaan parameter genetik adaptasi kedelai terhadap intensitas cahaya rendah berdasarkan morfo-fisiologi daun, (iii) melakukan karakterisasi sekuen lengkap, gen yang terkait dengan adaptasi kedelai terhadap intensitas cahaya rendah (JJ3), dan (iv) memperoleh informasi pola ekspresi gen-gen yang terkait adaptasi kedelai terhadap intensitas cahaya rendah (JJ3, CAB, phyB, dan ATHB)

Penelitian dilakukan dalam empat percobaan: (1) respon karakter morfo-fisiologi daun, penciri adaptasi kedelai terhadap intensitas cahaya rendah, (2) analisis genetik adaptasi kedelai terhadap intensitas cahaya rendah berdasarkan morfo-fisiologi daun, (3) analisis sekuen lengkap gen-gen yang terkait adaptasi kedelai terhadap intensitas cahaya rendah (JJ3), dan (4) analisis ekspresi gen-gen yang terkait adaptasi kedelai terhadap intensitas cahaya rendah.

Percobaan respon morfo-fisiologi daun dilakukan dengan rancangan petak terpisah, tiga ulangan. Perlakuan terdiri atas faktor genotipe dan intensitas cahaya rendah. Faktor genotipe terdiri atas dua genotipe toleran (Ceneng, Pangrango) dan dua genotipe peka (Godek, Slamet). Faktor intensitas cahaya rendah terdiri atas: L0 = cahaya 100% (kontrol), L1 = 5 hari naungan 50% (setelah tanaman berumur 21 HST), L2 = 5 hari gelap total (setelah tanaman berumur 21 HST), L3 = 3 hari naungan 50% + 5 hari cahaya 100% (setelah tanaman berumur 18 HST), dan L4 = 3 hari naungan 50% + 3 hari cahaya 100% + 5 hari gelap total (setelah tanaman berumur 15 HST). Karakter morfo-fisiologi daun yang menjadi penciri adaptasi

Page 5: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

kedelai terhadap intensitas cahaya rendah dilanjutkan dengan analisis genetik menggunakan tetua toleran Ceneng, tetua peka Godek, populasi F1 persilangan Ceneng x Godek, dan populasi F2 hasil selfing F1. Populasi tersebut ditanam di bawah paranet 50% dan disusun dengan rancangan acak kelompok dengan 2 ulangan. Analisis genetik karakter morfo-fisiologi daun, penciri adaptasi kedelai terhadap intensitas cahaya rendah meliputi: pendugaan koefisien korelasi, heritabilitas arti luas, jumlah gen (effective factor), dan aksi gen. Analisis molekuler untuk analisis sekuen lengkap gen terkait adaptasi kedelai terhadap intensitas cahaya rendah dilakukan menggunakan jasa bioinformatika, sedangkan analisis ekspresi JJ3, CAB, phyB, dan ATHB yang terkait adaptasi kedelai terhadap intensitas cahaya rendah dilakukan menggunakan metode RT-PCR terhadap genotipe toleran Ceneng dan genotipe peka Godek yang diberikan beberapa perlakuan intensitas cahaya: cahaya penuh (kontrol), lima hari naungan menggunakan paranet 50%, dan lima hari gelap total.

Analisis respon morfo-fisiologi daun menunjukkan bahwa kedelai toleran naungan memiliki daun lebih luas dan lebih tipis dibanding kedelai peka naungan pada kondisi intensitas cahaya rendah. Pada kondisi intensitas cahaya rendah, kedelai toleran naungan memiliki kandungan klorofil lebih tinggi dan rasio klorofil a/b lebih rendah dibanding genotipe peka. Karakter morfo-fisiologi daun (luas daun, bobot daun spesifik, kandungan klorofil, rasio klorofil a/b) dapat dijadikan sebagai penciri adaptasi kedelai terhadap intensitas cahaya rendah.

Analisis genetik adaptasi kedelai terhadap intensitas cahaya rendah berdasarkan morfo-fisiologi daun menunjukkan bahwa: adaptasi kedelai terhadap intensitas cahaya rendah terkait erat dengan karakter morfo-fisiologi daun seperti luas daun, bobot daun spesifik, dan kandungan klorofil. Karakter hasil dikendalikan sekurang-kurangnya 6 gen minor, aksi gen dominan parsial, dan nilai heritabilitas arti luas (h2

bs) tinggi (68%). Karakter luas daun dan bobot daun spesifik masing-masing dikendalikan sekurang-kurangnya 4 dan 5 gen minor, aksi gen aditif, dan nilai heritabilitas arti luas (h2

bs) tinggi dan sedang (63%, 48%). Adaptasi berdasarkan karakter klorofil a, klorofil b, dan klorofil total masing-masing dikendalikan 2 gen mayor, aksi gen isoepistasis, dan nilai heritabilitas arti luas (h2

bs) tinggi (78%, 84%, 86%). Adaptasi berdasarkan karakter rasio klorofil a/b dikendalikan 2 gen mayor, aksi gen dominan dan resesif epistasis, dan nilai heritabilitas arti luas (h2

bs) tinggi (70%). Analisis sekuen lengkap gen yang terkait adaptasi kedelai terhadap

intensitas cahaya rendah (JJ3) menunjukkan bahwa: sekuen lengkap cDNA JJ3 memiliki coding sequence (CDS) dengan panjang 633 bp yang menghasilkan 210 asam amino, memiliki 136 asam amino spesifik dan terkonservasi mulai dari asam amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, fungsinya terkait dengan transport elektron fotosintesis pada pusat reaksi fotosistem I. cDNA JJ3 yang diperoleh pada tanaman kedelai mempunyai fungsi yang sama dengan gen psaD yang terdapat pada tanaman tembakau kayu (Nicotiana sylvestris), padi (Oryza sativa), tomat (Lycopersicon esculentum), barley (Hordeum vulgare), bayam (Spinacia oleracea), Arabidopsis (Arabidopsis thaliana), dan kentang (Solanum tuberosum). Sekuen lengkap cDNA JJ3 telah terdaftar pada public database di GenBank dengan nama gmpsaD dengan nomor aksesi EF628505.

Page 6: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

Analisis ekspresi gen-gen yang terkait adaptasi kedelai terhadap intensitas cahaya rendah menunjukkan bahwa: pada kedelai toleran naungan, ekspresi JJ3, phyB, dan ATHB-2 dapat dideteksi pada kondisi intensitas cahaya rendah, akan tetapi pada genotipe peka naungan kurang terdeteksi bahkan ada yang tidak terdeteksi. Pada kedelai toleran naungan, gen CAB-3 terekspresi cukup kuat pada kondisi naungan 50%, akan tetapi pada kedelai peka naungan terekspresi lemah. Pola ekspresi JJ3, CAB-3, phyB, dan ATHB-2 terutama pada kedelai toleran dapat menjelaskan secara molekuler mekanisme penghindaran (avoidance) dan toleransi (tolerance) adaptasi kedelai terhadap intensitas cahaya rendah. Pada kondisi naungan 50%, ekspresi gen CAB-3 dan phyB berpotensi dijadikan sebagai marka untuk skrining kedelai toleran naungan.

Secara umum hasil penelitian ini menunjukkan bahwa karakter morfo-fisiologi daun (luas daun, bobot daun spesifik, kandungan klorofil) terkait erat dengan adaptasi kedelai terhadap intensitas cahaya rendah. Karakter luas daun dapat dijadikan sebagai kriteria seleksi dalam pengembangan kedelai toleran naungan karena secara genetik karakter tersebut dikendalikan oleh gen dengan aksi aditif, mempunyai nilai heritabilitas arti luas yang tinggi, dan berkorelasi tinggi dengan hasil. Sekuen lengkap cDNA JJ3 yang memiliki panjang 841 basa nukleotida homolog dengan gen psaD fotosistem I (PSI) subunit. JJ3, CAB-3, phyB, dan ATHB-2 terekspresi pada genotipe toleran maupun genotipe peka naungan, sehingga gen-gen tersebut pada tingkat DNA genom tidak dapat dijadikan sebagai marka untuk membedakan genotipe toleran dan genotipe peka. Peningkatan luas daun untuk penangkapan cahaya yang efisien merupakan bentuk mekanisme avoidance yang diduga terkait dengan peningkatan ekspresi gen-gen yang berhubungan dengan fitokrom-B (phyB). Karakter kandungan klorofil tidak efektif dijadikan sebagai marka untuk seleksi galur karena gen-gen yang mengendalikannya bersifat isoepistasis, akan tetapi karakter tersebut dapat digunakan untuk skrining genotipe toleran atau peka untuk calon tetua.

Dari hasil penelitian ini dapat disarankan bahwa kedelai Ceneng dapat dianjurkan dalam pengembangan kedelai sebagai tanaman sela di bawah tegakan perkebunan atau hutan tanaman industri (HTI) yang masih berumur 2-3 tahun, atau tumpangsari dengan tanaman pangan semusim yang berpotensi menaungi. Dalam perbaikan adaptasi kedelai terhadap intensitas cahaya rendah, karakter luas daun dapat dijadikan sebagai salah satu kriteria seleksi. Seleksi menggunakan marka molekuler atau MAS sebaiknya dikembangkan dari gen-gen yang terkait dengan penangkapan cahaya melalui teknik CAPS (cleavage amplified polymorphic sequence) atau SCAR (sequence characterized amplified region). Diperlukan analisis kandungan gibberellin dan aspek molekulernya untuk dapat lebih memahami mekanisme adaptasi kedelai terhadap intensitas cahaya rendah. Selain itu diperlukan analisis molekuler gen-gen penting lain seperti CAO yang mengubah klorofil a menjadi klorofil b yang berperan dalam mekanisme adaptasi kedelai terhadap intensitas cahaya rendah. Diperlukan juga pengamatan terhadap kemungkinan perubahan kualitas cahaya di bawah paranet maupun di sekitar kanopi tanaman kedelai.

Kata kunci: kedelai, adaptasi, intensitas cahaya rendah, analisis genetik, analisis

molekuler, karakter morfo-fisiologi

Page 7: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

© Hak cipta milik Institut Pertanian Bogor, tahun 2007 Hak cipta dilindungi

Dilarang mengutip dan memperbanyak tanpa izin tertulis dari Institut Pertanian Bogor, sebagian atau seluruhnya dalam

bentuk apapun, baik cetak, fotokopi, mikrofilm, dan sebagainya

Page 8: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

ANALISIS GENETIK DAN MOLEKULER ADAPTASI KEDELAI TERHADAP INTENSITAS CAHAYA

RENDAH BERDASARKAN KARAKTER MORFO-FISIOLOGI DAUN

KISMAN

Disertasi sebagai salah satu syarat untuk memperoleh gelar

Doktor pada Program Studi Agronomi

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR

BOGOR 2007

Page 9: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

Penguji pada Ujian Tertutup: Dr. Ir. Utut Widyastuti S, M.Si Penguji pada Ujian Terbuka: 1. Dr. Ir. Sriani Sujiprihati, M.S 2. Dr. Ir. Novianti Sunarlim

Page 10: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

Judul Disertasi : Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap Intensitas Cahaya Rendah Berdasarkan Karakter Morfo-fisiologi Daun

Nama : Kisman

NIM : A361030061

Disetujui

Komisi Pembimbing Prof. Dr. Ir. Didy Sopandie, M.Agr. Dr. Ir. Sobir, M.Si.

Ketua Anggota Dr. Ir. Trikoesoemaningtyas, M.Sc. Dr. Ir. Nurul Khumaida, M.Si.

Anggota Anggota

Diketahui,

Ketua Program Studi Agronomi Dekan Sekolah Pascasarjana Dr. Ir. Satriyas Ilyas, M.S. Prof. Dr. Ir. Khairil A. Notodiputro, M.S. Tanggal Ujian: 05 Juni 2007 Tanggal Lulus: …………………………

Page 11: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

Makin memperkuat keimanan dan keyakinan saya bahwa Allah menciptakan segala sesuatu di muka bumi ini, dari hal yang paling kecil hingga yang paling dahsyat, semua dalam segala keberaturan, keseimbangan, dan saling bermakna satu sama lain.

AL-QUR’AN: Surat FUSHSHILAT ayat 53

”Kami akan memperlihatkan kepada mereka tanda-tanda (kekuasaan) Kami di segenap ufuk dan pada diri mereka sendiri, sehingga jelaslah bagi mereka bahwa AlQur’an itu adalah benar. Dan apakah Tuhanmu tidak cukup (bagi

kamu) bahwa sesungguhnya Dia menyaksikan segala sesuatu?”.

Surat AL AN’AAM ayat 99 ”Dan Dialah yang menurunkan air hujan dari langit, lalu Kami tumbuhkan dengan air itu segala macam tumbuh-tumbuhan, maka Kami keluarkan dari

tumbuh-tumbuhan itu tanaman yang menghijau, Kami keluarkan dari tanaman yang menghijau itu butir yang banyak; dan dari mayang korma mengurai

tangkai-tangkai yang menjulai, dan kebun-kebun anggur, dan (Kami keluarkan pula) zaitun dan delima yang serupa dan yang tidak serupa. Perhatikanlah

buahnya di waktu pohonnya berbuah, dan (perhatikan pulalah) kematangannya. Sesungguhnya pada yang demikian itu ada tanda-tanda (kekuasaan Allah) bagi

orang-orang yang beriman”.

Surat AR RAHMAN ayat 33-34 ”Hai jama’ah jin dan manusia, jika kamu sanggup menembus (melintasi) penjuru

langit dan bumi, maka lintasilah, kamu tidak dapat menembusnya melainkan dengan kekuatan”. Maka nikmat Tuhan kamu yang manakah yang kamu

dustakan?”.

Kupersembahkan kepada: Kedua orang-tuaku,

Istri dan anak-anakku, Guru-guruku,

Persada Indonesia

Page 12: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

PRAKATA

Puji syukur penulis panjatkan kehadirat Allah SWT atas segala rahmat, karunia dan ridhoNya sehingga penulis dapat menyelesaikan pendidikan dan penelitian serta penulisan disertasi yang berjudul “Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap Intensitas Cahaya Rendah berdasarkan Karakter Morfo-fisiologi Daun”.

Dalam penyelesaian disertasi ini penulis banyak mendapat bimbingan, arahan, dan koreksi kostruktif terutama dari komisi pembimbing. Oleh karena itu, ucapan terima kasih dan perhargaan yang sebesarnya dan setulusnya penulis sampaikan kepada komisi pembimbing: Prof. Dr. Ir. Didy Sopandie, MAgr (Ketua), Dr. Ir. Sobir, MSi, Dr. Ir. Trikoesoemaningtyas, MSc, dan Dr. Ir. Nurul Khumaida, MSi (masing-masing Anggota).

Penelitian disertasi ini sebagian besar didanai oleh Hibah Penelitian Tim Pascasarjana (HPTP) 2004-2006, karenanya penulis menyampaikan banyak terima kasih kepada Prof. Dr. Ir. Didy Sopandie, MAgr selaku Ketua Peneliti HPTP dan Dr. Ir. Trikoesoemaningtyas, MSc dan Dr. Ir. Nurul Khumaida, MSi (masing-masing sebagai Anggota Peneliti) yang telah bersedia menerima penulis bergabung dalam penelitian HPTP. Secara khusus penulis juga ingin sampaikan terima kasih kepada Prof. Dr. Tetsuo Takano yang telah mengijinkan dan memberikan fasilitas kepada penulis untuk melakukan sebagian penelitian molekuler di lab Tolerance Mechanism, ANESC, Universitas Tokyo. Terima kasih juga kepada rekan-rekan selama bersama-sama di HPTP: Dr. Ir. La Muhuria, MS; Ir. Imam Widodo, MS; Desta Wirnas, SP, MSi; Ir. Kartika Ning Tyas, MSi; dan Tri Lestari, SP, MSi atas kebersamaan dan kerjasama yang baik.

Penghargaan yang setinggi-tingginya juga penulis sampaikan kepada: 1. Dirjen Dikti yang telah memberikan beasiswa melalui program Technological

and Professional Skills Development Sector Project (TPSDP) ADB Loan No 1792-INO.

2. Rektor Universitas Mataram yang telah memberikan izin tugas belajar. 3. Dekan Fakultas Pertanian Universitas Mataram yang telah memberikan

kesempatan dan dorongan untuk melanjutkan pendidikan S3 di IPB. 4. Staf pengajar di Program Studi Pemuliaan Tanaman Fakultas Pertanian

Universitas Mataram yang telah bersama-sama bekerja keras menyusun proposal untuk mendapatkan dana TPSDP Loan No 1792-INO.

5. Rektor Institut Pertanian Bogor, Dekan dan Ketua Program Studi Agronomi Sekolah Pascasarjana IPB yang telah menerima penulis untuk melanjutkan studi di IPB, begitu juga saran dan masukan konstruktif yang diberikan kepada penulis sehingga disertasi ini menjadi lebih baik.

6. Prof. Dr. Ir. Sudirman Yahya MSc (selaku penguji luar komisi pada ujian komprehensif), Ibu Dr. Ir. Utut Widiastuti S. MSi (selaku penguji luar komisi pada ujian tertutup), Ibu Dr. Ir. Sriani Sujiprihati, M.S. dan Dr. Ir. Novianti Sunarlim (selaku penguji luar komisi pada ujian terbuka) yang dengan sangat cermat telah memberikan saran dan masukan konstruktif sehingga disertasi ini menjadi lebih baik.

7. Kepala beserta staf dan teknisi lab Research Group on Crop Improvement (RGCI) (Yudi, Bambang); lab Ekofisiologi Tanaman (Joko), lab Biorin PAU

Page 13: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

(Mulya, Pepy, Firdaus, dan rekan-rekan) atas kerjasama dan kebersamaan serta bantuan yang diberikan.

8. Kepala dan staf Kebun Percobaan Balai Besar Bioteksnologi dan Sumberdaya Genetik Cikemeuh Cimanggu (Drajat, Pur, dan rekan-rekan) atas kerjasama dan bantuan yang diberikan.

9. Ayahanda H. Makbul (alm) dan Ibunda Inaq Gadung dan Inaq Siun(alm), ayah dan ibu mertua H. Mohammad Ali (alm) dan Hj. Halimah (alm) atas kasih sayang dan doanya.

10. Saudara-saudara tercinta di Kawo, di Kelayu dan di Mataram atas segala dorongan dan doa.

11. Istri tercinta Ir. Hj. Ulayati Ali dan anak-anak tersayang Febrian Humaidi Sukmana, Suprayanti Martia Dewi, dan Muhammad Halim Suhartawan atas segala doa, dorongan, dan kesabaran serta kebersamaan dalam penantian.

12. Semua pihak yang telah membantu kelancaran penulisan disertasi ini yang tidak bisa disebutkan satu per satu. Semoga disertasi ini dapat bermanfaat. Amin Amin Ya Rabbal Alamin.

Bogor, Juli 2007 Kisman

Page 14: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

RIWAYAT HIDUP

Penulis dilahirkan di Desa Kawo, Pujut, Lombok Tengah, Nusa Tenggara Barat pada 31 Desember 1961, merupakan putra ketiga dengan enam bersaudara dari ayahanda Tarap alias Amaq Siun alias H. Makbul (alm) dan ibunda Tiasih alias Inaq Gadung. Pada 1 Mei 1985 penulis menikah dengan Ir. Hj. Ulayati Ali dan dikaruniai tiga anak yaitu Febrian Humaidi Sukmana, Suprayanti Martia Dewi, dan Muhammad Halim Suhartawan.

Pada 1981 penulis sebagai mahasiswa S1 di Jurusan Agronomi Fakultas Pertanian Universitas Mataram dan menyelesaikan studi pada Oktober 1986. Mulai Juli 1996 penulis mengikuti pendidikan S2 pada Departemen Plant Sciences Fakultas Pertanian Universitas Saskatchewan Kanada dan selesai pada Oktober 1998. Selanjutnya, sejak Agustus 2003 penulis diterima sebagai mahasiswa S3 di Program Studi Agronomi Sekolah Pascasarjana Institut Pertanian Bogor dan mendapatkan gelar Doktor pada Juni 2007. Beasiswa pendidikan pascasarjana diperoleh dari Departemen Pendidikan Nasional Republik Indonesia dalam bentuk bantuan proyek TPSDP ADB Loan No. 1792-INO.

Penulis adalah staf pengajar pada Program Studi Pemuliaan Tanaman Jurusan Budidaya Pertanian Fakultas Pertanian Universitas Mataram di provinsi Nusa Tenggara Barat mulai tahun 1988 sampai sekarang.

Selama mengikuti program S3, penulis menjadi anggota Perhimpunan Pemuliaan Indonesia (Peripi) dan Perhimpunan Bioinformatika Indonesia (PBI). Beberapa karya ilmiah yang merupakan bagian dari disertasi ini yang telah dipublikasikan antara lain: Fisiologi dan Molekuler Efisiensi Penggunaan Intensitas Cahaya Rendah pada Kedelai Toleran Naungan telah dipresentasikan pada Kongres III dan Seminar Nasional Perhimpunan Bioteknologi Pertanian Indonesia di Universitas Brawijaya Malang pada 12-13 Agustus 2005. Respon Molekuler Tanaman Kedelai terhadap Cekaman Intensitas Cahaya Rendah: Analisis Ekspresi Gen ATHB dan CAB telah dipresentasikan pada Seminar Nasional Bioteknologi dan Pemuliaan Tanaman pada 2 Agustus 2006 di Fakultas Pertanian Institut Pertanian Bogor di Bogor. Artikel yang berjudul Analisis Ekspresi Gen-gen yang Terkait ‘Shade Avoidance’ pada Kedelai Toleran Naungan telah diterbitkan pada jurnal AGROTEKSOS vol. 16 no 3 Oktober 2006 dan Karakter Morfo-fisiologi Daun, Penciri Adaptasi Kedelai terhadap Intensitas Cahaya Rendah diterbitkan pada jurnal BULETIN AGRONOMI vol. XXXV no. 2 Agustus 2007 (in press).

Page 15: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

DAFTAR SINGKATAN YANG DIGUNAKAN DALAM DISERTASI A2 : uji normalitas Anderson-Darling ATHB : gen Arabidopsis thaliana homeobox bb : berat basah daun BDS : berat daun spesifik BLAST : Basic Local Aligment Search Tool BNT : beda nyata terkecil bp : base pair CAB : gen chlorophyll a/b binding protein cDNA : complementary deoxyribonucleic acid CDS coding sequence cm : centi meter DAP : days after planting DNA : deoxyribonucleic acid dNTP : deoxynucleotide-5’-triphosphate EDTA : ethylen diamine tetra acetic acid F1 : generasi pertama hasil persilangan F2 : generasi kedua selfing g : gram GSP : gene specific primer h2 : heritabilitas h2

bs : heritabilitas arti luas ha : hektar hp : nisbah potensi HST : hari setelah tanam kb : kilo base kg : kilo gram LI : low irradiance, intesitas cahaya rendah LiCl : lithium chloride M : molar mg : mili gram ml : mili liter mM : mili molar mRNA : messenger RNA MST : minggu setelah tanam N2 : nitrogen NCBI : National Center for Biotechnology Information oC : degree celcius ORF : open reading frame p : probabilitas P1 : tetua 1 P2 : tetua 2 phyB : gen phytochrome B poly-A : poly-adenine PSI : photosystem I PSII : photosystem II

Page 16: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

r : koefesien korelasi R : FR : red : far red RACE : Rapid Amplification of cDNA Ends RACE-PCR : Rapid Amplification of cDNA Ends-PCR RNA : ribonucleic acid RNase H : ribonuclease inhibitor rpm : rotation per minute RT-M-MLV : Reverse Transcriptase - Moloney-Murine Leukimia Virus RT-PCR : Reverse Transcription Polymerase Chain Reaction SDS : sodium dodecyl sulphate TAE : tris acetate EDTA TE : tris EDTA U : unit μg : mikro gram μl : mikro liter μM : mikro molar σ2 : varians σF1 : standar deviasi generasi F1 σF2 : standar deviasi generasi F2 χ2 : chi square

Page 17: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

xiv

DAFTAR ISI

Halaman DAFTAR TABEL ……………………………………………………........

DAFTAR GAMBAR ………………………………………………………

DAFTAR LAMPIRAN ………………………………………………........

1. PENDAHULUAN………………………………………………..........

xvii

xix

xxi

1

Latar Belakang …………………………………………………......... Rumusan Masalah ................................................................................ Tujuan Penelitian ………………………………………………......... Manfaat Penelitian ............................................................................... Hipotesis............................................................................................... Ruang Lingkup Penelitian ...................................................................

145556

2. TINJAUAN PUSTAKA ………………………………………............. 8 Fotosintesis pada Kondisi Intensitas Cahaya Rendah ………….......... 8 PAR dan Fotosintesis …………………………………….........

Pembentukan Klorofil..…………………………………........... Pengaruh Intensitas Cahaya Rendah terhadap Pertumbuhan dan Hasil Tanaman ……………………………………………

810

13 Mekanisme Adaptasi Tanaman terhadap Intensitas Cahaya Rendah .. 14 Perubahan Anatomi dan Morfologi ………..….………............

Perubahan Kandungan Klorofil Daun …….....……….............. Perubahan Fisiologi dan Biokimia …………….………........... Perubahan Struktur Kloroplas ...................................................

16161718

Struktur Kloroplas dan Mekanisme Transport Elektron…..………… 19 Struktur Kloroplas…………………………………………….

Mekanisme Transport Elektron………………………………. Fotosistem II (PSII)……………………………………........... Fotosistem I (PSI) …………………………………………….

19212225

Gen-gen Fotosintesis yang Terkait Adaptasi Tanaman terhadap Intensitas Cahaya Rendah …………………………………................ 29

Gen-gen Fotosintetik Inti …..……………………………......... Gen-gen Fotosintetik Kloroplas …………………………......... Prinsip Kontrol Redoks pada Ekspresi Gen Fotosintetik …….. Ekspresi Gen-gen Terkait Adaptasi Tanaman terhadap Intensitas Cahaya Rendah …………………………………….

293030

35 Analisis Genetik Adaptasi Tanaman………………………………....

Pendugaan Jumlah Gen Pengendali…………………………... Aksi Gen………………………………………………………. Pendugaan Nilai Heritabilitas………………………………….

37373942

3. RESPON KARAKTER MORFO-FISIOLOGI DAUN, PENCIRI ADAPTASI KEDELAI TERHADAP INTENSITAS CAHAYA RENDAH................................................................................................ 44

Page 18: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

xv

Abstrak ................................................................................................. Abstract ................................................................................................ PENDAHULUAN................................................................................ Latar Belakang................................................................................ Tujuan ................ ........................................................................... BAHAN DAN METODE .................................................................... Bahan Tanaman .............................................................................. Persiapan Tanaman ........................................................................ Pengamatan .................................................................................... Analisis Data .................................................................................. HASIL DAN PEMBAHASAN............................................................. Luas Daun dan Bobot Daun Spesifik ............................................. Kandungan Klorofil Daun .............................................................. KESIMPULAN ....................................................................................

4445464648484848495050505564

4. ANALISIS GENETIK ADAPTASI KEDELAI TERHADAP

INTENSITAS CAHAYA RENDAH BERDASARKAN KARAKTER MORFO-FISIOLOGI DAUN................................................................. 65

Abstrak ................................................................................................. Abstract ................................................................................................ PENDAHULUAN ............................................................................... Latar Belakang................................................................................ Tujuan ............................................................................................ BAHAN DAN METODE .................................................................... Bahan Tanaman .............................................................................. Pengamatan .................................................................................... Analisis Data .................................................................................. HASIL DAN PEMBAHASAN............................................................. Hasil dan Morfo-fisiologi Daun pada Tetua Toleran dan Peka Naungan.......................................................................................... Korelasi Karakter Morfo-fisiologi Daun dengan Hasil pada Populasi F2...................................................................................... Pola Pewarisan Sifat Adaptasi Kedelai berdasarkan Morfo- fisiologi Daun.................................................................................. Pendugaan Jumlah Gen dan Tipe Aksi Gen Pengendali Adaptasi.. Pendugaan Nilai Heritabilitas Arti Luas......................................... KESIMPULAN.....................................................................................

65666767686969697075

75

76

78838689

5. ANALISIS SEKUEN LENGKAP GEN YANG TERKAIT

ADAPTASI KEDELAI TERHADAP INTENSITAS CAHAYA RENDAH……………………………………………………………… 90

Abstrak ................................................................................................. Abstract ................................................................................................ PENDAHULUAN ............................................................................... Latar Belakang ............................................................................... Tujuan ............................................................................................ BAHAN DAN METODE .................................................................... Bahan .............................................................................................

90919292949494

Page 19: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

xvi

Analisis Sekuen Lengkap cDNA JJ3.............................................. HASIL DAN PEMBAHASAN............................................................. Sekuen Lengkap (full length) JJ3.................................................. Analisis struktur sekuen lengkap JJ3…………………………….

Analisis Homologi Sekuen Lengkap JJ3....................................... KESIMPULAN ....................................................................................

95959596

100106

6. ANALISIS EKSPRESI GEN-GEN YANG TERKAIT ADAPTASI

KEDELAI TERHADAP INTENSITAS CAHAYA RENDAH............. 107 Abstrak .................................................................................................

Abstract ................................................................................................ PENDAHULUAN ............................................................................... Latar Belakang ............................................................................... Tujuan ............................................................................................ BAHAN DAN METODE .................................................................... Bahan Tanaman............................................................................... Analisis Ekspresi Gen..................................................................... HASIL DAN PEMBAHASAN............................................................. Analisis Ekspresi JJ3 dan CAB-3.................................................... Analisis Ekspresi Gen phyB dan ATHB-2………………………... KESIMPULAN.....................................................................................

107108109109110111111111114115119121

7. PEMBAHASAN UMUM ……………………………………………... 122 8. KESIMPULAN DAN SARAN.………………………...……………... 129 DAFTAR PUSTAKA ……………………………………………………... 131 LAMPIRAN ………………………………………………………………. 144

Page 20: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

xvii

DAFTAR TABEL

No. Halaman

1. Diskripsi subunit protein pada fotosistem 1 (PSI) ……..………….... 27

2. Klasifikasi derajat dominansi berdasarkan nilai potensi rasio............ 40

3. Rata-rata luas daun (cm2) dari berbagai intensitas cahaya rendah pada masing-masing genotipe kedelai…………................................. 52

4. Respon bobot daun spesifik (mg/cm2) masing-masing genotipe

kedelai pada berbagai perlakuan intensitas cahaya ............................ 54

5. Repon kandungan klorofil a genotipe kedelai terhadap berbagai perlakuan intensitas cahaya................................................................. 56

6. Repon kandungan klorofil b genotipe kedelai terhadap berbagai

perlakuan intensitas cahaya ..……………………………………….. 58

7. Repon kandungan klorofil total dan rasio klorofil a/b genotipe

kedelai terhadap berbagai perlakuan intensitas cahaya ..…………… 59

8. Repon kandungan rasio klorofil a/b genotipe kedelai terhadap

berbagai perlakuan intensitas cahaya …..…………………………... 61

9. Nisbah fenotipe karakter yang terkait adaptasi terhadap suatu cekaman yang dikendalikan oleh gen mayor pada populasi bersegregasi F2 …………………........................................................ 74

10. Keragaan karakter hasil dan morfo-fisiologi daun tetua toleran

(Ceneng) dan peka (Godek) pada kondisi naungan 50%.................... 75

11. Koefesien korelasi fenotipik karakter morfo-fisiologi daun dan hasil pada populasi F2 hasil persilangan tetua toleran Ceneng dengan tetua peka (Godek) ………………………………………………….

76

12. Nilai rata-rata fenotipe, kemenjuluran (skewness), nilai normalitas,

dan probabilitas karakter morfo-fisiologi pada populasi F2………… 79

13. Pendugaan jumlah gen minor (effective factor) dan tipe aksi gen yang mengendalikan karakter-karakter dengan pola sebaran kontinu dan mengikuti kurva normal pada populasi F2…………………….... 83

14. Pendugaan jumlah gen mayor dan tipe aksi gen yang

mengendalikan karakter-karakter klorofil pada populasi F2 ……….. 85

Page 21: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

xviii

15. Nilai duga heritabilitas arti luas karakter-karakter yang terkait dengan adaptasi kedelai terhadap intensitas cahaya rendah….……... 87

16. Matriks tingkat homologi (%) sekuen lengkap basa nukleotida dan

asam amino JJ3 dengan tanaman lain………………………………. 101

17. Tingkat homologi cDNA JJ3 dengan gen psaD beberapa spesies tanaman lain menggunakan domain terkonservasi sekuen basa nukleotida dan asam amino…………………………………………. 102

18. Diskripsi GSP (gene specific primer) yang digunakan untuk analisis

ekspresi gen-gen yang terkait adaptasi kedelai terhadap cekaman intensitas cahaya rendah ……………………………………………. 113

Page 22: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

xix

DAFTAR GAMBAR

No. Halaman

1. Bagan alir penelitian ……………………………………………….. 7

2. Spektrum cahaya yang dapat diserap oleh pigmen tanaman, biasa disebut photosynthetically active radiation (PAR) ………………… 9

3. Lintasan reaksi pembentukan klorofil a dan klorofil b yang

melibatkan gen-gen fotosintesis (A) dan struktur kimia klorofil a dan klorofil b (B)…………………………………………………… 11

4. Model mekanisme penghindaran (avoidance) (A) dan mekanisme

toleransi (tolerance) (B) untuk adaptasi tanaman terhadap intensitas cahaya rendah………………………………………………………. 15

5. Skema bangun kloroplas. Kloroplas merupakan organel semi-

otonom pada sel tanaman. ………………………………………….. 20

6. Skema rantai transport elektron fotosintetik pada PS II dan PS I…... 21

7. Diagram skematik pusat reaksi PSII .................................................. 24

8. Struktur keseluruhan PSI…………………………………………… 28

9. Model redox control pada ekspresi gen fotosintesis pada bakteri, alga dan tanaman tingkat tinggi………………………...................... 33

10. Model sintesis, prosesing, transport, dan protein PSII intrinsik dan

ekstrinsik …………………………………………………………… 36

11. Histogram rata-rata luas daun genotipe kedelai pada masing-masing intensitas cahaya rendah……………………………………………. 51

12. Histogram rata-rata bobot daun spesifik (BDS) genotipe kedelai

pada masing-masing perlakuan intensitas cahaya. ………………… 53

13. Histogram rata-rata klorofil a genotipe kedelai pada masing-masing perlakuan intensitas cahaya ..………………………………………. 56

14. Histogram rata-rata klorofil b genotipe kedelai pada masing-masing perlakuan intensitas cahaya..……………………………………….. 58

15. Histogram rata-rata klorofil total genotipe kedelai pada masing-

masing perlakuan intensitas cahaya.…………………………......…. 59

16. Histogram rata-rata rasio klorofil a/b genotipe kedelai pada masing-

Page 23: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

xx

masing perlakuan intensitas cahaya………………………………… 60

17. Histogram fenotipe karakter hasil per tanaman pada populasi F2 dengan kurva normal sebagai pembanding…………………………. 79

18. Histogram fenotipe karakter luas daun pada populasi F2 dengan

kurva normal sebagai pembanding…………………………………. 80

19. Histogram fenotipe karakter bobot daun spesifik pada populasi F2 dengan kurva normal sebagai pembanding…………………………. 80

20. Histogram fenotipe karakter klorofil a pada populasi F2 dengan

kurva normal sebagai pembanding…………………………………. 81

21. Histogram fenotipe karakter klorofil b pada populasi F2 dengan kurva normal sebagai pembanding…………………………………. 81

22. Histogram fenotipe karakter klorofil total pada populasi F2 dengan

kurva normal sebagai pembanding…………………………………. 82

23. Histogram fenotipe karakter rasio klorofil a/b pada populasi F2 dengan kurva normal sebagai pembanding………………………… 82

24. (A). Sekuen lengkap basa nukleotida JJ3 hasil pemanjangan

menggunakan metode PCR-RACE. (B). Asam amino hasil translasi dari sekuen lengkap basa nukleotida JJ3........................................... 96

25. (A) Estimasi struktur sekuen lengkap JJ3, (B) Prediksi sekuen

pengkodean, CDS lengkap, dan (C) prediksi sekuen peptida, (D) domain terkonservasi (conserved domain) berwarna merah dan yang tidak terkonservasi (domain beragam) berwarna hitam………. 97

26. Open reading frame (ORF) atau coding sequence dari sekuen

lengkap JJ3. Sekuen yang ditulis dengan huruf kecil merupakan CDS JJ3 dan huruf kapital merupakan deduksi asam amino............. 98

27. Sebagian hasil pensejajaran (multi-alignment) sekuen basa

nukleotida cDNA JJ3 dengan spesies tanaman lain menggunakan progran clustalW. …………………………………………………... 103

28. Hasil pensejajaran sekuen lengkap asam amino cDNA JJ3 dengan

tanaman tingkat tinggi lain. ………………………………………... 104

29. Filogenetik cDNA JJ3 dengan gen psaD pada beberapa tanaman berdasarkan urutan asam amino…………………………………….. 105

30. Pola ekspresi JJ3 dan CAB-3 pada kedelai toleran naungan

(Ceneng) dan peka naungan (Godek) (A) serta kuantifikasi ekspresi

Page 24: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

xxi

masing-masing gen (B). Hasil elektroforesis 1% agarose. Gen ß-actin sebagai internal standar (house keeping gene)………………... 115

31. Pola ekspresi gen PhyB dan ATHB-2 pada kedelai toleran naungan

(Ceneng) dan peka naungan (Godek) (A) serta kuantifikasi ekspresi masing-masing gen (B). Hasil elektroforesis 1% agarose. Gen ß-actin sebagai internal standar (house keeping gene)………………... 119

Page 25: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

xxii

DAFTAR LAMPIRAN

No. Halaman 1. Kandungan klorofil (mg/g berat basah sampel) ......………………... 144 2. Penampilan warna daun beberapa genotipe kedelai pada berbagai

intensitas cahaya rendah…………………………………………….. 145 3. Diskripsi varietas Pangrango……………………………………….. 146 4. Diskripsi varietas Pangrango..………………………….................... 147 5. Sekuen lengkap gen JJ3 di database publik di GenBank…………… 148

Page 26: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

BAB I

PENDAHULUAN

Latar Belakang

Kedelai merupakan salah satu tanaman pangan penting di Indonesia

karena memiliki kandungan gizi yang cukup tinggi. Kebutuhan kedelai di dalam

negeri terus meningkat setiap tahun (sekitar 2 juta ton) seiring dengan kesadaran

masyarakat yang semakin tinggi akan pentingnya produk berbahan baku kedelai.

Di lain pihak, produksi kedelai nasional cenderung stagnan, sekitar 730 ribu ton

per tahun. Oleh karena itu, untuk memenuhi kebutuhan kedelai nasional,

pemerintah mengimpor sekitar 60 persen atau sekitar 700 ribu ton per tahun pada

tahun 1998 bahkan meningkat mencapai rata-rata 1,2 juta ton per tahun sejak 2000

– 2004 (Badan Litbang Deptan 2005). Berbagai upaya pemerintah seperti program

kedelai mandiri (prokema), gema palagung, dan program lainnya ternyata belum

mampu meningkatkan produksi kedelai nasional. Untuk mengatasi kesenjangan

tersebut maka pemerintah mencanangkan Program Swasembada Kedelai 2008

melalui peningkatan produktivitas dengan penerapan teknologi produksi dan juga

melalui perluasan areal tanam.

Peningkatan produksi kedelai nasional melalui perluasan areal tanam

memiliki potensi yang cukup besar, antara lain melalui penggunaan lahan di

bawah tegakan tanaman perkebunan, hutan tanaman industri (HTI) melalui

program agroforestri, atau tumpangsari dengan tanaman pangan semusim lainnya.

Kendala utama pengembangan kedelai di bawah tegakan atau sistem tumpangsari

tersebut adalah rendahnya intensitas cahaya akibat faktor naungan. Menurut Asadi

dan Arsyad (1995); Asadi et al. (1997), intensitas cahaya berkurang hingga

mencapai 75% di bawah tegakan tanaman perkebunan dan 33% di bawah

tumpangsari dengan jagung atau sorgum. Tanaman kedelai memerlukan radiasi

matahari yang optimum (sekitar 0.3 - 0.8 kal/cm2/menit setara 431-1152

kal/cm2/hari) dengan spektrum atau panjang gelombang berkisar 400-700 nm

(disebut photosynthetically active radiation, PAR) untuk mendapatkan hasil

bersih fotosintat yang tinggi (Kassam 1978; Salisbury dan Ross 1992). Selain

berperan dominan pada proses fotosintesis, cahaya juga berfungsi sebagai

Page 27: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

2

pengendali, pemicu, dan modulator respon morfogenesis khususnya pada tahap

awal pertumbuhan tanaman (McNellis dan Deng 1995). Anderson (2000) juga

menjelaskan bahwa tanaman yang tumbuh di lingkungan bercekaman tersebut

sulit mengekspresikan potensial genetiknya secara utuh untuk tumbuh,

berkembang dan berproduksi secara maksimum. Dilaporkan bahwa hasil kedelai

menurun rata-rata 30-60% pada kondisi cekaman naungan. Handayani (2003) juga

melaporkan bahwa akibat cekaman naungan 50%, hasil per hektar tanaman

kedelai menurun 10 - 40%. Oleh karena itu diperlukan upaya pemuliaan untuk

memperoleh genotipe atau varietas unggul baru kedelai yang mampu beradaptasi

pada lingkungan bercekaman intensitas cahaya rendah.

Berbagai upaya pendekatan ke arah perbaikan adaptasi kedelai terhadap

intensitas cahaya rendah sudah mulai dirintis sejak tahun 2001 oleh Kelompok

Penelitian untuk Perbaikan Tanaman (Research Group for Crop Improvement,

RGCI) IPB melalui kajian aspek fisiologi, pemuliaan, dan molekuler (Sopandie et

al. 2002, 2003a; Khumaida 2002; Trikoesoemaningtyas et al. 2003).

Kegiatan pemuliaan kedelai toleran naungan dimulai dengan pembentukan

12 populasi bersegregasi dengan metode restricted bulk hasil persilangan dialel

lengkap dari empat tetua terpilih (Ceneng, Pangrango, Godek, Slamet). Analisis

genetik karakter agronomi yang terkait adaptasi kedelai terhadap naungan sudah

dilaporkan (Trikoesoemaningtyas et al. 2003). Seleksi terhadap karakter-karakter

yang berkontribusi terhadap sifat adaptasi akan lebih efektif apabila didasari oleh

hasil analisis genetik seperti pendugaan jumlah dan aksi gen serta daya waris gen-

gen yang mengendalikan karakter-karakter tersebut (Poehlman dan Sleper 1995;

Roy 2000). Karakter daun merupakan karakter yang terlibat langsung dalam

proses penerimaan, pengiriman signal cahaya sampai proses fotosintesis. Namun

informasi genetik untuk aspek fisiologi dan morfologi daun yang terkait dengan

adaptasi kedelai terhadap intensitas cahaya rendah masih sangat terbatas.

Aspek fisiologi adaptasi kedelai terhadap intensitas cahaya rendah sudah

mulai dipelajari melalui respon spesifik pada berbagai tingkatan seperti adanya

perubahan anatomi, morfologi, fisiologi, biokimia sampai tingkat molekuler dan

sudah banyak dilaporkan (Sopandie et al. 2001; Khumaida 2002; Murchie et al.

2002; Alves de Alvarenga 2003; Juraimi et al. 2004). Pada tanaman padi gogo

Page 28: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

3

dilaporkan bahwa beberapa karakter anatomi, morfologi, fisiologi dan biokimia

(klorofil, karoten, karbohidrat, enzim rubisko) terkait erat dengan efisiensi

fotosintesis. Selain itu terdapat perbedaan yang jelas antara genotipe toleran dan

peka dalam mekanisme adaptasinya terhadap naungan (Sopandie et al. 2001,

2003a, 2003b; Khumaida 2002; Soverda 2002). Pada tanaman kedelai, karakter

fotosintetik daun seperti kandungan klorofil a, b dan rasio klorofil a/b serta luas

daun merupakan karakter penting bagi adaptasi kedelai terhadap naungan

(Sopandie et al. 2002 dan 2006; Khumaida 2002; Handayani 2003; Jufri 2006).

Penurunan rasio klorofil a/b sebagai bentuk aklimatisasi fotosintesis terhadap

intensitas cahaya rendah juga telah dilaporkan pada kacang kapri (Leong dan

Anderson 1984), bayam (Lindahl et al. 1995), barley (de la Torre dan Burkey

1999), gandum (Behera dan Choudhury 2001), dan Arabidopsis (Bailey et al.

2001).

Dari aspek molekuler, gen-gen yang terkait adaptasi kedelai terhadap

intensitas cahaya masih belum banyak dilaporkan namun sudah mulai dirintis oleh

Dr Nurul Khumaida. Khumaida (2002) berhasil mengidentifikasi sembilan

kandidat gen yang terkait erat dengan karakter adaptasi kedelai terhadap naungan

dan tiga fragment cDNA diantaranya (E3, JJ3, dan EE2) terindikasi merupakan

kandidat gen fotosintetik yang terkait erat dengan gen yang mengkode protein

kompleks membran tilakoid yaitu berturut-turut fotosistem II (PSII), fotosistem I

(PSI), dan sitokrom. Fragmen cDNA JJ3 yang terkait protein kompleks PSI telah

berhasil diperoleh sekuen lengkapnya (Sopandie et al. 2005) dengan

menggunakan metode RACE (Rapid Amplification of cDNA Ends). Dengan

demikian tahap berikutnya adalah karakterisasi, konfirmasi fungsi dan analisis

pola ekspresinya bagi keperluan mempelajari mekanisme adaptasi dan pemuliaan

adaptasi kedelai terhadap intensitas cahaya rendah.

Pola ekspresi gen bermanfaat untuk dapat mengetahui apakah gen tersebut

termasuk gen dengan respon umum (regulated genes atau functional genes)

ataukah gen pengendali stres spesifik (regulatory genes). Pada kondisi stres

cahaya rendah, ekspresi gen dengan respon umum (regulated genes) meningkat

pada genotipe toleran maupun genotipe peka. Gen tersebut tidak dapat digunakan

untuk membedakan genotipe toleran atau peka, sedangkan gen pengendali stres

Page 29: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

4

spesifik (regulatory genes) ekspresinya lebih tinggi pada genotipe toleran dari

pada genotipe peka. Gen-gen regulator ini sangat penting karena dapat berfungsi

sebagai ‘master switches’ yang mengaktifkan program pengiriman signal stres

(signal transduction) sehingga dapat meningkatkan kemampuan adaptasi tanaman

kedelai terhadap cekaman naungan.

Pola ekspresi beberapa gen fotosintetik pada berbagai kondisi cahaya telah

banyak dilaporkan antara lain gen chlorophyll a/b binding protein (CAB),

chalcone synthase (CHS) dan ribulose-1,5-bisphosphate carboxylase/oxygenase

small subunit (rbcS) ketiganya merupakan light-regulated genes yang bersifat up-

regulated pada tanaman tomat (Peters et al. 1998), gen chlorophyll a oxygenase

(CAO) yang mengkatalisis konversi klorofil a menjadi klorofil b, gen CHLD yang

mengkode enzim biosintesis klorofil pada ganggang hijau Dunaliella salina

(Masuda et al. 2002), gen phytochrome B (phyB) dan gen Arabidopsis thaliana

homeobox (ATHB) yang terlibat dalam mekanisme avoidance (Ziemienowicz dan

Gabrys 2003; Vandenbussche 2005). Pola ekspresi gen-gen fotosintetik tersebut

pada tanaman kedelai dalam kondisi cekaman intensitas cahaya rendah belum

banyak dilaporkan. Informasi genomik yang berbasis RNA ini bermanfaat untuk

mempelajari mekanisme fisiologi dan molekuler adaptasi kedelai terhadap

intensitas cahaya rendah.

Rumusan Masalah

Pengembangan tanaman kedelai sebagai tanaman sela di bawah tanaman

perkebunan, hutan tanaman industri, atau tumpangsari dengan tanaman pangan

lain, merupakan salah satu bentuk terobosan untuk meningkatkan produksi kedelai

nasional dan mengurangi ketergantungan impor yang terus meningkat setiap

tahun. Akan tetapi kendala utama pengembangan kedelai di lingkungan tersebut

adalah faktor intensitas cahaya rendah akibat naungan. Untuk itu diperlukan

genotipe atau varietas baru kedelai yang toleran terhadap intensitas cahaya rendah.

Sejauh ini upaya pemuliaan untuk mendapatkan genotipe atau varietas baru

toleran intensitas cahaya rendah masih belum berkembang dengan baik karena

belum tersedianya informasi lengkap di bidang fisiologi, genetika, dan molekuler

bagi perakitan varietas toleran naungan. Oleh karena itu penelitian ke arah

Page 30: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

5

pencarian karakter terutama karakter morfologi dan fisiologi daun, genetika

adaptasi kedelai terhadap intensitas cahaya rendah berdasarkan karakter morfo-

fisiologi daun, dan molekuler gen-gen yang terkait adaptasi kedelai terhadap

intensitas cahaya rendah mutlak diperlukan.

Tujuan Penelitian

Tujuan umum penelitian ini adalah untuk memperoleh pengetahuan dan

pemahaman komprehensif tentang mekanisme adaptasi kedelai terhadap cekaman

intensitas cahaya rendah melalui pendekatan morfo-fisiologi, genetik dan

molekuler yang dibutuhkan bagi perakitan varietas untuk adaptasi kedelai

terhadap intensitas cahaya rendah. Secara khusus, penelitian ini bertujuan untuk:

1. Memperoleh karakter morfo-fisiologi daun sebagai penciri adaptasi kedelai

terhadap intensitas cahaya rendah.

2. Melakukan pendugaan parameter genetik adaptasi kedelai terhadap intensitas

cahaya rendah berdasarkan morfo-fisiologi daun.

3. Melakukan karakterisasi sekuen lengkap, gen yang terkait dengan adaptasi

kedelai terhadap intensitas cahaya rendah (JJ3).

4. Memperoleh informasi pola ekspresi gen-gen yang terkait adaptasi kedelai

terhadap intensitas cahaya rendah (JJ3, CAB, phyB, dan ATHB).

Manfaat Penelitian

Hasil penelitian ini diharapkan dapat dimanfaatkan sebagai pedoman dasar

dalam program pemuliaan atau perbaikan tanaman kedelai toleran intensitas

cahaya rendah. Selain itu diharapkan juga sebagai pedoman dalam pengembangan

teknik budidaya untuk memperbaiki karakter kedelai sehingga mampu beradaptasi

pada kondisi intensitas cahaya rendah seperti di bawah tegakan tanaman

perkebunan, hutan industri, atau tumpangsari dengan tanaman semusim lain.

Hipotesis

Agar penelitian ini dapat dilaksanakan lebih terarah, maka diajukan

beberapa hipotesis sebagai berikut:

Page 31: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

6

1. Kedelai genotipe toleran dan genotipe peka naungan memiliki karakter

morfologi dan fisiologi daun sebagai penciri adaptasi yang berbeda terhadap

cekaman intensitas cahaya rendah.

2. Karakter morfo-fisiofologi daun, karakter penciri kedelai toleran dan peka

cahaya rendah, dikendalikan oleh gen minor dan gen major.

3. Gen-gen yang terkait adaptasi kedelai terhadap cekaman intensitas cahaya

rendah memiliki tingkat homologi yang tinggi dengan gen-gen yang terkait

adaptasi terhadap cekaman intensitas cahaya rendah pada tanaman lain.

4. Terdapat perbedaan pola ekspresi gen-gen yang terkait adaptasi kedelai

terhadap intensitas cahaya rendah.

Ruang Lingkup Penelitian

Untuk mencapai tujuan penelitian tersebut, maka telah dilakukan empat

rangkaian percobaan. Percobaan 1, Respon Morfo-fisiologi Daun, Penciri

Adaptasi Kedelai terhadap Intensitas Cahaya Rendah. Percobaan 2, Analisis

Genetik Adaptasi Kedelai terhadap Intensitas Cahaya Rendah berdasarkan

Karakter Morfo-fisiologi Daun. Percobaan 3, Analisis Sekuen Lengkap Gen yang

Terkait Adaptasi Kedelai terhadap Intensitas Cahaya Rendah. Percobaan 4,

Analisis Pola Ekspresi Gen-gen yang Terkait Adaptasi Kedelai terhadap Intensitas

Cahaya Rendah.

Secara skematis, bagan alir atau tahapan penelitian secara keseluruhan

disajikan pada Gambar 1.

Page 32: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

Karakter Penciri Adaptasi

Mekanisme Adaptasi Kedelai terhadap Intensitas Cahaya Rendah yang Dibutuhkan bagi Pemuliaan Kedelai Toleran Intensitas Cahaya Rendah

Bahan Kegenetikan

Analisis Genetik Karakter Daun, Penciri Adaptasi ICR

Analisis Respon Karakter Daun, Penciri Adaptasi ICR

Perlakuan Intensitas Cahaya Rendah (ICR)

Analisis Sekuen Lengkap Gen Terkait Adaptasi ICR

Ekspresi Gen-gen Terkait Adaptasi ICR

RT-PCR

RNA Total

Pola Ekspresi Gen Terkait Naungan

Jumlah Gen, Aksi Gen, Heritabilitas

Karakterisasi

Gen-gen Terkait ICR

Pendekatan Molekuler Pendekatan Morfo-fisiologi

Sekuen Lengkap cDNA JJ3 (Sopandie et al. 2005)

cDNA

Luas Daun, BDS, Klorofil

Luas Daun, BDS, Klorofil

Pendekatan Genetik

Gambar 1 Bagan alir penelitian

1 2 3 4

Page 33: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

BAB II

TINJAUAN PUSTAKA

Fotosintesis pada Kondisi Intensitas Cahaya Rendah

Photosynthetically Active Radiation (PAR) dan Fotosintesis

Cahaya matahari merupakan sumber energi bagi kehidupan di atas bumi ini,

karena semua mahluk hidup seperti tumbuhan, hewan, bakteri, ganggang,

langsung atau tidak langsung tergantung dari fotosintesis. Organisme fotosintetik

menggunakan energi cahaya untuk mensintesis makromolekul (karbohidrat, asam

amino, dan asam lemak) yang pada gilirannya digunakan oleh organisme lain

sebagai material dasar untuk proses metabolisme.

Spektrum cahaya yang dibutuhkan tanaman berkisar antara panjang

gelombang 400-700 nm, yang biasa disebut photosynthetically active radiation

(PAR). Energi cahaya dikonversi ke molekul berenergi tinggi (ATP) dan NADPH,

terjadi di dalam pigmen atau kompleks protein yang menempel pada membran

tilakoid yang terletak pada kloroplas. Pigmen tanaman yang meliputi klorofil a,

klorofil b, dan karotenoid termasuk xantofil menyerap PAR terbaik pada panjang

gelombang tertentu (Gambar 2). Klorofil a menyerap cahaya tertinggi pada

kisaran panjang gelombang 420 nm dan 660 nm. Klorofil b menyerap cahaya

paling efektif pada panjang gelombang 440 nm dan 640 nm, sedangkan

karotenoid termasuk xantofil mengabsorpsi cahaya pada panjang gelombang 425

dan 470 nm. Menurut Salisbury dan Ross (1992); Grant (1997), cahaya dengan

panjang gelombang lebih pendek akan menghasilkan energi foton yang lebih

besar dari pada cahaya dengan panjang gelombang lebih panjang. Dengan

demikian klorofil a menyerap energi foton lebih besar dari pada klorofil b.

Photosynthetically Active Radiation (PAR) dikelompokkan menjadi dua

bagian berdasarkan kisaran panjang gelombang yang diserap pigmen tanaman

yaitu panjang gelombang aktifitas tinggi (400-500 nm) kelompok cahaya biru, dan

panjang gelombang aktif rendah (600-700 nm) kelompok cahaya merah (respon

fitokrom). Kelompok radiasi tersebut aktif untuk proses fotosintesis,

fotomorfogenesis, dan biosintesis klorofil. Cahaya biru aktif untuk fototropisme,

pembukaan stomata, dan biosintesis klorofil. Cahaya merah (respon fitokrom)

Page 34: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

9

aktif untuk induksi fotoperiodisitas pembungaan, perkembangan kloroplas (tidak

termasuk sintesis klorofil), penuaan (senescence) daun dan absisi daun. Kelompok

cahaya hijau dengan panjang gelombang 500-600 nm tergolong tidak aktif untuk

fotosintesis. Cahaya merah jauh (far-red) dengan panjang gelombang 700-800 nm

juga tidak aktif untuk fotosintesis akan tetapi banyak mempengaruhi

fotomorfogenesis (Grant 1997).

Gambar 2 Spektrum cahaya yang dapat diserap oleh pigmen tanaman, biasa disebut photosynthetically active radiation (PAR) (Salisbury dan Ross 1992)

Fotosintesis dapat dibagi ke dalam tiga kelompok yang terpisah: (i) reaksi

terang, dimana energi radiasi (hv) diserap dan digunakan untuk menghasilkan

senyawa berenergi tinggi ATP dan NADPH; (ii) reaksi gelap, meliputi reduksi

biokimia CO2 menjadi gula menggunakan senyawa berenergi tinggi yang

dihasilkan pada reaksi terang; dan (iii) suplai CO2 dari udara ke tempat reduksi di

kloroplas (Jones 1992).

Secara umum proses fotosintesis dipengaruhi oleh umur daun, genotipe

tanaman, besarnya kebutuhan hasil asimilat oleh sink, dan pengaruh lingkungan

seperti kandungan hara, kelembaban, suhu, dan cahaya. Dalam kondisi tanpa stres,

intensitas radiasi merupakan faktor lingkungan terpenting yang menyebabkan

perbedaan laju fotosintesis (Sinclair dan Torie 1989).

Klorofil a Klorofil b Karotenoid

Ungu Biru Hijau Kuning Jingga Merah

400 450 500 550 600 650 700 Panjang gelombang (nm)

Sera

pan

Page 35: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

10

Tanaman yang memiliki efisiensi fotokimia yang lebih besar pada cahaya

rendah akan mempunyai kecepatan pertumbuhan yang lebih besar dan akan

berhasil dalam berkompetisi pada vegetasi yang rapat atau pada kondisi yang

ternaungi (Lawlor 1987).

Aklimatisasi fotosintetik pada kondisi cahaya rendah memiliki karakteristik

tertentu. Sebagai contoh daun yang terbentuk pada kondisi intensitas cahaya

rendah menunjukkan peningkatan jumlah klorofil (Evans 1987) dan akumulasi

karbohidrat yang rendah (Makino et al. 1985). Tanaman naungan mengandung

klorofil a dan b per unit volume kloroplas 4 sampai lima kali lebih banyak dan

mempunyai nisbah a/b lebih rendah pada tanaman cahaya penuh karena

mempunyai kompleks pemanen cahaya yang meningkat (Lawlor 1987). Daun

yang ternaungi memperlihatkan perkembangan grana yang lebih intensif tetapi

kapasitas transpor eletron cenderung berkurang. Sebagai contoh, transpor elektron

melalui kedua fotosistem 14 kali lebih tinggi pada kloroplas yang diekstrak dari

daun cahaya penuh dibandingkan tanaman naungan. Cyt b6f yang merupakan

bagian transpor elektron juga berkurang pada tanaman ternaungi (Jones 1992).

Pembentukan Klorofil

Klorofil dihasilkan di dalam kloroplas pada jaringan fotosintesis daun.

Prekursor dalam pembentukan senyawa pigmen klorofil adalah senyawa

intermidiate, glutamat, yang mengalami deaminasi menghasilkan α-ketoglutarat,

kemudian direduksi menjadi γ,δ-dioxovalerate dan mengalami transaminasi

menjadi asam δ–amino-laevulinat (ALA); sintesis ini memerlukan ATP dan

NADPH (Malkin dan Niyogi 2000).

Pelepasan air dari asam amino-laevulinat menghasilkan porphobilinogen

yang mengandung struktur cincin pyrrole. Selanjutnya terjadi reaksi pelepasan

NH3 dan CO2 kemudian membentuk protoporphyrinogen. Penambahan Mg2+ dan

adenosylmethionine pada protoporphyrin menghasilkan Mg-protoporphyrin

monomethylester. Mg pada klorofil berfungsi sebagai pengatur penyerapan

spektrum. Mg-protoporphyrin monomethylester mengalami dehidrasi dan reduksi

menghasilkan protochlorophylide. Penambahan H+ menghasilkan chlorophyllide a

menjadi klorofil a, proses ini sangat dipengaruhi oleh cahaya (Lawlor 1987).

Page 36: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

11

A

B

Gambar 3 Lintasan reaksi pembentukan klorofil a dan klorofil b yang melibatkan

gen-gen fotosintesis (A) dan struktur kimia klorofil a dan klorofil b (B) (Malkin dan Niyogi 2000; Nagata et al. 2005)

Protoporfirin IX

Mg-protoporfirin monometilester

Protoklorofilide a

Klorofilide a

Mg-adenosylmethionine

H2O -4H

CHL D, CHL I, CHL H

-6H

Klorofil a

Klorofil b

Geranyl-geranyl pyrophosphate

CAO

DVR

POR

CDR

Glutamat

cahaya

Page 37: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

12

Klorofil b merupakan bentuk khusus dari klorofil a. Pembentukan klorofil b

membutuhkan O2 dan NADPH2 dengan bantuan enzim chlorophyll a oxygenase

(CAO). Pigmen klorofil menyusun sekitar 4% bobot kering kloroplas, dan klorofil

b berjumlah sekitar 1/3 dari klorofil a (Hall dan Rao 1999). Klorofil a berperan

sentral untuk menyerap dan menyalurkan energi cahaya ke pusat reaksi untuk

mengeksitasi elektron.

Klorofil b berfungsi sebagai pigmen antena. Cahaya ditangkap oleh klorofil

b yang tergabung dalam kompleks pemanen cahaya (LHC) kemudian segera

ditransfer ke klorofil a dan pigmen antena lain yang berdekatan dengan pusat

reaksi.

Dalam pembentukan klorofil terdapat paling kurang 3 lintasan reaksi yang

dikendalikan oleh gen-gen inti yaitu: lintasan reaksi antara protoporfirin 9 dan

protoklorofilide yang melibatkan gen-gen CHLD, CHLI, CHLH, CDR, perubahan

protoklorofilide menjadi klorofilide yang melibatkan gen-gen seperti VDR, POR,

dan lintasan sintesis klorofil b yang melibatkan gen CAO (Malkin dan Niyogi

2000; Masuda et al. 2002; Nagata et al. 2005; Heyes et al. 2006). Reaksi-reaksi

yang terlibat dalam lintasan pembentukan klorofil dan kendali gen-gen inti serta

struktur kimia klorofil a dan b disajikan pada Gambar 3.

Klorofil a (C55H72O5N4Mg) dan klorofil b (C55H72O6N4Mg) dapat dibedakan

dengan adanya gugus metil (CH3) pada klorofil a dan gugus aldehid (CHO) pada

klorofil b. Klorofil biasanya mengalami degradasi atau terurai seiring dengan

penuaan daun, dan sebagian besar nitrogennya diabsorpsi kembali oleh tanaman.

Klorofil terdapat pada membran tilakoid pada kloroplas. Kloroplas terdapat

di dalam sitoplasma dan mengandung DNA, RNA, ribosom dan ensim sendiri

(Salisbury dan Ross 1992). Pigmen yang menyerap cahaya pada membran tilakoid

tersusun di dalam suatu rangkaian fungsional yang disebut fotosistem. Fotosistem

ini mengandung 200-300 molekul klorofil dan sekitar 40 molekul karotenoid.

Kelompok pigmen ini menyerap cahaya dengan panjang gelombang 400-700 nm,

dan semua molekul pigmen pada fotosistem disebut pigmen tetap cahaya atau

‘antena’. Besaran kuantitas pigmen pada fotosistem ini menentukan ukuran antena

(antena size) ( Taiz dan Zeiger 2002).

Page 38: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

13

Klorofil a berfungsi meneruskan cahaya ke pusat reaksi yang merubah

energi cahaya menjadi energi kimia. Sedangkan klorofil b berfungsi sebagai

pemanen cahaya dan meneruskan energi dari karotenoid ke klorofil a (Salisbury

dan Ross 1992).

Pengaruh Intensitas Cahaya Rendah terhadap Pertumbuhan dan Hasil Tanaman

Bagi tanaman, cahaya sangat besar peranannya dalam proses fisiologi,

seperti fotosintesis, respirasi, pertumbuhan dan perkembangan, penutupan dan

pembukaan stomata, berbagai pergerakan tanaman dan perkecambahan (Taiz dan

Zeiger 2002; Salisbury dan Ross 1992). Kedelai termasuk tanaman C3, yang

mempunyai tingkat fotorespirasi yang lebih tinggi yang mengakibatkan hasil

bersih fotosintesisnya jauh lebih rendah bila dibandingkan dengan tanaman C4.

Baharsyah et al. (1993) menyatakan bahwa radiasi matahari akan mencapai titik

jenuh antara 0.1-0,6 kal/cm2/menit. Hasil bersih dari proses fotosintesis pada

radiasi penuh (1,4-1,7 kal/cm2/menit) adalah sebesar 15-35 mg CO2/dm2 luas

daun/jam. Pada kedelai, radiasi matahari optimum untuk fotosistesis maksimal

pada kondisi laboratorium berkisar 0,3-0,8 kal/cm2/menit (432-1152 kal/cm2/hari)

(Kassam 1978; Salisbury dan Ross 1992). Nilai tersebut jauh lebih besar

dibandingkan intensitas cahaya di bawah tegakan karet (Chozin et al. 1999).

Studi yang telah dilakukan untuk tanaman padi gogo sebagai tanaman sela

pada perkebunan karet menunjukkan, rata-rata nilai intensitas cahaya pada areal

terbuka sebesar 398,4 kal/cm2/hari. Nilai rata-rata intensitas cahaya dibawah

tegakan karet umur 1, 2, 3 dan 4 tahun berturut-turut sebesar 326.7; 237.6; 109.2

dan 38.2 kal/cm2/hari. Nilai intensitas cahaya di bawah tegakan karet umur 2

tahun setara dengan naungan paranet 25%, nilai di bawah tegakan karet umur 3

tahun setara dengan naungan paranet 50 %, dan untuk umur 4 tahun sudah

melebihi naungan paranet 75 % (Chozin et al. 1999; Haris 1999). Penurunan

intensitas cahaya akan mempengaruhi pertumbuhan dan hasil kedelai.

Studi tentang pengaruh cekaman intensitas cahaya rendah terhadap

penurunan pertumbuhan dan produksi tanaman serta terganggunya berbagai

proses metabolisme tanaman telah terdokumentasikan cukup baik pada tanaman

Page 39: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

14

padi gogo (Watanabe et al. 1993; Jiao et al. 1993; Chozin et al. 1999; Sulistyono

et al. 1999; Lautt et al. 2000; Sopandie at al. 2003b dan 2003c). Akan tetapi

informasi serupa pada tanaman kedelai belum banyak diperoleh. Penelitian

Baharsyah (1980) pada kedelai menunjukkan bahwa penurunan cahaya menjadi

40 % sejak perkecambahan mengakibatkan penurunan jumlah buku, cabang,

diameter batang, jumlah polong dan hasil biji. Naungan 60 % pada saat awal

pengisian polong menyebabkan penurunan jumlah polong, hasil biji dan kadar

protein biji. Asadi et al. (1997) menunjukkan bahwa penurunan hasil biji kedelai

(28 galur) yang diuji di bawah naungan 33 % berkisar 2-45 % dibandingkan

dengan tanpa naungan

Mekanisme Adaptasi Tanaman terhadap Intensitas Cahaya Rendah

Pada kebanyakan tanaman, kemampuan tanaman dalam mengatasi cekaman

intensitas cahaya rendah tergantung kepada kemampuannya melanjutkan

fotosintesis dalam kondisi defisit cahaya. Hale dan Orchut (1987) menjelaskan

bahwa adaptasi terhadap naungan pada dasarnya dapat melalui dua cara, yaitu

melalui: (a) peningkatan luas daun sebagai cara mengurangi penggunaan

metabolit, dan (b) pengurangan jumlah cahaya yang ditransmisikan dan yang

direfleksikan. Levitt (1980) membuat hipotesis bahwa adaptasi terhadap naungan

dicapai melalui: (a) mekanisme penghindaran (avoidance) yang berkaitan dengan

respon perubahan anatomi dan morfologi daun untuk peningkatan penangkapan

cahaya dan fotosintesis yang efisien (Gambar 4A), serta (b) mekanisme toleransi

(tolerance) yang berkaitan penurunan titik konpensasi cahaya serta respirasi yang

efisien (Gambar 4B). Penghindaran defisit cahaya dilakukan dengan mengurangi

kutikula, lilin, dan bulu daun serta meniadakan pigmen antosianin (Levitt 1980).

Pada mekanisme toleransi, asimilasi bersih CO2 nol terjadi pada titik

kompensasi cahaya (LCP) yaitu cahaya pada permukaan daun yang menginduksi

kecepatan asimilasi CO2 aktual sama dengan kecepatan evolusi O2 respirasi.

Tanaman naungan ditandai dengan rendahnya LCP sehingga dapat

mengakumulasi produk fotosintat pada tingkat cahaya yang rendah dibanding

tanaman cahaya penuh. Selain itu tanaman naungan juga memperlihatkan

kejenuhan cahaya pada level intensitas cahaya rendah.

Page 40: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

15

(A)

(B)

Gambar 4 Model mekanisme penghindaran (avoidance) (A) dan mekanisme

toleransi (tolerance) (B) untuk adaptasi tanaman terhadap intensitas cahaya rendah (Levitt 1980)

Peningkatan efisiensi penangkapan cahaya

Peningkatan area penangkapan cahaya

Peningkatan proporsi area fotosintetik (daun)

Peningkatan penangkapan cahaya per unit area fotosintetik

Refleksi avoidance

Transmisi avoidance

”waste” absorbsi

Avoidance

Hilangnya kutikula, lilin dan rambut pada permukaan

daun

Hilangnya pigmen non- kloroplas (Antosianin)

Peningkatan kandungan kloroplas

Peningkatan kandungan pigmen

per kloroplas

Peningkatan kandungan kloroplas per sel

mesofil

Kloroplas kandungan kloroplas dalam sel

epidermis

Toleransi defisit cahaya

Penurunan LCP

Penurunan kecepatan respirasi di bawah LCP

Penghindaran kerusakan sistem fotosintetik

Penurunan kecepatan respirasi mendekati LCP

Menghindari penurunan

akivitas enzim

Menghindari kerusakan

pigmen

Menurunkan substrat respirasi

Menurunkan sistem respiratory:

mitokondria & enzim

Page 41: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

16

Perubahan anatomi dan morfologi. Dari sudut anatomi dan morfologi,

karakter yang mengalami perubahan terhadap intensitas cahaya rendah telah

dijelaskan oleh Bjorkman (1981), Anderson (1986), Evans (1988) dan Anderson

et al. (1995). Intensitas cahaya akan mempengaruhi bentuk dan anatomi daun

termasuk sel epidermis dan tipe sel mesofil (Vogelmann dan Martin 1993).

Perubahan tersebut sebagai mekanisme untuk pengendalian kualitas dan jumlah

cahaya yang dapat dimanfaatkan oleh kloroplas daun. Daun tanaman yang

ternaungi akan lebih tipis dan lebar dari pada daun yang ditanam pada areal

terbuka, yang disebabkan oleh pengurangan lapisan palisade dan sel-sel mesofil

(Taiz dan Zeiger 2002). Pada genotipe padi gogo dan kedelai toleran naungan,

terjadi pengurangan lapisan palisade yang lebih besar akibat cekaman naungan

dibanding genotipe peka, menyebabkan daun menjadi lebih tipis (Khumaida 2002;

Sopandie et al. 2003a, 2003b). Lapisan palisade dapat berubah sesuai kondisi

cahaya, yang menyebabkan tanaman menjadi efisien dalam menyimpan energi

cahaya (Taiz dan Zeiger 2002). Tanaman dikotil termasuk kedelai mempunyai

kapasitas yang lebih besar untuk menggunakan cara menghindari naungan (shade

avoidance) (Morelli dan Ruberti 2002).

Perubahan kandungan klorofil daun. Pada keadaan normal, aparatus

fotosintetik termasuk klorofil mengalami proses kerusakan, degradasi dan

perbaikan. Proses perbaikan ini tergantung pada cahaya, sehingga apabila tanaman

dinaungi kemampuan ini akan menjadi terbatas (Richter et al. 1990). Kekuatan

melawan degradasi ini sangat penting bagi daya adaptasi terhadap naungan, yaitu

dengan meningkatkan jumlah kloroplas per luas daun (Hale dan Orchut 1987) dan

dengan peningkatan jumlah klorofil pada kloroplas (Okada et al. 1992). Hal ini

ditunjukkan juga oleh genotipe toleran padi gogo yang memiliki kadar klorofil a

dan b lebih tinggi dibanding yang peka (Chowdury et al. 1994; Sulistyono et al.

1999; Sopandie et al. 2003b). Hal yang senada juga dijumpai pada kedelai toleran

naungan (Khumaida 2002; Sopandie et al. 2003a). Hidema et al. (1992)

melaporkan bahwa intensitas cahaya rendah menurunkan nisbah klorofil a/b,

karena adanya peningkatan klorofil b pada tanaman yang dinaungi, yang berkaitan

dengan peningkatan protein klorofil a/b pada LHC II. Membesarnya antena untuk

fotosistem II ini akan mempertinggi efisiensi pemanenan cahaya. Walaupun

Page 42: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

17

kandungan klorofil tinggi, rendahnya laju fotosintesis sering dihubungkan dengan

tingginya resistensi stomata dan rendahnya aktivitas Ribulose bifosfat (RuBP)

(Murty dan Sahu 1987). Selain itu, walaupun kandungan klorofil meningkat

namun terjadi penurunan klorofil per luas area karena daun menjadi lebih tipis

(Nilsen dan Orcutt 1996).

Perubahan fisiologi dan biokimia. Hubungan antara enzim rubisco dan

fotosintesis telah diketahui dengan sangat baik (Makino et al. 1984; Evans 1987);

jumlahnya pada daun secara relatif merefleksikan 20-30 % dari total N daun.

Naungan menyebabkan perubahan fisiologi dan biokimia, salah satu di antaranya

adalah perubahan kandungan N daun, kandungan rubisco dan aktivitasnya.

Rubisco adalah enzim yang memegang peranan penting dalam fotosintesis, yaitu

yang mengikat CO2 dan RuBP dalam siklus Calvin yang menghasilkan 3-PGA.

Intensitas cahaya rendah (naungan) menyebabkan rendahnya aktivitas rubisco

(Portis 1992, Bruggeman dan Danborn 1993). Diperkirakan genotipe kedelai

toleran naungan akan memiliki aktivitas rubisco yang lebih tinggi dan kandungan

N terlarut yang lebih rendah dibandingkan dengan yang peka pada kondisi

naungan, seperti dilaporkan pada padi gogo (Sopandie et al. 2003b).

Hubungan antara cekaman intensitas cahaya rendah dengan penurunan

karbohidrat dapat dijelaskan dalam beberapa hal. Pengurangan fotosintat pada

intensitas cahaya rendah dapat dihubungkan dengan tingginya resistensi stomata

dan sel-sel mesofil terhadap pertukaran CO2. Pada kondisi cahaya rendah aktivitas

karboksilase dan RuBP menurun (Thorne dan Koller 1974). Reaksi pembentukan

pati dikatalisis oleh enzim ADP-glukosa pyrofosforilase yang mengatur aliran

karbon, dimana enzim ini diatur secara alosterik oleh produk dari siklus PCR.

Intensitas cahaya yang rendah menyebabkan rendahnya pembentukan 3-PGA,

yang menyebabkan hambatan kerja enzim ADP-glukosa pyrofosfatase karena

adanya Pi yang berinteraksi dengan 3-PGA. Soverda (2002) menunjukkan bahwa

cekaman intensitas cahaya rendah menurunkan aktivitas PGA kinase, penurunan

yang lebih kecil dijumpai pada genotipe padi gogo yang toleran naungan

dibandingkan genotipe yang peka.

Thorne dan Koller (1974) menunjukkan bahwa pemberian naungan

menyebabkan penurunan kandungan pati pada daun kedelai, sementara sukrosa

Page 43: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

18

mengalami kenaikan, selanjutnya perimbangan antara pati dan sukrosa tersebut

berubah kembali seperti semula setelah perlakuan naungan dihentikan. Pada

intensitas cahaya rendah terjadi gangguan translokasi karbohidrat. Pada kondisi

ini gula total (sebagian besar gula non reduksi dan pati) secara nyata menurun

pada seluruh bagian tanaman. Murty dan Sahu (1987) melaporkan peningkatan

kandungan total amino-N dan N terlarut pada varietas padi yang peka, yang

menyebabkan sintesis protein terganggu dan ketersediaan karbohidrat menjadi

rendah dan tingkat kehampaan menjadi tinggi. Penelitian Lautt et al. (2000) pada

padi gogo menunjukkan bahwa galur toleran padi gogo memperlihatkan

kandungan pati pada daun dan batang yang lebih tinggi daripada yang peka saat

dinaungi 50 % saat vegetatif aktif. Kenaikan sukrosa pada saat vegetatif aktif

hanya terjadi pada galur yang toleran, sejalan dengan peningkatan aktivitas enzim

SPS (sukrosa fosfat sintase).

Perubahan struktur kloroplas. Intensitas cahaya tinggi maupun intensitas

cahaya rendah merupakan faktor stres yang dapat merusak dan mempengaruhi

struktur dan fungsi kloroplas (Mostowska 1997). Menurut Biswal (1997b) dan

Mostowska (1997), perubahan struktur dan fungsi kloroplas akibat stres cahaya

terjadi pada level komposisi pigmen, struktur organisasi tilakoid, reaksi fotokimia,

dan efisiensi fiksasi CO2. Selain itu juga penurunan bahkan kehilangan pigmen

fotosintesis, perbedaan respon Chla dan Chlb, dan perubahan dalam komposisi

karotinoid, terutama perubahan komposisi komponen siklus xanthophyll. Stress

tersebut menyebabkan perubahan struktur kloroplas (secara umum) dan kompleks

transport elektron (secara khusus). Perubahan pigmen dan struktur membran

tilakoid diikuti oleh perubahan laju reaksi fotokimia yang terkait dengan PSI dan

PSII dan juga aktivitas enzim dalam siklus Calvin (Biswal 1997b).

Bagian kloroplas yang paling peka terhadap stres cahaya adalah PSII dan

diidentifikasi sebagai sasaran utama kerusakan akibat stres cahaya. Kerusakan

fotosintetik karena kelebihan cahaya merupakan sindrom stres cahaya tinggi

(fotoinhibisi). Tanaman atau kloroplas yang menerima cahaya tinggi dalam waktu

lama menyebabkan foto-oksidasi pigmen atau foto-destruksi kloroplas. Fotosistem

ini diketahui terkait dengan berbagai mekanisme adaptasi sehingga telah

Page 44: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

19

dilaporkan sebagai suatu komponen kunci selama pengiriman signal stres untuk

adaptasi kloroplas (Biswal 1997b; Mostowska 1997).

Pengaruh stres cahaya rendah terhadap perubahan kloroplas juga sudah

dilaporkan. Intensitas cahaya rendah terbukti mempengaruhi orientasi kloroplas

tanaman. Pada intensitas cahaya rendah kloroplas akan mengumpul pada dua

bagian, yaitu pada kedua sisi dinding sel terdekat dan terjauh dari cahaya

(Salisbury dan Ross, 1992). Hal ini sering menyebabkan warna daun lebih hijau,

karena posisi kloroplas yang terkonsentrasi pada permukaan daun. Intensitas

cahaya rendah menyebabkan terjadi peningkatan jumlah kloroplas per sel, volume

kloroplas dan membran tilakoid serta grana (stack granum), seperti pada

Gusmania monostachia (Maxwell et al. 1999).

Respon kloroplas terhadap perubahan intensitas cahaya matahari tergantung

pada skala waktu perubahan tersebut. Respon jangka pendek terjadi dalam

beberapa detik sampai menit yang melibatkan penyusunan kembali struktur dan

fungsi komponen kloroplas. Regulasi jangka pendek ini termasuk pada saat

transisi dan penyesuaian fotosistem stoikiometrik pada fosforilasi protein tilakoid

(Allen 1995), regulasi untuk efisiensi PS II (Horton et al. 1996), serta perubahan

aktivitas rubisco (Salvucci dan Ogren 1996). Perubahan jangka panjang terhadap

cahaya melibatkan sintesis yang selektif dan degradasi komponen kloroplas untuk

menyusun komposisi dan fungsi organ fotosintesis. Sangat menarik untuk

dipelajari perubahan struktur kloroplas pada genotipe kedelai toleran dan peka

dalam kondisi intensitas cahaya rendah dalam periode pendek dan panjang.

Hipotesis yang dapat diajukan adalah genotipe toleran akan memiliki struktur

kloroplas dan komponen (grana, jumlah tilakoid pada grana, stroma, stack

membrane, ukuran kloroplas) yang normal dibandingkan dengan yang peka.

Struktur Kloroplas dan Mekanisme Transport Elektron

Struktur Kloroplas

Kloroplas terdiri atas dua komponen utama (Gambar 5), (a) lamellar

network, disebut tilakoid, dan (b) stroma matrix dengan berbagai enzim yang

terkait dengan siklus Calvin seperti Rubisco (ribulose bisphosphat

carboxylase/oxygenase). Terdapat juga beberapa kopy DNA sirkular dan semua

Page 45: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

20

komponen transkripsi dan translasi, dan enzim-enzim untuk sintesis lipid,

porphyrin, terpenoid, quinoid dan senyawa aromatik lain. Struktur membran

tilakoid beragam dari yang sederhana pada bakteri sampai yang paling kompleks

pada kloroplas tanaman tingkat tinggi. Membran tilakoid, yang diklasifikasikan ke

dalam grana dan lamella stroma, terdiri atas pigmen-pigmen fotosintesis seperti

klorofil a, klorofil b, karoten, dan xantofil. Pigmen-pigmen tersebut berasosiasi

dengan protein spesifik yang terikat membran (specific membrane-bound protein)

dan membentuk gabungan pigmen guna mengoptimalkan penyerapan energi

cahaya (foton) (Biswal dan Biswal 1999).

Gambar 5 Skema bangun kloroplas. Kloroplas merupakan organel semi-otonom

pada sel tanaman. Energi cahaya dirubah menjadi energi kimia di membran tilakoid. Fiksasi CO2 berlangsung di stroma. Tumpukan grana lebih besar pada daun yang ternaungi dari pada daun penuh cahaya (Biswal dan Biswal 1999).

Kompleks protein membran yang terlibat dalam reaksi cahaya tidak tersebar

merata di seluruh membran tilakoid. Menurut Critchley (1997), fotosistem II

(PSII) dan kompleks pemanen cahaya II (light harvesting complex II)

terkonsentrasi di grana, sedangan fotosistem I (PSI) dan ATP-sintase sebagian

besar di stroma. Kompleks cytochrome b6 f hampir sama jumlahnya di kedua

daerah tilakoid tersebut.

Page 46: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

21

Mekanisme Transport Elektron

Menurut Critchley (1997) dan Biswal dan Biswal (1999), reaksi cahaya

yang terjadi pada membran tilakoid dikendalikan oleh dua fotosistem (PSII dan

PSI) yang dihubungkan oleh suatu intersistem rantai transport elektron (Gambar

6). Reaksi cahaya merupakan reaksi fotokimia yang menghasilkan NADPH dan

ATP serta membebaskan O2 dari molekul air. Produk reaksi cahaya selanjutnya

digunakan reaksi gelap melalui siklus Calvin untuk pembentukan gula.

Gambar 6 Skema rantai transport elektron fotosintetik pada PS II dan PS I (Surpin

et al. 2002; Andersson et al. 2003).

Secara skematis lintasan elektron yang terjadi pada pusat reaksi membentuk

formasi huruf Z sehingga disebut skema Z. Dalam rangkain proses transport

elektron dilibatkan sekurangnya 4 kompleks protein utama, yaitu: sistem cahaya II

(PSII), kompleks sitokrom b6f, sistem cahaya I (PSI) dan kompleks ATP sintase.

Keempat kompleks protein ini terletak di dalam membran tilakoid. PSII berfungsi

mengoksidasi air menjadi oksigen dengan melepaskan proton ke lumen (bagian

dalam tilakoid). Kompleks sitokrom b6f menerima elektron dari PSII kemudian

mengirim elektron tersebut ke PSI dengan disertai pemompaan proton dari stroma

ke lumen. PSI mereduksi NADP+ menjadi NADPH di dalam stroma dengan

bantuan feredoksin dan enzim Flavoprotein-NADP reduktase (FNR). Kompleks

Page 47: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

22

ATP sintase memproduksi ATP dengan memanfaatkan energi yang diperoleh dari

proton (H+) yang kembali berdifusi dari lumen ke stroma (Critchley 1997).

Secara detail, rangkaian transport elektron dapat dijelaskan sebagai berikut:

Cahaya (hv) yang diterima fotosistem II (PSII) menyebabkan terjadinya

pemisahan muatan pada pusat reaksi sehingga terbentuk pasangan radikal

(P680+Pheo-). P680+ melepas satu elektron dari residu tyrosin di dalam protein D1

kemudian direduksi kembali oleh elektron dari kelompok manganese yang

mengoksidasi air dan melepaskan proton (H+) dan O2 ke lumen. Pheo- mereduksi

quinone yang masih terikat (QA) dan menggerakkan elektron ke quinone kedua

(QB) untuk membentuk semi quinone (QB-). Selanjutnya, QB direduksi menjadi

quinol dan membutuhkan dua H+ dari stroma dan mendifusikan ke tempat

ikatannya menjadi plastoquinol (PQH2). PQH2 dioksidasi di dalam siklus Q oleh

sitokrom kompleks b6f yang mereduksi plastosianin (PC) dan melepaskan proton

ke lumen (Biswal dan Biswal 1999; Surpin et al. 2002; Andersson et al. 2003).

Pada fotosistem I (PSI) penyerapan cahaya menyebabkan pemisahan muatan

antara P700 dan penerima elektron A0 (klorofil). Elektron tersebut bergerak

melalui filoquinon (A1) dan sejumlah pusat Fe-S (Fx, FA dan FB) ke Fe-S protein

ferredoksin terlarut (Fdx). Fdx-NADP+ reduktase (FNR) NADP+ mereduksi

menjadi NADPH dengan elektron dari Fdx dan dari H+ stroma. P700+ direduksi

kembali dengan elektron yang berasal dari plastosianin (PC). Translokasi H+ dari

lumen ke stroma menghasilkan proton motif force yang menyebabkan fosforilasi

ADP menjadi ATP oleh ATP sintase (CF0 CF1) (Surpin et al. 2002; Andersson et

al. 2003).

Secara ringkas, energi matahari digunakan untuk mengoksidasi air untuk

menghasilkan proton, elektron dan oksigen. Elektron dikonversi ke NADPH. H+

dari oksidasi air dan siklus Q digunakan untuk mensintesis ATP. Selanjutnya

NADPH dan ATP yang terbentuk digunakan untuk asimilasi CO2 menjadi

karbohidrat pada siklus Calvin-Benson (Surpin et al. 2002; Andersson et al.

2003).

Fotosistem II (PSII). Fotosistem II (PSII) merupakan kompleks

multiprotein yang terdapat pada membran tilakoid kloroplas selain PSI, Cyt b6f,

dan ATPase. Semua proses fotokimia termasuk transport elektron dari air sampai

Page 48: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

23

plastoquinon (PQ) dimediasi oleh PSII (Trebst 1995; Kulandaivelu dan

Lingakumar 2000). Biswal dan Biswal (1999) menyebut PSII sebagai kompleks

multi-subunit yang terdiri atas lebih dari 25 jenis protein berbeda. Beberapa di

antara protein tersebut terletak intrinsik dan protein yang lainnya ekstrinsik serta

dikode oleh genom plastida dan genom inti. Protein intrinsik seperti D1 dan D2

serta komponen nonprotein seperti Chl a dimer (P680), 2 Chl a monomer, 2

pheophytin (pheo), quinon A (QA), dan quinon B (QB), dan Fe nonheme,

menyusun kompleks inti (core complex) PSII. Kompleks inti tersebut

berhubungan dengan kluster Mn (4 Mn) dan antena pemanen cahaya (light-

harvesting antenna) seperti CP47 dan CP43 (Whitelegge 1997; Biswal dan Biswal

1999). Beberapa protein ekstrinsik, seperti protein 33-kDa penstabil Mn (Mn-

stabilizing protein) bergabung dengan fotosistem pada sisi lumen. P680 bertindak

sebagai donor elektron dan pheo sebagai akseptor elektron.

Fotokimia atau reaksi cahaya PSII dimulai dengan pemisahan muatan yang

menghasilkan pasangan radikal P680+ Pheo-. Menurut Whitelegge (1997), aktifitas

PSII dapat dibagi menjadi 3 domain fungsional. Fungsi pemanen cahaya dengan

sejumlah protein intrinsik (CP43 dan CP47) adalah mentransfer energi dari

kompleks antena ke pusat reaksi fotosintesis. Pusat reaksi mengandung residu

tyrosin (Yz) yang merupakan donor sekunder, kemudian menerima elektron dari

domain ketiga, oxygen-evolving complex (OEC), dengan empat elektron. Inti dari

OEC adalah kluster Mn tetranuclear yang terkait erat dengan pusat reaksi dan

distabilkan oleh sejumlah protein ekstrinsik termasuk ion Ca2+.

Komponen transport elektron sisi donor (donor-side) PSII terdiri atas

oxygen-evolving complex (OEC) dengan kluster Mn. Fungsi Mn adalah

mengakumulasi muatan positif dari evolusi O2. Kluster Mn terkait erat dengan

protein D1 dan D2. Sejumlah asam amino pada protein tersebut merupakan ligan

untuk mengikat logam. Ion seperti Ca2+ dilaporkan memodulasi struktur OEC

yang berperan dalam penguraian molekul H2O (Biswal dan Biswal 1999).

Protein yang mengikat Chl a/b, seperti LHCII, terkait dengan PSII. Secara

fungsional LHCII dibentuk pada saat unit monomer bergabung pada PSII dalam

bentuk trimer. Susunan komponen struktural PSII ditunjukkan seperti pada

Gambar 7.

Page 49: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

24

Gambar 7 Diagram skematik pusat reaksi PSII (PSII RC). PSII RC terdiri atas

core heterodimer yang tersusun dari protein D1 dan D2. Lhcb1-6 merupakan protein antena pemanen cahaya. CP43 dan CP47 adalah protein yang terikat PSII RC, berperan sangat penting dalam mempertahankan struktur dan fungsi PSII. QA dan QB adalah molekul quinon yang terikat berturut-turut dengan protein D1 dan D2. H, I, W merupakan protein minor terkait dengan kompleks PSII (Kulandaivelu dan Lingakumar 2000; Luciński dan Jackowski 2006).

Sistem pemanen cahaya PSII (LHCII) terdiri atas protein produk 6 gen Lhcb

(Lhcb1-6) yang dirangkai menjadi 4 jenis kompleks: LHCIIa, LHCIIb, LHCIIc,

dan LHCIId (Luciński dan Jackowski 2006). LHCIIb merupakan kompleks

trimerik yang mengikat sekitar 60% klorofil PSII. LHCIIa, LHCIIc dan LHCIId

merupakan kompleks monomerik yang diketahui berturut-turut sebagai CP29,

CP26, dan CP24 (Janson 1999). Data terkini menunjukkan bahwa CP29 dan CP26

berperan dalam sistem pemanen cahaya dan dissipasi energi dalam proses

fotosintesis (Andersson et al. 2001).

Dalam percobaannya menggunakan alga hijau, Nishigaki et al. (2000)

melaporkan, sel yang ditumbuhkan pada intensitas cahaya rendah memiliki bentuk

pemanen cahaya LHC II dan LHC I, sedangkan pada intensitas cahaya tinggi

memiliki bentuk LHCII, LHC H1 dan LHC H2. LHCI dan LHC HI menjaga

efisiensi transfer energi dari Chlb dan lutein ke Chla. LHC H2 menunjukkan rasio

Page 50: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

25

Chla/b tinggi. Chlb dan lutein tidak dapat mentransfer secara lengkap energi

eksitasi ke Chla pada LHC H2.

Peranan PSII dalam transport elektron dalam proses fotosintesis agak

khusus karena membawa fungsi evolusi oksigen (oxygen-evolving complex, OEC)

yang merepresentasikan permulaan rantai elektron fotosintetik yang efektif.

Lintasan transfer eletron pada PSII adalah sebagai berikut: H2O merupakan

sumber elektron untuk PSII; Oksidasi H2O di dalam kluster Mn (M) terjadi

sebagai ekstraksi 4 elektron dari 2 molekul air, diistilahkan ‘oxygen clock’ yang

dikontrol oleh satu elektron dari P680. Transport elektron dari M-Z-P-I- sampai

QA meliputi satu elektron saja. Akan tetapi, transfer elektron terakhir dalam PSII

terjadi 2 reduksi elekrton dari QB menjadi anion semiquinon (QB-) kemudian

menjadi quinol tereduksi penuh (QB--). Plastoquinol menjadi protonasi dan

meninggalkan PSII-binding site. Plastoquinon kemudian berikatan dengan QB-

binding site, dan proses transfer elektron diulangi seperti semula (Critchley 1997).

Menurut Critchley (1999), terdapat dua fungsi PSII dalam fotosintesis. Yang

pertama adalah dalam pemanenan energi cahaya untuk mengontrol transport

elektron. Air merupakan donor untuk transport elektron yang mereduksi NADP

melalui PSI. Yang kedua, PSII berperan menjaga gradien pH di dalam membran

tilakoid, yang diperlukan untuk sintesis ATP.

Fotosistem I (PSI). Fotosistem I merupakan kompleks pigmen protein yang

mengandung multisubunit yang terletak pada membran tilakoid, yang dapat

memfotoreduksikan ferredoxin dengan elektron yang berasal dari fotosistem II

(PSII) melalui pembawa elektron, plastosianin (PC). Secara singkat PSI

merupakan oksidoreduktase plastosianin:ferredoxin yang dikendalikan cahaya

(Hiyama 1997). PSI berfungsi pada separo kedua dari rantai transfer elektron dan

menggunakan cahaya matahari untuk mentransfer elektron dari plastosianin ke

NADP+ (Webber et al. 1997). Pada tanaman, PSI terdiri atas dua moietie: pusat

reaksi dan kompleks pemanenan cahaya I (LHCI). Pusat reaksi terdiri atas 11

subunit, dengan nomenklatur (PsaA to PsaF and PsaI to PsaM) yang berasal dari

gen psaA to psaF and psaI to psaM. Sebagian besar dari subunit tersebut

merupakan membrane-integral.

Page 51: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

26

Subunit besar PsaA dan PsaB heterodimer merupakan inti (core) dari PSI,

mengatur hampir seluruh kofaktor sistem tranfer elektron dan sistem antena.

PsaA-PsaB heterodimer mengikat pasangan klorofil spesifik P700 (dua molekul

filloquinon, satu kluster Fe-S, dan sejumlah molekul klorofil a pemanen cahaya).

Pada subunit tersebut terjadi pemisahan muatan yang dikendalikan oleh cahaya,

dan juga meliputi akspetor elektron yang penting A0 (klorofil a), A1 (filloquinon)

dan FX (suatu kluster Fe4-S4). Selain itu, heterodimer mengkoordinasikan sekitar

80 klorofil yang berfungsi sebagai antena pemanen cahaya intrinsik (Nelson dan

Ben-Shem 2002; Jordan et al. 2001).

Komponen terminal dari rantai transfer elektron pada PSI yaitu dua kluster

Fe4-S4 (FA dan FB) yang terikat pada PsaC. Sisanya adalah subunit yang

berperan serta di dalam penempatan (docking) ferredoxin yaitu (PsaC, PsaE dan

PsaD) dan plastosianin (yaitu PsaF), asosiasi dengan LHCI (PsaK, PsaG, PsaJ dan

PsaF), docking LHCII (PsaI, PsaH dan PsaL), dan menjaga integritas dan

kestabilan kompleks, dan mungkin beberapa fungsi lainnya (Scheller et al. 2001).

Kompleks pemanen cahaya (LHCI) pada PSI merupakan antena membran

pemanen cahaya periferal ekstrinsik, dan antena ini dibentuk dari susunan

modular dari empat macam protein yang mengandung klorofil pemanen cahaya

(Lhca1–Lhca4). Keempat protein tersebut bergabung menjadi dua dimer yang

docking pada sisi PsaF dari pusat reaksi (Ben-Shem et al. 2003). Pada PSI

terdapat juga donor elektron (plastosianin) dan penerima elektron (ferredoxin)

yang memberikan struktur yang lebih lengkap tentang mekanisme transfer

elektron pada fotosistem I. Plastosianin menerima elektron dari sitokrom b6f,

kemudian secara langsung memberikan elektron ke P700. Ferredoxin merupakan

protein Fe-S, menerima elektron dari PSI, dan membentuk kompleks dengan

enzim flavoprotein (ferredoxin : NADP oxidoreductase, FNR) yang mereduksi

NADP menjadi NADPH. Pada kondisi tertentu ferredoxin terreduksi dan

memberikan elektron secara langsung kepada kompleks cytochrome b6f dan

memfasilitasi pembentukan ATP melalui fosforilasi siklik (Nelson dan Ben-Shem

2004).

Pada S. elongatus, PSI memiliki 3 subunit stroma kecil: PsaC, PsaD, dan

PsaE dengan BM masing-masing 8.7, 15.2, and 8.3 kDa (Tabel 1). Ketiga subunit

Page 52: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

27

tersebut merupakan subunit ekstrinsik, non-membrane-integral, menutupi

permukaan stroma, melebar melebih daerah membran integral (Gambar 8). PsaD

dan PsaE dikode gen fotosintetik inti, sedangkan PsaC dikode gen kloroplas

(Klukas et al. 1999; Kraub dan Saenger 2001).

Tabel 1 Diskripsi subunit protein pada fotosistem 1 (PSI) (Hiyama 1997; Webber

et al. 1997; Kraub dan Saenger 2001) Nama Subunit protein

Berat Molekul (kDa)

Nama Gen

Lokasi Asal gen Keterangan

PsaA 83 psaA Intrinsik Kloroplas

Mengikat rantai transfer elektron intrinsik membran dan mayoritas kofaktor antena core bersama-sama dengan PsaB

PsaB 83 psaB Intrinsik Kloroplas

Mengikat rantai transfer elektron intrinsik membran dan mayoritas kofaktor antena core bersama-sama dengan PsaA

PsaC 9 psaC Stromal Ekstrinsik

Kloroplas

Terletak pada permukaan stroma, mengikat kluster Fe-S, FA dan FB

PsaD 15 psaD Stromal Ekstrinsik

Inti Terletak pada permukaan stroma, diperlukan untuk stabilitas PSI, docking ferredoxin / flavodoxin.

PsaE 8 psaE Stromal Ekstrinsik

Inti Terletak pada permukaan stroma, terlibat pada docking ferredoxin / flavodoxin dan aliran elektron siklik.

PsaF 15 psaF Intrinsik Inti Terlibat dalam docking plastocyanin / cytochrome c6

PsaI 4 psaI Intrinsik Kloroplas Menstabilkan PsaL pada kompleks PS I

PsaJ 5 psaJ Intrinsik Kloroplas Menstabilkan PsaF pada kompleks PS I

PsaK 8 psaK Intrinsik Inti Terkait erat dengan PsaA pada pusat reaksi PSI

PsaL 16 psaL Intrinsik Inti Bertanggung jawab untuk trimerisasi PSI

PsaM 3 psaM Intrinsik Kloroplas Fungsi belum diketahui

Page 53: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

28

PsaD mengandung satu -helix pendek, Da, yang berdekatan dengan PsaC

yang dikeliling oleh -sheet, yang terdiri atas paling kurang tiga -strands (gugus)

yang relatif panjang. Satu gugus PsaD menutup dan membungkus PsaC, yang lain

terletak di permukaan stroma, tidak berhubungan dengan subunit yang lain,

berfungsi menjaga stabilitas peran PsaD terhadp PsaC. Pada tanaman, PsaD

mempunyai gugus N yang terlibat dalam pengikatan subunit stroma lain, dan ini

menunjukkan pentingnya PsaD dalam menjaga kestabilan stroma pada tanaman

(Klukas et al. 1999). Kruip et al. (1997) juga melaporkan, PsaD diperlukan untuk

menstabilkan PsaC, dan subunit yang mengarah ke sitoplasma dari PSI. PsaD

merupakan ‘master’ subunit yang menstabilkan keseluruhan gabungan PsaC/D/E

pada fotosistem I. Dengan demikian, subunit PsaD berperan penting dalam

kelangsungan transfer elektron yang berlangsung pada PSI (Klukas et al. 1999). A B

Gambar 8 Struktur keseluruhan PSI. A. Simulasi permukaan gundukan stroma

PSI. PsaC diberi warna kuning, PsaD warna merah, PsaE warna biru, dan subunit membran-integral warna putih. PsaC terletak di pusat monomer, diapit oleh PsaD dan PsaE. PsaD terletak lebih dekat dengan trimer, sedangkan PsaE terletak dekat dengan periferal. B. gambaran samping, sejajar dengan membran, terhadap susunan PSI, termasuk subunit ekstrinsik PsaE, PsaC dan PsaD stroma (Kruip et al. 1997; Klukas et al. 1999; Kraub dan Saenger 2001)

Page 54: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

29

Gen-gen Fotosintesis yang Terkait Adaptasi Tanaman terhadap Intensitas Cahaya Rendah

Fotosintesis terjadi pada kloroplas yang di dalamnya terdapat sistem

membran tilakoid yang terorganisir dengan baik dan melibatkan semua komponen

aparatus fotosintetik yang dikode gen inti dan gen kloroplas untuk penangkapan

cahaya dan pembentukan struktur pemanenan fotosintetik yang optimal (Allen dan

Forsberg 2001; Pfannschmidt 2003). Gen kloroplas terdapat pada genom kecil

yang disebut plastome, yang mengandung 100-120 kelompok gen yang relatif

stabil (Race 1999). Kloroplas juga mengandung komponen yang lengkap untuk

mengekspresikan informasi genetik (Stern 1997), meskipun sebagian besar protein

kloroplas dikode di inti (Abdallah 2000) dan harus diimpor secara post-

translasional ke kloroplas melalui komponen import yang terletak di amplop

kloroplas (Jarvis dan Soll 2001).

Stern (1997) melaporkan bahwa protein yang terletak pada dan/atau dekat

dengan pusat reaksi fotosintesis dikode di plastome, sementara protein periferal

dikode di inti. Gen-gen inti mengatur jumlah ion dan asam amino tertentu pada

sitoplasma, yang dapat mempengaruhi kemampuan plastida untuk tumbuh dan

berkembang. Pada tahapan berikut, perkembangan dan diferensiasi plastida

memerlukan enzim, enzim subunit, yang dikendalikan gen inti. Gen-gen inti ini

mempengaruhi taraf transkrip gen kloroplas, transkripsi dan translasi gen

kloroplas, dan stabilitas protein produk gen plastida. Semua gen inti tersebut dapat

membantu memadukan aktivitas genom inti dan genom kloroplas (Hatchel 1997).

Gen-gen Fotosintetik Inti

Gen-gen inti yang mengkode protein komponen PSI antara lain psaD, psaE,

psaF, psaK, psaL, psaN, psaO, psaX, psaY, dan petF yang mengkode ferredoxin

(Fd), petE mengkode plastosianin (PC), petH mengkode ferredoxin:NADP

oksidoreduktase (FNR) (Hiyama 1997). Gen-gen lain yang terkait cahaya yang

terlibat dalam fotosintesis antara lain rbcS yang mengkode mRNA dan protein sub

unit kecil ribosom, lhcb, chlorophyll a/b binding protein (CAB), chalcone

synthase (CHS) (Peters et al. 1998), chlorophyll a oxygenase (CAO), gen yang

mengkode enzim biosintesis klorofil seperti CHLD, DVR (Masuda et al. 2002),

Page 55: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

30

dan gen-gen yang terkait dengan kualitas cahaya seperti gen fitokrom (phy), DET-

2 (de-etiolated-2) (Ziemienowicz dan Gabrys 2003), por, Apx (Pfannschmidt

2003). Menurut Steindler et al. (1999), gen ATHB-2 mengkode protein

homeodomain-leucine zipper yang diinduksi dengan cepat dan kuat oleh adanya

perubahan rasio cahaya merah (R) : merah jauh (FR) yang terjadi selama siang

hari di bawah naungan kanopi dan menginduksi respon shade avoidance tanaman.

Gen-gen Fotosintesis Kloroplas

Gen fotosintesis kloroplas merupakan kelompok gen kloroplas yang terlibat

dalam fotosintesis. Gen kloroplas (plastida) berbentuk sirkuler, disebut plastome,

dengan ukuran 120-217 kb. Genom kloroplas terdiri atas 2 kelompok, daerah

large single copy (LSC) dan small single copy (SSC) dengan 2 inverted repeats

(IR) yang dapat menyandi sekitar 140 protein selain 30 protein dalam proses

fotosintesis (Hachtel 1997; Joshi 1997; Tyagi et al. 2000).

Gen kloroplas terutama menyandi komponen protein dari empat kelompok

kompleks protein yang terdapat pada membran tilakoid yaitu: 6 gen untuk protein

PSI (psaA-C,I,J,M; produk P700 Chla apoprotein A1, P700 apoprotein Chla A2,

protein 9kDa), 12 gen untuk protein PSII (psbA-F,H-N; produk pusat reaksi

protein D1, D2, apoprotein Chla 47kDa CP47, apoprotein Chla 43kDa CP43, cyt

b559 8kDa, cyt b559 4kDa), 6 gen untuk cyt b6/f (petA-B,D,G; produk

cytochrome f, cytochrome b6), dan 6 gen untuk ATPase (atpA-B, atpE-I; produk

subunit CF1 alpha, CF1 beta), dan gen yang mengkode subunit besar Rubisco

(rbcL) (Hachtel 1997; Joshi 1997; Tyagi et al. 2000).

Prinsip Kontrol Redoks pada Ekspresi Gen Fotosintetik

Proses transduksi tanaman terhadap adanya cekaman faktor luar mencakup

tiga proses pokok, yaitu: stress perception, transduction of stress signal, dan

final response. Terhadap stres lingkungan, tanaman dapat merasakan, mengenali

signal stres, dan menggunakan signal tersebut sebagai isyarat (cue) untuk

membentuk perubahan-perubahan spesifik pada berbagai tingkatan sebagai bentuk

adaptasinya, seperti perubahan struktur morfologi, fisiologi (physiological

Page 56: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

31

behavior), modifikasi lintasan biokimia, dan ekspresi gen-gen spesifik (stress-

specific gene expression) (Biswal dan Biswal 1999).

Mekanisme tanaman untuk dapat mengenali dan merasakan suatu signal

stres kemudian merubah signal tersebut menjadi respon biokimia (biochemical

response) masih belum begitu jelas. Akan tetapi, penerimaan (perception)

tanaman terhadap signal stres dan interaksi awal dengan sel dapat diketahui

dengan adanya berbagai perubahan fisik seperti perubahan volume sel, struktur

biomembran, keseimbangan ion, total kandungan dan komposisi solut, atau

perubahan terhadap interaksi protein-ligan (Biswal dan Biswal 1999).

Membran sel yang terdiri atas protein dan lipid bilayer merupakan tempat

terjadinya proses persepsi signal stres. Seperti membran plasma, membran

kloroplas tidak hanya tersusun oleh lipid dan protein tetapi juga ion-ion dan

berbagai macam reseptor yang dapat mengenali signal intrinsik maupun signal

dari lingkungan. Perubahan struktur lipid dan/atau kompleks lipoprotein akibat

stres (stress-induced changes) tersebut selanjutnya dikirim (transmitted) ke

berbagai jenis respon seluler melalui perubahan biokimia yang sesuai untuk

mengembangkan mekanisme adaptasi guna mengimbangi pengaruh cekaman

tersebut. Signal stres dapat menyebabkan terjadinya perubahan di dalam fluiditas

membran dan memicu serangkaian perubahan-perubahan, termasuk ekspresi gen-

gen yang berperan terhadap adaptasi stres (Murata dan Loss 1997).

Stres cahaya rendah misalnya, sebagaimana yang dilaporkan pada padi

gogo, menyebabkan proses metabolisme terganggu, yang berimplikasi pada

menurunnya laju fotosintesis dan sintetis karbohidrat (Chaturvedi dan Ingram

1989; Vijayalaksmi et al. 1991; Murty et al. 1992; Jiao et al. 1993; Watanabe et

al. 1993; Yeo et al. 1994). Pengaruh tercepat dari cekaman intensitas cahaya

rendah adalah penurunan kandungan karbohidrat, terutama fruktosa dan sukrosa

(Kephart et al. 1992; Chaturvedi et al. 1994) yang diikuti dengan berbagai

perubahan dari proses metabolisme pada tanaman.

Terhadap ekspresi gen, cahaya merupakan salah satu faktor lingkungan yang

paling penting pada organisme fotosintetik. Fotosintesis memberikan signal yang

penting terhadap ekspresi gen dengan kontrol cahaya melalui perubahan pada

status reduksi/oksidasi (redoks) dari molekul signaling. Perubahan pada status

Page 57: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

32

redoks seperti itu diinduksi oleh perubahan kualitas dan kuantitas cahaya yang

diterima. Mekanisme signal redoks memungkinkan fotosintesis mengadakan

perubahan pada struktur aparatus fotosintesis melalui kontrol umpan balik

ekspresi gen fotosintesis, dan mekanisme signal ini disebut ’kontrol redoks’

(Pfannschmidt et al. 2001; Surpin et al. 2002; Pfannschmidt 2003).

Reaksi redoks merupakan reaksi kimia yang meliputi transfer elektron atau

atom hidrogen antar molekul. Reduksi merupakan perolehan satu atau lebih

elektron atau atom hidrogen oleh akseptor elektron. Oksidasi merupakan

kehilangan satu atau lebih elektron atau atom hidrogen pada suatu donor elektron.

Status redoks artinya status oksidasi atau reduksi dari suatu molekul tertentu.

Kontrol redoks dari setiap fenomena biologi dapat diuraikan sebagai

ketergantungan suatu respon molekuler terhadap status redoks dari satu atau lebih

molekul penyusunnya. Banyak proses metabolisme di dalam sel melakukan reaksi

redoks sehingga terjadi berbagai respon biologi dan ini dilaporkan sebagai kontrol

redoks (Pfannschmidt et al. 2001; Surpin et al. 2002).

Secara sederhana, untuk mengklasifikasi perbedaan tipe kontrol redoks

adalah dengan menentukan posisi parameter controlling pertama di dalam rantai

transduksi signal antara stimulus lingkungan dengan respon molekuler. Pada sel

hidup, rantai transduksi signal ini meliputi persepsi rangsangan lingkungan baik

melalui satu atau beberapa reseptor, proses transduksi signal melalui rantai

molekul transduksi yang sesuai, yang pada akhirnya respon molekuer yang

menyebabkan sel-sel mampu melakukan aklimatisasi terhadap perubahan

lingkungan (Gambar 9). Berdasarkan posisi parameter kontrol di dalam rantai

transduksi signal, kontrol redoks dibedakan menjadi kontrol redoks persepsional

dan kontrol redoks transduksional. Kontrol redoks persepsional, terjadi apabila

faktor lingkungan (misal, cahaya) itu sendiri menginduksi signal redoks di dalam

sistem sensor persepsi. Kontrol redoks transduksional, terjadi apabila persepsi dari

faktor lingkungan (misal cahaya) menghasilkan perubahan status redoks dari

molekul-molekul terkait yang ada di sistem sensor (phytochrome family, dan blue

light photoreceptor, PSII, PSI). Pada organisme fotoautotropik, aparatus

fotosintetik dapat berfungsi sebagai sistem sensor dan berfungsi sebagai

fotoreseptor (Pfannschmidt et al. 2001; Pfannschmidt 2003).

Page 58: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

33

Gambar 9 Model kontrol redoks (redox control) terhadap ekspresi gen fotosintesis

pada tanaman tingkat tinggi. (A) Skema tahapan proses signaling di dalam sel tanaman. (B) Skema tahapan kontrol redoks terhadap ekspresi gen fotosintesis. Kotak dengan huruf P menunjukkan sistem sensor dari perceptional redox control; kotak dengan huruf T menggambarkan komponen transductional redox control. Garis panah tebal menunjukkan lintasan signaling yang dikontrol redoks. Rantai tranport elektron dari kloroplas digambarkan secara sistematik sesuai dengan skema Hill–Bendall Z dan aliran elektron ditampilkan dengan panah yang menghubungkan antar komponen (Pfannschmidt et al. 2001; Surpin et al. 2002).

Regulasi redoks oleh faktor lingkungan ‘cahaya’ sangat umum di antara

organisme fotosintetik pada tanaman tingkat tinggi. Hasil penelitian dilaporkan

bahwa perubahan pencahayaan (kualitas atau kuantitas cahaya) digunakan untuk

mempengaruhi transport elektron pada membran tilakoid in vivo, yang pada

gilirannya menyebabkan perubahan status redoks komponen fotosintetik.

Penelitian dengan perubahan kualitas cahaya umumnya melibatkan kondisi

cahaya rendah. Pada kloroplas tanaman yang mengalami kondisi tersebut, gen-gen

fotosintetik plastid saja yang terpengaruh. Sebaliknya, perubahan kuantitas cahaya

B

P

Page 59: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

34

secara predominan menunjukkan adanya pengaruh redoks persepsional terhadap

gen fotosintetik inti. Dari kedua kasus tersebut, terindikasi bahwa sensor redoks

yang paling memungkinkan adalah PQ-pool dan/atau kompleks cyt b6f. Pada

tanaman tingkat tinggi, Sinapsis alba, pencahayaan yang lama dengan perubahan

kualitas cahaya menyebabkan penyesuaian jumlah molekul (stoikiometri)

fotosistem melalui variasi densitas PSI dan PSII secara simultan. Kuantitas cahaya

juga berpengaruh terhadap ekspresi gen-gen fotosintetik inti. Ekspresi gen Lhcb

(yang mengkode chlorophyll-binding protein dari kompleks pemanen cahaya

PSII, LHCII) pada alga bersel satu, D. tertiolecta, dapat dirangsang oleh PQ-pool

teroksidasi (melalui switch dari intensitas cahaya tinggi ke rendah) (Pfannschmidt

et al. 2001; Surpin et al. 2002; Pfannschmidt 2003).

Pengetahuan terkini menunjukkan bahwa komponen redoks menginisiasi

lintasan signaling yang cukup penting, yang akhirnya meregulasi ekspresi gen-gen

fotosintesis. Akan tetapi pada level molekuler, ada dua pertanyaan mendasar yang

masih krusial, bagaimana signal redoks itu ditransduksi ke gen target, dan apakah

berbagai pengaruh redoks yang diamati pada sistem in vivo dan in vitro

menunjukkan network signaling redoks yang terintegrasi. Pfannschmidt et al.

(2001) meringkas berbagai hasil penelitian sebelumnya dan menyatakan bahwa

signal redoks ditransfer keluar dari membran tilakoid melalui dua cara yaitu:

signal redoks utama dari PQ-pool dimediasi melalui kompleks cyt b6f, dan

transduksi signal redoks PQ/cyt b6f melalui kinase yang terkait dengan tilakoid.

Kedua, status redoks dari PQ diterima oleh membran yang terikat, dua komponen

sensor kinase, yang mentransfer signal tersebut sampai adanya respon molekuler,

yang pada gilirannya mempengaruhi ekspresi gen.

Metabolisme kloroplas dan fotosintesis berkontribusi terhadap signal

kloroplas yang menentukan ekspresi gen. Perbedaan kontrol redoks gen

fotosintesis kloroplas dan inti adalah signal redoks yang menuju inti terdiri atas

80-120 signal (tergantung jumlah kloroplas pada sel yang bersangkutan),

sedangkan kontrol redoks di dalam kloroplas merupakan spesifik kloroplas,

sehingga ekspresi gen fotosintesis inti menggambarkan respon terhadap rata-rata

dari seluruh signal tersebut. Signal redoks kloroplas yang ke inti mengandung

informasi yang sifatnya lebih umum tentang kapasitas fotosintesis sel, sedangkan

Page 60: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

35

signal redoks di dalam kloroplas menghasilkan kontrol ekspresi gen tergantung

situasi spesifik di dalam masing-masing kloroplas (Pfannschmidt et al. 2001;

Pfannschmidt 2003).

Pada kondisi intensitas cahaya rendah, status redoks PQ-pool tergantung

secara langsung pada transport elektron. Peran fisiologi yang utama adalah untuk

meredistribusikan ketidakseimbangan energi eksitasi antara kedua fotosistem (PSI

dan PSII) untuk menghasilkan flux elektron yang efisien, meskipun pada hasil

foton yang terbatas, dengan cara aktifasi keragaman fisiologi atau mekanisme

ekspresi gen (Pfannschmidt et al. 2001; Pfannschmidt 2003).

Ekspresi Gen-gen Terkait Adaptasi Tanaman terhadap Intensitas Cahaya Rendah

Fotosintesis merupakan reseptor untuk informasi lingkungan yang

mengontrol ekspresi gen-gen yang dikode inti dan plastida yang mengkode

komponen-komponen yang diperlukan untuk proses fotosintesis yang efisien.

Beberapa data mengenai kontrol redoks terhadap ekspresi gen fotosintesis

konsisten dan mengindikasikan fotosintesis berperan penting sebagai regulator

metabolisme tanaman dan juga ekspresi gen (Pfannschmidt et al. 2001;

Pfannschmidt 2003).

Sebagaimana diketahui bahwa gen-gen inti diregulasi pada level transkripsi

dan gen-gen kloroplas diregulasi pada level post-transkripsi. Akan tetapi, banyak

penelitian menunjukkan bahwa ekspresi gen pada organisme hidup cukup

kompleks dan banyak dipengaruhi berbagai faktor dalam dan luar tanaman.

Ekspresi gen meliputi beberapa tahapan, dimulai dengan transkripsi gen atau

operon menjadi pre-mRNA (hnRNA) yang kemudian diproses menjadi molekul

mRNA matang oleh mekanisme yang meliputi splicing dan editing. Ukuran pool

molekul mRNA selanjutnya tergantung pada stabilitas mRNA. Terakhir, untuk

memperoleh polipeptida fungsional, mRNA dikirim ke poliribosom untuk

translasi menjadi protein. Sebagian besar tahapan ekspresi gen ini diregulasi oleh

inti dan kloroplas.

Cahaya mengaktifkan ekspresi gen inti maupun kloroplas dan juga

prosesing subunit protein untuk pembentukan protein kompleks. Cahaya bekerja

Page 61: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

36

pada level post-transkripsi di dalam kloroplas, sementara secara langsung

mengontrol laju transkripsi selama ekspresi gen inti. Sensor tanaman menerima

cahaya putih (400-700 nm), UV dan merah jauh (far-red). Terdapat paling kurang

3 fotoreseptor yang terlibat dalam penerimaan cahaya, yaitu a) reseptor fitokrom,

reseptor cahaya merah/merah-jauh, b) reseptor cahaya biru/UV-A dan/atau UV-B,

dan c) protochlorophyllide, dengan kapasitas penerimaan cahaya merah. Signal

cahaya diterima oleh fotoreseptor dan ditransmisi secara bertahap (cascade) untuk

mengontrol perubahan transkripsi atau post-transkripsi. Transduksi signal yang

menghubungkan penerimaan cahaya oleh fotoreseptor dan ekspresi gen masih

belum jelas, kecuali elemen regulatory cahaya pada daerah promoter yang

menerima signal yang diproses fotoreseptor untuk aktivitas gen (Biswal 1997a,

Tyagi et al. 2000). Misalnya promoter rbcS pada kacang kapri (Pisum sativum)

dengan sekuens -35 bp sampai -2 bp yang mencakup TATA box dijumpai

menginduksi ekspresi gen light-regulated dan positif regulatory elemen (PRE)

yang dijumpai pada daerah upstream promoternya.

Gambar 10 Model sintesis, prosesing, transport, dan protein PSII intrinsik dan

ekstrinsik (Biswal 1997a).

Page 62: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

37

Intensitas dan kualitas cahaya juga mempengaruhi tingkat transkripsi dan

mRNA. Di antara panjang gelombang, cahaya merah/merah-jauh yang bekerja

melalui fitokrom dan cahaya biru melalui kriptokrom tampaknya paling penting

yang mengkode beberapa gen kloroplas (Tyagi et al. 2000).

Empat subunit protein intrinsik yang penting dari kompleks PSII, seperti

D1, D2, cyt b556, CP43, dan CP47 dikode oleh gen kloroplas, disintesis di

kloroplas, diproses di membran, dan ditransfer di dalam tilakoid dari lamela

stroma ke daerah tumpukan grana, dimana protein tersebut diinsersi dengan

protein lain dan komponen nonprotein untuk membentuk hasil akhir. Sebaliknya,

protein ekstrensik dengan berat molekul 33, 23, dan 18 kDa dikode oleh gen inti,

disintesis di sitoplasma sebagai prekursor dengan berat molekul tinggi, diproses,

dan ditransfer melalui membran kloroplas dan membran tilakoid. Terakhir, protein

mencapai lumen dan bergabung dengan protein intrinsik (Gambar 10) (Biswal

1997a; Rochaix 2001).

Analisis Genetik Adaptasi Tanaman

Pendugaan Jumlah Gen Pengendali

Adaptasi tanaman terhadap intensitas cahaya rendah dapat berupa sifat

kualitatif atau kuantitatif. Sifat kualitatif dikendalikan oleh gen mayor dan

memiliki ragam diskret (diskontinu) yang dapat dipisahkan secara jelas menjadi

kelas-kelas tertentu. Sifat kualitatif dikendalikan satu atau beberapa gen yang

ekspresinya tidak banyak dipengaruhi oleh faktor lingkungan. Sifat kuantitatif

memiliki ragam terusan (kontinu), dikendalikan oleh banyak gen minor yang

ekspresinya sangat dipengaruhi oleh faktor lingkungan (Allard 1960; Fehr 1987).

Untuk menduga apakah suatu karakter dikendalikan oleh gen sederhana

(gen mayor), poligenik (gen minor) atau keduanya sekaligus dapat dilakukan

melalui pengamatan sebaran frekuensi karakter yang diamati pada populasi

bersegregasi (F2). Sebaran frekuensi F2 yang diskret menunjukkan bahwa karakter

yang diamati dikendalikan oleh gen mayor (gen sederhana). Sebaran terusan

(kontinu) satu puncak dan menyebar normal menunjukkan gen pengendali adalah

gen minor. Apabila membentuk sebaran terusan dengan dua puncak atau lebih,

Page 63: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

38

karakter yang diamati dikendalikan oleh beberapa gen mayor dan gen minor

sekaligus (Fehr 1987).

Analisis genetik untuk karakter yang dikendalikan oleh gen mayor

dilakukan dengan analisis genetika Mendel, yaitu dengan membandingkan nisbah

fenotipe hasil pengamatan pada populasi F2 terhadap nisbah Mendel atau nisbah

fenotipe tertentu sebagai simpangan nisbah Mendel dengan uji Chi-Kuadrat (Fehr

1987; Crowder 1993). Untuk keperluan tersebut fenotipe pada populasi F2

dikelompokkan ke dalam kelas-kelas tertentu sesuai dengan jumlah kelas dalam

nisbah pembanding. Melalui cara pendekatan ini diperoleh dugaan jumlah gen dan

aksi gen yang bersegregasi untuk karakter yang diamati.

Menurut Allard (1960); Burns (1976), karakter kualitatif dicirikan oleh

adanya ragam diskret (diskontinu) pada kurva sebaran frekuensi dengan

munculnya kembali ragam kedua tetua di dalam generasi bersegregasi (F2) dan

salah satu tetua mempunyai pengaruh dominansi penuh dalam generasi F1. Karakter kuantitatif secara umum dicirikan oleh adanya varian kontinu pada kurva

sebaran frekuensi di dalam generasi bersegregasi (F2) dengan varian F2 yang lebih

besar dari varian F1.

Untuk mengetahui sebaran frekuensi dari populasi yang diuji, terlebih

dahulu dilakukan uji normalitas sebaran frekuensi F2 menggunakan metode

Shapiro dan Wilk (1965). Apabila sebaran frekuensi F2 menunjukkan sebaran

dengan satu puncak dan menyebar normal, maka karakter yang diuji dikendalikan

oleh banyak gen minor (poligenik). Pendugaan jumlah gen yang bersegregasi

dilakukan dengan menggunakan beberapa rumus, salah satunya adalah rumus

Castle (1921) dalam Roy (2000), sebagai berikut.

)(8)(

12

22

221

FFppnσσ −

−=

dimana, n = jumlah gen pengendali; 1p = rata-rata tetua 1; 2p = rata-rata tetua 2; σ2F1 = varians populasi F1; σ2F2 = varians populasi F2.

Apabila sebaran frekuensi F2 menunjukkan tidak mengikuti sebaran normal,

maka kemungkinan karakter tersebut dikendalikan oleh gen minor dan gen mayor.

Page 64: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

39

Jumlah gen mayor dihitung dengan membandingkan sebaran frekuensi fenotipik

hasil pengamatan (observation) dengan nisbah harapan (expectation)

menggunakan uji Chi-Kuadrat (χ2) (Fehr 1987; Crowder 1993).

Untuk pendugaan jumlah dan aksi gen, fenotipe pada populasi F2 terlebih

dahulu dikelompokkan ke dalam kelas-kelas tertentu sesuai dengan jumlah kelas

dalam nisbah pembanding (Fehr 1987; Crowder 1993). Pengelompokan fenotipe

berdasarkan kelas-kelas pembanding dalam analisis genetika Mendel adalah

sebagai berikut: 2 kelas: peka (1,2), toleran (3,4,5,6,7,8,9); 3 kelas: peka (1,2),

moderat (3,4,5), toleran (6,7,8,9); 4 kelas: peka (1,2), agak peka (3,4), agak

toleran (5,6), toleran (7,8,9).

Untuk menguji kesesuaian nilai pengamatan dengan nilai harapan digunakan

Uji Chi-square (χ2):

EiEiOiX

22 )( −

∑=

dimana χ2 merupakan nilai chi-square hitung; i = 1,2,3,….n; Oi = nilai pengamatan; Ei = nilai yang diharapkan dalam kelas ke i. Apabila nilai χ2 hitung lebih kecil dari χ2 tabel, maka tidak ada beda nyata, berarti

sebaran fenotipik pada populasi F2 mengikuti nisbah Mendel atau nisbah fenotipik

tertentu.

Aksi Gen

Konsep umum cara kerja gen atau aksi gen adalah salah satu dari dominansi

atau resesif. Alel dapat menunjukkan karakternya secara lengkap atau sama sekali

tidak terlihat dalam fenotipe. Konsep ini merupakan konsep atau teori Mendel,

dengan asumsi: setiap sifat hanya ditentukan oleh satu lokus, alel dalam setiap

lokus bersegregasi bebas (independent assortment) dari lokus lain, dan gen-gen

tersebut merupakan gen inti. Akan tetapi, beberapa hasil penelitian

mengungkapkan terdapat banyak aksi dan interaksi gen yang berbeda-beda

membuat pola segregasi yang berbeda dengan yang didapatkan Mendel. Tipe aksi

gen dikelompokkan menjadi dua kategori interaksi umum yaitu intralokus dan

interlokus (Welsh 1991; Yusuf 2001).

Page 65: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

40

Interaksi intralokus atau alelik. Interaksi intralokus atau yang dikenal

dengan alelik yaitu interaksi antar alel pada lokus yang sama, misalnya alel

dominan menutup pengaruh dari alel resesif (Crowder 1988). Ada tiga macam

interaksi intralokus yaitu, dominansi, tidak ada dominansi (aditif), dan dominansi

berlebih (overdominan). Dominansi, sama dengan yang dimaksud Mendel bahwa

dari persilangan dua tetua homozigot dihasilkan perbandingan segregasi fenotipe

pada generasi F2 yaitu 3:1. Tidak ada dominansi (aditif), fenotipe heterozigot

terletak tepat di antara dua tetua homozigot, dihasilkan perbandingan segregasi

fenotipe pada generasi F2 yaitu 1:2:1. Variasi interaksi ini dapat terjadi bilamana

fenotipe heterozigot mendekati salah satu nilai tetuanya. Keadaan ini disebut

dominansi tidak sempurna atau dominansi sebagian atau dominansi parsial.

Dominansi berlebih (overdominan), fenotipe heterozigot terletak di luar kedua

tetuanya, dihasilkan perbandingan segregasi fenotipe pada generasi F2 yaitu 1:1:2

(Welsh 1991; Crowder 1993).

Aksi gen intralokus ini dapat didekati dengan menghitung derajat dominansi

melalui rumus nisbah potensi (hp) seperti yang diajukan Petr dan Frey (1966),

sebagai berikut.

MPHPMPFhp

−−

=

dimana hp = nilai nisbah potensi atau derajat dominansi gen, F = rata-rata nilai F1, HP = rata-rata nilai tetua tertinggi, MP = nilai tengah kedua tetua

Selanjutnya berdasarkan nilai potensi rasio, derajat dominansi atau aksi gen

diklasifikasikan sebagai berikut:

Tabel 2 Klasifikasi derajat dominansi berdasarkan nilai potensi rasio (Petr dan Frey 1966)

Kisaran nilai hp Derajat dominansi 0,00 < hp ≤ 0,25 Linier aditif, tidak ada dominansi

0,25 < hp ≤ 0,75 Dominan parsial, tidak sempurna

0,75 < hp ≤ 1,25 Dominan lengkap, sempurna

Hp >1,25 Dominan berlebih, overdominan

Page 66: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

41

Interaksi interlokus atau non-alelik. Interaksi interlokus atau disebut juga

non alelik yaitu interaksi antar alel pada lokus yang berbeda. Sama halnya dengan

sistem intralokus, pada interlokus juga terdapat bermacam-macam interaksi alel

antar lokus sehingga merubah pola distribusi F2. Untuk dua pasang gen yang

memisah secara bebas tanpa adanya interaksi, nisbah fenotipik F2 yang diharapkan

adalah 9:3:3:1. Ekspresi sifat satu alel dapat berubah karena kehadiran atau

ketidakhadiran salah satu alel atau lebih pada lokus yang berbeda. Proses ini

disebut epistasis yang dapat berlangsung apabila paling sedikit terdapat dua lokus

yang mengendalikan satu karakter (Welsh 1991; Crowder 1993). Yusuf (2001)

membagi interaksi interlokus (epistasis) menjadi tiga macam yaitu epistasis

komplementasi, modifikasi, dan duplikasi.

Epistasis komplementasi terjadi karena munculnya hasil ekspresi suatu gen

yang memerlukan kehadiran alel tertentu pada lokus yang lain. Terdapat dua

kasus nisbah yang termasuk epistasis komplementasi yaitu epistasis duplikasi

resesif dan epistasis resesif. Epistasis duplikasi resesif atau aksi gen pelengkap

yaitu bentuk epistasis dimana munculnya suatu produk memerlukan kehadiran alel

dominan pada dua lokus. Distribusi frekuensi pada generasi bersegregasi F2

adalah 9:7. Epistasis resesif atau modifikasi aksi gen yaitu bentuk epistasis

dimana faktor resesif homozigot pada suatu lokus bersifat epistasis terhadap

faktor dominan pada lokus lain. Distribusi frekuensi fenotipik pada generasi F2

adalah 9:3:4 (Welsh 1991; Crowder 1993; Yusuf 2001).

Epistasis modifikasi merupakan bentuk epistasis dimana kegiatan satu gen

pada suatu lokus menekan atau merubah hasil kerja gen pada lokus yang lain.

Terdapat tiga bentuk epistasis modifikasi yaitu epistasis dominan dan resesif,

epistasis dominan, dan kasus segregasi F2 nisbah 7:6:3. Epistasis dominan dan

resesif disebut juga epistasis penghambat (inhibitor) yaitu kehadiran suatu alel

dominan pada lokus akan menghambat pengaruh alel dominan lain. Pada generasi

F2 distribusi fenotipik adalah 13:3. Epistasis dominan (aksi gen menyelubung)

yaitu bentuk epistasis dimana kedua lokus menghasilkan produk yang berbeda,

produk dari salah satu lokus tersebut menutupi pemunculan dari produk yang lain.

Distribusi frekuensi pada generasi bersegregasi F2 adalah 12:3:1. Kasus nisbah

7:6:3 muncul karena adanya satu gen yang mencegah ekspresi gen yang lain,

Page 67: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

42

dimana terdapat perbedaan derajat penekanan antara homozigot dominan dengan

homozigot resesif (Welsh 1991; Crowder 1993; Yusuf 2001).

Epistasis duplikasi yaitu bentuk epistasis yang berlangsung karena dua gen

memproduksi bahan yang sama dan menghasilkan fenotipe yang sama. Bentuk

interaksi ini disebut juga duplikasi epistasis dominan (isoepistasis) yaitu bentuk

epistasis dimana alel dominan pada satu lokus dapat bersifat lebih dominan

terhadap alel yang resesif homozigot pada lokus yang lain. Distribusi frekuensi

fenotipik pada F2 adalah 15:1 (Welsh 1991; Crowder 1993; Yusuf 2001).

Pendugaan Nilai Heritabilitas

Salah satu parameter genetik dalam pemuliaan tanaman yang berfungsi

untuk mengetahui hubungan genetik antara tetua dengan turunan serta efisiensi

seleksi relatif untuk beberapa karakter adalah heritabilitas (Allard 1960).

Heritabilitas terdiri atas dua tipe yaitu: heritabilitas arti luas (broad sense

heritability) yang dihitung sebagai nisbah varians total genetik, yang meliputi

varians dominan, aditif dan epistasis, terhadap varians fenotipik. Heritabilitas arti

sempit (narrow sense hetitability) sebagai nisbah varians genetik aditif terhadap

varians fenotipik yang menggambarkan seberapa besar suatu karakter mewaris

kepada generasi berikutnya. Nilai heritabilitas arti sempit biasanya lebih kecil dari

pada nilai heritabilitas arti luas, dan lebih menggambarkan pada kemajuan genetik

suatu karakter yang diperoleh dari hasil seleksi (Fehr 1987).

Pendugaan nilai heritabilitas arti luas dapat dilakukan melalui komponen

varians, regresi tetua - keturunan, pendugaan varians lingkungan secara tidak

langsung, dan melalui besarnya perbaikan genetik atau respon seleksi (Fehr 1987).

Pendugaan nilai heritabilitas melalui pendugaan varians lingkungan secara tidak

langsung dengan melibatkan ragam kedua tetua, generasi F1 dan generasi F2

dengan rumus seperti yang dikemukakan Warner (1952) dalam Fehr (1987).

Pendugaan nilai heritabilitas arti sempit dapat dihitung dengan melibatkan varians

F2 dari persilangan antar tetua dan F2 dari populasi yang dikembangkan dari

backcross (Fehr 1987; Roy 2000).

McWhirter (1979) menggolongkan nilai heritabilitas rendah apabila h2 <

20%, nilai heritabilitas sedang apabila 20% < h2 < 50%, dan nilai heritabilitas

Page 68: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

43

tinggi apabila h2 > 50%. Terdapat beberapa asumsi-asumsi yang harus dipenuhi

sehingga diperoleh nilai duga heritabilitas yang tidak bias, yaitu: tidak ada

interaksi non alelik, tidak ada interaksi antara genetik dengan lingkungan, tidak

ada pautan antar gen, dan varians lingkungan populasi F2 dan backcross adalah

sama.

Page 69: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

BAB III

RESPON KARAKTER MORFO-FISIOLOGI DAUN, PENCIRI ADAPTASI KEDELAI TERHADAP

INTENSITAS CAHAYA RENDAH

Abstrak

Penelitian ini bertujuan untuk mengetahui respon beberapa karakter morfologi dan fisiologi daun yang menjadi penciri adaptasi kedelai terhadap intensitas cahaya rendah. Percobaan dilaksanakan menggunakan rancangan petak terpisah dengan tiga ulangan. Perlakuan terdiri atas faktor genotipe dan intensitas cahaya rendah. Faktor genotipe terdiri atas dua genotipe toleran (Ceneng dan Pangrango) dan dua genotipe peka (Godek dan Slamet). Faktor intensitas cahaya rendah terdiri atas: L0 = cahaya 100% (kontrol), L1 = 5 hari naungan 50% (setelah tanaman berumur 21 HST), L2 = 5 hari gelap total (setelah tanaman berumur 21 HST), L3 = 3 hari naungan 50% + 5 hari cahaya 100% (setelah tanaman berumur 18 HST), dan L4 = 3 hari naungan 50% + 3 hari cahaya 100% + 5 hari gelap total (setelah tanaman berumur 15 HST). Hasil penelitian menunjukkan bahwa pada kondisi intensitas cahaya rendah, genotipe toleran menunjukkan ukuran daun lebih luas, bobot daun spesifik lebih rendah (lebih tipis), kandungan klorofil lebih tinggi, dan rasio klorofil a/b yang lebih rendah dibanding genotipe peka, sehingga karakter morfo-fisiologi daun tersebut dapat dijadikan sebagai penciri adaptasi kedelai terhadap intensitas cahaya rendah. Kata kunci: kedelai, penciri, karakter morfologi daun, intensitas cahaya rendah,

genotipe toleran

Page 70: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

45

RESPONSE OF LEAF MORPHO-PHYSIOLOGICAL CHARACTERS, MARKERS FOR ADAPTATION OF

SOYBEAN TO LOW LIGHT INTENSITY

Abstract

The objective of this study was to know the response of leaf morpho-physiological characters as markers for adaptation of soybean to low light intensity. This research was conducted in two factors (genotype and low light intensity) and was arranged using split plot design with three replicates. Genotype factor consisted Ceneng, Pangrango (low irradiance tolerant genotypes), Godek and Slamet (low irradiance sensitive genotypes). Factors of low light intensity consisted of L0 = under fully sun light (control), L1 = 5 days under 50% shading (exposed at 21 days after planting, DAP), L2 = 5 days under dark condition (exposed at 21 DAP), L3 = 3 days 50% shading + 5 days sun light (exposed at 18 DAP), L4 = 3 days 50% shading + 3 days sun light + 5 day dark (exposed at 15 DAP). Results of this study showed that: under low light intensity, soybean of LI-tolerant genotypes possessed wider and thiner leaves than LI-sensitive genotypes, chlorophyll content was higher and ratio of chlorophyll a/b was lower for LI-tolerant genotypes than LI-sensitive genotypes, therefore the leaf morpho-physiological characters of soybean might be used as markers for adaptation of soybean to low light intensity. Key words: soybean, marker, leaf morphological character, low light intensity,

tolerant genotype.

Page 71: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

46

PENDAHULUAN

Latar Belakang

Pengembangan tanaman kedelai sebagai tanaman sela di bawah tegakan

tanaman perkebunan, lingkungan agroforestri, atau tumpang sari dengan tanaman

pangan lain merupakan alternatif andalan untuk meningkatkan produksi kedelai

nasional yang masih sangat rendah. Kendala utama pengembangan kedelai

sebagai tanaman sela adalah rendahnya intensitas cahaya akibat faktor naungan.

Rata-rata intensitas cahaya berkurang 25-75% di bawah tanaman karet yang

berumur 2-4 tahun (Chozin et al. 1999), sedangkan di bawah tumpangsari dengan

jagung berkurang 33% (Asadi et al. 1997) dari rata-rata intensitas cahaya di

lingkungan terbuka 800 kal/cm2/hari. Menurut Handayani (2003), akibat cekaman

naungan 50%, hasil per hektar tanaman kedelai menurun 10 - 40%. Oleh karena

itu maka diperlukan genotipe atau varietas baru kedelai yang mampu beradaptasi

pada lingkungan tercekam naungan.

Agar mampu beradaptasi pada lingkungan intensitas cahaya rendah,

tanaman mengalami berbagai perubahan pada tingkat molekuler, biokimia,

anatomi, morfologi, fisiologi, dan agronomi. Perubahan-perubahan karakter

adaptasi tanaman terhadap intensitas cahaya rendah tersebut oleh Levitt (1980)

dikelompokkan ke dalam bentuk mekanisme penghindaran (avoidance) dan

mekanisme ketenggangan (tolerance). Bentuk adaptasi tersebut dapat dipelajari

melalui respon spesifik pada berbagai tingkatan seperti adanya perubahan

anatomi, morfologi, fisiologi, biokimia dan molekuler (Sopandie et al. 2001;

Khumaida 2002; Murchie et al. 2002; Alves de Alvarenga 2003; Juraimi et al.

2004). Pada tanaman padi gogo, dilaporkan bahwa beberapa karakter anatomi,

morfologi, fisiologi dan biokimia (klorofil, karoten, karbohidrat, enzim rubisko)

terkait erat dengan efisiensi fotosintesis. Selain itu terdapat perbedaan yang jelas

antara genotipe toleran dan peka dalam mekanisme adaptasinya terhadap naungan

(Sopandie et al. 2001, 2003a, 2003b; Khumaida 2002; Soverda 2002). Akan tetapi

untuk tanaman kedelai, penggolongan genotipe toleran dan genotipe peka

naungan masih terbatas pada tingkat produksi. Beberapa karakter daun yang

terkait erat dengan sifat adaptasi tanaman terhadap intensitas cahaya rendah antara

lain: kandungan klorofil a, klorofil b, klorofil total dan rasio klorofil a/b, luas daun

Page 72: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

47

dan ketebalan daun (Khumaida 2002; Lautt 2003; Handayani 2003; Sopandie et

al. 2003b; Jufri 2006).

Evans dan Poorter (2001); Ballare (1999) menggolongkan respon tanaman

yang tumbuh di bawah naungan menjadi: respon aklimatisasi (shade acclimation

response) yang memaksimalkan pemanenan cahaya melalui peningkatan luas atau

pengurangan bobot spesifik daun dan meningkatkan klorofil b atau menurunkan

rasio klorofil a/b melalui peningkatan jumlah kloroplas per sel dan/atau per satuan

luas daun (Walter et al. 1999). Aklimatisasi kloroplas ini (kadang-kadang disebut

’shade tolerance’) meliputi perubahan susunan aparatus fotosintesis di dalam

kloroplas. Peningkatan absorpsi cahaya dipacu oleh peningkatan jumlah kloroplas

per unit luas daun dan dengan peningkatan konsentrasi klorofil pada kloroplas

(Khumaida 2002). Respon aklimatisasi terhadap tingkat intensitas penyinaran

(photoacclimation) dilakukan dengan menyesuaikan ukuran antena klorofil yang

terkait dengan masing-masing fotosistem (Melis 1991). Tanaman yang tumbuh

pada kondisi intensitas cahaya rendah, fotosistem mengandung jumlah klorofil b

yang relatif lebih tinggi, mempunyai kompleks pemanen cahaya klorofil a-b

(LHC) yang lebih besar, dan rasio LHC-PS core yang lebih tinggi. Hidema et al.

(1992) melaporkan bahwa penurunan rasio klorofil a/b melalui peningkatan

klorofil b, terkait dengan peningkatan protein pemanen cahaya klorofil a/b pada

fotosistem II (LHCII). Pengaturan ukuran antena klorofil yang tergantung

intensitas cahaya tersebut merupakan respon kopensasi tanaman yang bersifat

dinamis. Dilaporkan pula ketika sel Dunaliella salina yang teraklimasi pada

intensitas cahaya tinggi dipindahkan ke kondisi intensitas cahaya rendah, maka

seketika itu terjadi peningkatan ukuran antena klorofil yang disertai peningkatan

sel klorofil, apoprotein LHC dan penurunan rasio klorofil a/b sebagaimana

terakumulasinya klorofil b (Neidhardt et al. 1998). Respon menghindar (shade

avoidance response) dengan memaksimalkan penangkapan cahaya dengan cara

perubahan anatomi dan morfologi daun untuk fotosintesis yang efisien. Daun

tanaman yang ternaungi lebih tipis namun luas permukaan daun menjadi lebih

lebar. Selain itu mekanisme toleransi (shade tolerance response) melalui

penurunan titik kompensasi cahaya (LCP) atau penurunan respirasi di bawah LCP

Page 73: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

48

yang terdiri atas beberapa mekanisme antara lain mencegah aktifitas enzim atau

mencegah kerusakan pigmen, atau menurunkan sistem respirasi.

Menurut Morelli dan Ruberti (2002), tanaman Angiospermae mempunyai

kapasitas yang lebih banyak untuk menghindari naungan (shade avoidance).

Respon shade avoidance yang paling dramatis adalah stimulasi pertumbuhan

memanjang yang cepat dan bersifat dapat balik (reversible). Pada tanaman dikotil,

pertumbuhan memanjang sering kali terkait dengan penurunan perkembangan

daun, penguatan dominan apikal, dan pengurangan percabangan. Selain itu,

percepatan pembungaan dan pengurangan sumber untuk penyimpanan dan

reproduksi. Ini terkait dengan biji yang berkurang, perkembangan buah yang

berkurang dan sering kali kemampuan perkecambahan dari biji yang dihasilkan

juga berkurang.

Tujuan

Penelitian ini bertujuan untuk mengetahui respon beberapa karakter

morfologi dan fisiologi daun dan menentukan karakter-karakter yang dapat

digunakan sebagai penciri adaptasi kedelai terhadap intensitas cahaya rendah.

BAHAN DAN METODE

Bahan Tanaman

Bahan genetik yang digunakan adalah genotipe toleran (Ceneng, Pangrango)

dan genotipe peka (Godek, Slamet) (Sopandie et al. 2002). Diskripsi varietas

Pangrango dan varietas Slamet disajikan pada Lampiran 3 dan 4.

Persiapan Tanaman

Persiapan tanaman dilakukan di Kebun Percobaan Balai Besar Bioteknologi

Tanaman dan Sumberdaya Genetik, Cikeumeuh, Bogor mulai Agustus – Oktober

2005.

Tanah yang sudah dicampur dengan pupuk kandang dengan perbandingan

1:1 dimasukkan ke dalam polibag berdiameter 15 cm. Tiap polibag berisi 8 kg

Page 74: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

49

tanah dan ditanam 3-4 benih kedelai kemudian dibiarkan dua tanaman sehat per

polibag. Sebelum ditanami, tiap polibag ditaburi sekitar 0.03 g Furadan 3G.

Pemupukan 0.3 g urea, 1 g SP-36, dan 1 g KCl tiap polibag setara 30 kg urea/ha,

100 kg SP-36/ha dan 100 kg KCl/ha diberikan setelah bibit berumur satu minggu

setelah tanam.

Percobaan dilakukan menggunakan Rancangan petak terpisah dengan tiga

ulangan. Faktor pertama adalah genotipe kedelai terdiri atas dua genotipe toleran

naungan (Ceneng, Pangrango) dan dua genotipe peka naungan (Godek,Slamet).

Faktor kedua adalah intensitas cahaya yang terdiri atas: L0 = cahaya 100%

(kontrol), L1 = 5 hari naungan (setelah tanaman berumur 21 HST), L2 = 5 hari

gelap total (setelah tanaman berumur 21 HST), L3 = 3 hari naungan 50% + 5 hari

cahaya 100% (setelah tanaman berumur 18 HST), dan L4 = 3 hari naungan 50% +

3 hari cahaya 100% + 5 hari gelap total (setelah tanaman berumur 15 HST).

Sebelum diberikan perlakuan cahaya, bibit kedelai semua genotipe yang ditanam

pada polibag berdiameter 15 cm tersebut diletakkan pada kondisi cahaya penuh.

Kondisi naungan buatan 50% dibuat dengan memasang paranet hitam 50% pada

semua sisi rangka naungan yang berukuran 20 x 10 meter dengan tinggi

sungkupan 2 meter. Kondisi gelap total dibuat dengan menggunakan ruangan

yang tertutup rapat tanpa cahaya.

Pengamatan

Karakter morfo-fisiologi daun yang diamati meliputi: luas daun trifoliat,

bobot daun spesifik (BDS), kandungan klorofil a, klorofil b, dan rasio klorofil a/b.

Sampel daun adalah daun yang telah membuka sempurna (daun kedua dan ketiga

dari pucuk ) dipanen secara bersamaan dari semua perlakuan pada umur tanaman

26 HST.

Pengamatan luas daun trifoliat dilakukan menggunakan leaf area meter,

sedangkan bobot daun spesifik yang mengindikasikan ketebalan daun dihitung

dengan cara membagi berat kering daun dengan luas daun, dilakukan di lab

Ekofisiologi Fakultas Pertanian IPB.

Analisis kandungan klorofil dan antosianin dilakukan di lab RGCI Fakultas

Pertanian IPB. Analisis kandungan klorofil dilakukan mengikuti prosedur

Page 75: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

50

Richardson et al. (2002) yang merupakan perbaikan metode Arnon (1949) (lihat

Lampiran 1).

Analisis Data

Data hasil pengamatan dianalisis menggunakan prosedur Anova dilanjutkan

dengan uji BNT dengan taraf nyata 5%. Analisis dilakukan menggunakan

program SAS versi 8.0 dan Minitab versi 13.30.

HASIL DAN PEMBAHASAN

Luas Daun dan Bobot Daun Spesifik

Daun merupakan organ fotosintetik utama bagi tanaman yang secara

langsung terlibat dalam proses penangkapan cahaya dan perubahan energi cahaya

menjadi energi kimia melalui proses fotosintesis. Pada kondisi lingkungan cahaya

kurang, diperlukan morfologi daun yang lebih lebar untuk dapat menangkap

cahaya sebanyak mungkin dan daun yang lebih tipis sehingga cahaya yang

direfleksikan serendah mungkin. Selain itu diperlukan pigmen pemanen cahaya

seperti kandungan klorofil terutama klorofil b yang lebih tinggi sehingga lebih

banyak cahaya yang dapat diserap oleh tanaman.

Hasil penelitian ini menunjukkan bahwa terdapat perbedaan yang nyata

respon karakter morfo-fisiologi daun yang diamati pada masing-masing genotipe

dan intensitas cahaya rendah.

Luas daun. Pada kondisi intensitas cahaya rendah, kedelai genotipe toleran

memiliki daun yang lebih luas dibanding genotipe peka. Pada Gambar 11,

terlihat bahwa pada kondisi 5 hari naungan 50% (L1), genotipe toleran Ceneng

dan Pangrango memiliki rata-rata luas daun yang lebih tinggi (14.4 cm2)

dibandingkan dengan genotipe peka Slamet dan Godek (± 12.1 cm2). Genotipe

peka Godek menunjukkan rata-rata luas daun terendah sementara tertinggi

ditunjukkan pada genotipe Ceneng pada semua kondisi intensitas cahaya rendah:

yaitu pada kondisi 5 hari gelap total (L2), 3 hari naungan + 5 hari cahaya (L3),

dan 3 hari naungan + 5 hari cahaya + 5 hari gelap (L4). Genotipe peka Slamet

Page 76: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

51

tidak menunjukkan perbedaan yang nyata dengan genotipe toleran kecuali pada 5

hari naungan. Hasil penelitian ini sejalan dengan yang dilaporkan oleh Lestari

(2005); Tyas (2006); Jufri (2006); Muhuria (2007).

aa

a

a a

aa

a

a a bb

b

c a

a a

ab

ba

02468

101214161820

Cahaya (Kontrol) 5 hr Naung 5 hr Gelap 3Naung+5Chy 3Naung+3Chy+5Glp

Luas

Dau

n (c

m2 )

Ceneng Pangrango Godek Slamet

Gambar 11 Histogram rata-rata luas daun genotipe kedelai pada masing-masing perlakuan intensitas cahaya. Histogram dilengkapi standar deviasi dari 3 ulangan. Histogram pada masing-masing perlakuan cahaya yang diikuti huruf yang sama tidak berbeda nyata berdasarkan uji BNT 5%.

Peningkatan dan penurunan luas daun masing-masing genotipe

dibandingkan kontrol pada masing-masing intensitas cahaya rendah disajikan

pada Tabel 3. Peningkatan luas daun tertinggi terjadi pada genotipe toleran

Ceneng hingga mencapai 43% lebih tinggi dari kontrol yang terjadi pada

perlakuan on/of 3 hari naungan + 5 hari cahaya + 5 hari gelap (L4), kemudian

diikuti Pangrango, Slamet dan yang paling rendah terjadi pada genotipe Godek

(hanya 20% lebih tinggi dari kontrol). Secara keseluruhan, peningkatan luas daun

pada genotipe Ceneng lebih tinggi sekitar 25% dibanding genotipe Godek pada

kondisi intensitas cahaya rendah.

Pada kondisi 5 hari gelap total (L2) dimana tidak ada cahaya sama sekali

yang diterima tanaman selama periode tersebut menyebabkan pertambahan luas

daun semua genotipe terhambat sehingga rata-rata luas daun pada masing-masing

genotipe lebih kecil dibanding pada kondisi cahaya penuh (kontrol). Rata-rata luas

daun yang paling rendah selama kondisi lima hari gelap terjadi pada genotipe

peka Godek (sekitar 31% lebih rendah dibanding kontrol) diikuti berturut-turut

Page 77: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

52

oleh Slamet, Pangrango dan yang paling sedikit penurunannya adalah genotipe

toleran Ceneng (sekitar 18% dibanding kontrol). Fenomena ini juga menjadi salah

satu bukti bahwa genotipe Ceneng memiliki kemampuan lebih untuk beradaptasi

pada kondisi cekaman termasuk cekaman berat lima hari gelap total sekalipun.

Tabel 3. Rata-rata luas daun (cm2) dari berbagai perlakuan intensitas cahaya pada masing-masing genotipe kedelai

Perlakuan Intensitas Cahaya Genotipe

L0 L1 L2 L3 L4 BNT 5%

Ceneng 11.593 c

14.364 b (124)

9.549 d (82)

16.080 a (139)

16.590 a (143)

0.950

Pangrango 11.817 b

14.430 a (122)

9.080 c (77)

15.944 a (135)

16.457 a (139)

2.075

Godek 10.617 b

11.220 b (106)

7.300 c (69)

12.903 a (122)

12.777 a (120)

1.202

Slamet 11.740 c

13.067 b (111)

8.497 d (72)

15.977 a (136)

16.073 a (137)

1.232

Keterangan: Angka yang diikuti huruf yang sama pada baris yang sama tidak berbeda nyata berdasarkan uji BNT 5%. L0 = cahaya 100% (kontrol), L1 = 5 hari naungan 50%, L2 = 5 hari gelap total, L3 = 3 hari naungan 50% + 5 hari cahaya 100%, L4 = 3 hari naungan 50% + 3 hari cahaya 100% + 5 hari gelap total. Angka di dalam kurung merupakan persentase nilai rata-rata terhadap kontrol.

Kedelai yang diberikan 3 hari naungan kemudian diberikan cahaya penuh

(perlakuan recovery) (L3) atau setelah itu diberikan lagi kondisi gelap (perlakuan

on/of) (L4) menunjukkan rata-rata luas daun yang lebih tinggi dibanding jika

diberikan naungan 50% selama 5 hari (L1) atau gelap lima hari (L2) bahkan jika

ditanam penuh cahaya terus menerus (kontrol) (L0). Fenomena ini terjadi pada

semua genotipe yang diuji. Diduga bahwa pemberian kondisi naungan sebelum

diberikan kondisi cahaya penuh dapat memicu terjadinya biosintesis hormon

endogeneous tertentu seperti gibberellin yang berfungsi dalam pembesaran dan

pembelahan sel jaringan daun sehingga daun menjadi lebih lebar (Taiz dan Zeiger

2002; Bultynck dan Lambers 2004). Selanjutnya pemberian cahaya penuh dalam

waktu 3-5 hari tanaman memanfaatkan daun lebar tersebut untuk mendorong

aktivitas fotosintesis normal sehingga menghasilkan energi yang lebih banyak

untuk pertumbuhan dan perkembangan tanaman. Menurut Morelli dan Ruberti

(2002) selama terjadi naungan, biosintesis asam gibberellin dan auksin menjadi

meningkat terkait dengan regulasi sistem fitokrom dan ATHB.

Page 78: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

53

Respon peningkatan luas daun pada kedelai juga dilaporkan peneliti

sebelumnya (Sopandie et al. 2003b; Handayani 2003; Lestari 2005; Jufri 2006;

Tyas 2006; Muhuria 2007) pada tanaman kedelai dan Lautt (2003); Khumaida

(2002). Peningkatan luas daun ini merupakan salah satu mekanisme untuk

meningkatkan efisiensi penangkapan cahaya, sekaligus memelihara keseimbangan

penggunaan fotosintat (Taiz dan Zeiger 2002).

Bobot daun spesifik (BDS). Ada kecenderungan bahwa rata-rata bobot

daun spesifik (rasio bobot kering daun dengan luas daun, mg/cm2) yang

mencerminkan ketebalan daun lebih tinggi pada genotipe peka dibanding genotipe

toleran. Perbedaan yang nyata hanya terjadi pada kondisi 5 hari naungan 50%

(L1) yaitu sekitar 2.6 mg/cm2 pada genotipe toleran dan sekitar 3.2 mg/cm2 pada

genotipe peka. Genotipe peka Godek cenderung memiliki bobot daun spesifik

paling tinggi, sedangkan yang paling rendah adalah genotipe toleran Ceneng

(Gambar 12).

a

b a

a

a

a

a a

a

aa

b a

a

a

a

a a

a

a

0

1

2

3

4

5

6

Cahaya (Kontrol) 5 hr Naung 5 hr Gelap 3Naung+5Chy 3Naung+3Chy+5Glp

BD

S (m

g/cm

2 )

Ceneng Pangrango Godek Slamet

Gambar 12 Histogram rata-rata bobot daun spesifik (BDS) genotipe kedelai pada masing-masing perlakuan intensitas cahaya. Histogram dilengkapi standar deviasi dari 3 ulangan. Histogram pada masing-masing perlakuan cahaya yang diikuti huruf yang sama tidak berbeda nyata berdasarkan uji BNT 5%.

Peningkatan bobot spesifik daun pada masing-masing genotipe tertinggi

pada kondisi cahaya penuh (kontrol, L0) dan kondisi 3 hari naungan + 5 hari

cahaya (L3), diikuti 5 hari naungan 50% (L1) dan 3 hari naungan + 5 hari cahaya

Page 79: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

54

+ 5 hari gelap (L4), dan terrendah pada kondisi 5 hari gelap total (L2). Penurunan

bobot daun spesifik pada genotipe toleran cenderung lebih besar dibanding

genotipe peka, artinya daun genotipe toleran lebih tipis dari pada genotipe peka

(Tabel 4). Penurunan bobot daun spesifik terjadi pada semua genotipe. Penurunan

yang nyata terjadi pada kondisi 5 hari naungan (L1), 5 hari gelap (L2) dan on/of

gelap (L4) dengan penurunan bobot daun spesifik sekitar 30-40% dibanding

kontrol.

Tabel 4 Respon bobot daun spesifik (mg/cm2) masing-masing genotipe kedelai

pada berbagai perlakuan intensitas cahaya

Perlakuan Intensitas Cahaya Genotipe L0 L1 L2 L3 L4

BNT 5%

Ceneng 4.053 a

2.548 bc (63)

2.404 c (59)

3.988 a (98)

2.827 b (70)

0.418

Pangrango 4.217 a

2.590 c (61)

2.618 c (62)

4.125 a (98)

3.225 b (76)

0.357

Godek 4.126 a

3.121 b (76)

2.542 c (62)

4.369 a (106)

3.223 b (78)

0.460

Slamet 4.420 a

3.217 b (73)

2.505 c (57)

4.049 a (99)

3.104 b (70)

0.523

Keterangan: Angka yang diikuti huruf yang sama pada baris yang sama tidak berbeda nyata berdasarkan uji BNT 5%. L0 = cahaya 100% (kontrol), L1 = 5 hari naungan 50%, L2 = 5 hari gelap total, L3 = 3 hari naungan 50% + 5 hari cahaya 100%, L4 = 3 hari naungan 50% + 3 hari cahaya 100% + 5 hari gelap total. Angka di dalam kurung merupakan persentase nilai rata-rata terhadap kontrol.

Dari hasil pengamatan luas daun dan bobot daun spesifik (BDS) genotipe

toleran terutama Ceneng memiliki daun yang lebih lebar dan lebih tipis dibanding

genotipe peka terutama Godek. Daun yang lebar dan tipis memungkinkan

penangkapan cahaya lebih banyak dan diteruskan ke bagian daun yang lebih

bawah dengan cepat sehingga kegiatan fotosintesis berlangsung optimal.

Sebagaimana yang dilaporkan Muhuria (2007), laju fotosintesis dan laju transport

elektron lebih tinggi pada genotipe toleran Ceneng dibanding genotipe peka

Godek pada kondisi naungan 50%. Dengan demikian genotipe toleran Ceneng

lebih mampu beradaptasi pada kondisi intensitas cahaya rendah dibanding

genotipe peka Godek. Pada genotipe padi gogo dan kedelai toleran naungan

(Khumaida 2002; Sopandie et al. 2003a, 2003b; Muhuria 2007), terjadi

pengurangan lapisan palisade yang lebih besar akibat cekaman naungan dibanding

Page 80: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

55

genotipe peka, menyebabkan daun menjadi lebih tipis. Perubahan karakter

tersebut diduga merupakan bentuk mekanisme penghindaran terhadap cahaya

rendah. Weston et al. (2000); Evans dan Poorter (2001) juga menjelaskan respon

menghindar (shade avoidance response) tanaman yang mengalami cekaman

intensitas cahaya rendah dilakukan dengan memaksimalkan penangkapan cahaya

dengan cara perubahan anatomi dan morfologi daun untuk fotosintesis yang

efisien, yaitu daun tanaman yang ternaungi menjadi lebih tipis dan lebih luas

sehingga jaringan pemanen cahaya menjadi lebih lebar. Taiz dan Zeiger (2002)

juga menjelaskan, daun tanaman yang ternaungi akan lebih tipis dan lebar

disebabkan oleh pengurangan lapisan palisade dan sel-sel mesofil. Lapisan

palisade dapat berubah sesuai kondisi cahaya, yang menyebabkan tanaman

menjadi efisien dalam menyimpan energi cahaya untuk perkembangannya.

Kandungan Klorofil Daun

Rata-rata kandungan klorofil (klorofil a, klorofil b, klorofil total) dan rasio

klorofil a/b serta perubahan yang terjadi pada berbagai kondisi cekaman intensitas

cahaya rendah disajikan pada Gambar 13-17 dan Tabel 5-8.

Kandungan klorofil a. Terlihat pada Gambar 13 bahwa rata-rata

kandungan klorofil a pada genotipe toleran Ceneng dan Pangrango lebih tinggi

dan berbeda nyata dengan genotipe peka Godek dan Slamet. Perbedaan yang

nyata terjadi pada semua kondisi cahaya baik pada kondisi cahaya penuh maupun

pada kondisi intensitas cahaya rendah.

Selama lima hari naungan 50%, kandungan klorofil a tidak mengalami

perubahan dibanding pada kondisi cahaya penuh, akan tetapi peningkatan sekitar

15% pada genotipe toleran terjadi pada kondisi recovery (L3) yaitu setelah

diberikan naungan selama tiga hari kemudian di berikan cahaya penuh. Pada

kondisi L3 genotipe peka juga mengalami peningkatan kandungan klorofil a

(Tabel 5). Penurunan klorofil a yang nyata sekitar 50% terjadi pada kondisi

cekaman gelap yaitu gelap total selama 5 hari (L2) dan 3 hari naungan + 5 hari

cahaya + 5 hari gelap (L4) yaitu terjadi pada genotipe toleran Ceneng dan

Pangrango. Penurunan yang cukup besar terjadi pada genotipe peka Godek dan

Slamet (rata-rata 70% dari kontrol) pada kedua perlakuan tersebut (L2 dan L4).

Page 81: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

56

Diduga pada kondisi gelap tersebut klorofil a pada genotipa peka mengalami

degradasi karena tidak adanya energi cahaya yang diterima.

a

a

a

a a

d

b

d

b a

b

a

b

ab b

c

b

c

b b

0.0

0.5

1.0

1.5

2.0

2.5

Cahaya (Kontrol) 5 hr Naung 5 hr Gelap 3Naung+5Chy 3Naung+3Chy+5Glp

Klo

rofil

a (m

g/g

bb)

Ceneng Pangrango Godek Slamet Gambar 13 Histogram rata-rata klorofil a genotipe kedelai pada masing-masing

perlakuan intensitas cahaya. Histogram dilengkapi standar deviasi dari 3 ulangan. Histogram pada masing-masing perlakuan cahaya yang diikuti huruf yang sama tidak berbeda nyata berdasarkan uji BNT 5%.

Tabel 5 Repon kandungan klorofil a (mg/g berat basah daun) genotipe kedelai terhadap berbagai perlakuan intensitas cahaya

Perlakuan Intensitas Cahaya Genotipe

L0 L1 L2 L3 L4 BNT 5%

Ceneng 1.650 b

1.656 b (100)

0.850 d (51)

1.898 a (115)

1.119 c (68)

0.098

Pangrango 1.580 b

1.601 b (101)

0.805 d (51)

1.785 a (113)

0.996 c (63)

0.161

Godek 1.446 b

1.480 b (102)

0.377 d (26)

1.583 a (109)

0.479 c (33)

0.057

Slamet 1.457 b

1.472 b (101)

0.520 d (36)

1.586 a (109)

0.678 c (47)

0.078

Keterangan: Angka yang diikuti huruf yang sama pada baris yang sama tidak berbeda nyata berdasarkan uji BNT 5%. L0 = cahaya 100% (kontrol), L1 = 5 hari naungan 50%, L2 = 5 hari gelap total, L3 = 3 hari naungan 50% + 5 hari cahaya 100%, L4 = 3 hari naungan 50% + 3 hari cahaya 100% + 5 hari gelap total. Angka di dalam kurung merupakan persentase nilai rata-rata terhadap kontrol.

Respon kandungan klorofil a pada masing-masing genotipe tersebut

terhadap berbagai perlakuan intensitas cahaya rendah memiliki pola yang sama

yaitu tertinggi pada kondisi recovery 3 hari naungan + 5 hari cahaya (L3) disusul

Page 82: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

57

berturut-turut pada 5 hari naungan 50% (L1), L0, L4 dan terrendah pada kondisi 5

hari gelap total (L2). Tinggi rendahnya kandungan klorofil a dapat mempengaruhi

tinggi rendahnya jumlah cahaya yang dapat diteruskan dalam proses fotosintesis.

Menurut Taiz dan Zeiger (2002), klorofil a memiliki peran sentral untuk

menyerap dan menyalurkan energi cahaya ke pusat reaksi untuk mengeksitasi

elekron.

Kandungan klorofil b. Perbedaan yang nyata antara genotipe toleran dan

genotipe peka selama pemberian intensitas cahaya rendah juga terjadi pada

kandungan klorofil b (Gambar 14). Rata-rata kandungan klorofil b genotipe

toleran Ceneng dan Pangrango lebih tinggi dan berbeda nyata dengan genotipe

peka Godek dan Slamet pada kondisi lima hari naungan (L1), 5 hari gelap total

(L2), 3 hari naungan + 5 hari cahaya (L3) dan 3 hari naungan + 5 hari cahaya + 5

hari gelap (L4).

Peningkatan klorofil b yang nyata terjadi pada kondisi 5 hari naungan (L1)

dan kondisi recovery (L3) pada semua genotipe (Tabel 6). Peningkatan klorofil b

pada toleran Ceneng dan Pangrango lebih besar dari pada genotipe peka Godek

dan Slamet. Pada kondisi L1, peningkatan klorofil b pada genotipe toleran sekitar

46% di atas kontrol dan pada genotipe peka sekitar 17%. Pada kondisi L3 klorofil

b meningkat sekitar 13% pada genotipe toleran dan sekitar 9% pada genotipe

peka. Sebaliknya penurunan klorofil b terjadi pada kondisi gelap total yaitu pada

perlakuan 5 hari gelap total (L2) dan on/of gelap (L4), namun penurunan nyata

hanya terjadi pada genotipe peka Godek dan Slamet. Penurunan kandungan

klorofil b pada genotipe torelan sebasar 15% dari kontrol, namun penurunan yang

cukup besar terjadi pada genotipe peka (sekitar 40-50% dari kontrol).

Kandungan klorofil b genotipe toleran Ceneng dan Pangrango meningkat

cukup besar dibanding genotipe peka Godek dan Slamet pada kondisi 5 hari

naungan 50% (L1) dan 3 hari naungan + 5 hari cahaya penuh (L3). Penurunan

klorofil b pada kondisi gelap total (L2 dan L4) terjadi cukup besar pada genotipe

peka terutama Godek dibanding genotipe toleran Ceneng dan Pangrango (Tabel

6). Tingginya klorofil b pada kondisi naungan tersebut merupakan salah satu

strategi tanaman kedelai untuk menangkap cahaya yang lebih banyak

sebagaimana fungsi klorofil b sebagai pigmen antena. Menurut Taiz dan Zeiger

Page 83: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

58

(2002), klorofil b berperan sebagai pigmen antena yang berfungsi menangkap

energi cahaya secara langsung. Dengan demikian, semakin banyak jumlah

kandungan klorofil b pada kondisi naungan tersebut semakin banyak cahaya yang

dapat ditangkap dan diteruskan melalui klorofil a ke pusat reaksi.

a

a

a

a

a

d

b

c

ca

b

a

a

b

a c

b

b

c a

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cahaya (Kontrol) 5 hr Naung 5 hr Gelap 3Naung+5Chy 3Naung+3Chy+5Glp

Klo

rofil

b (m

g/g

bb)

Ceneng Pangrango Godek Slamet Gambar 14 Histogram rata-rata klorofil b genotipe kedelai pada masing-masing

perlakuan intensitas cahaya. Histogram dilengkapi standar deviasi dari 3 ulangan. Histogram pada masing-masing perlakuan cahaya yang diikuti huruf yang sama tidak berbeda nyata berdasarkan uji BNT 5%.

Tabel 6 Repon kandungan klorofil b (mg/g berat basah daun) genotipe kedelai terhadap berbagai perlakuan intensitas cahaya

Perlakuan Intensitas Cahaya Genotipe

L0 L1 L2 L3 L4 BNT 5%

Ceneng 0.490 c

0.881 a (180)

0.428 c (87)

0.759 b (155)

0.450 c (92)

0.064

Pangrango 0.491 b

0.743 a (151)

0.420 c (86)

0.718 a (146)

0.414 c (84)

0.033

Godek 0.475 b

0.550 a (116)

0.225 c (47)

0.526 ab (111)

0.273 c (57)

0.054

Slamet 0.464 b

0.508 a (109)

0.283 d (61)

0.527 a (114)

0.379 c (82)

0.036

Keterangan: Angka yang diikuti huruf yang sama pada baris yang sama tidak berbeda nyata berdasarkan uji BNT 5%. L0 = cahaya 100% (kontrol), L1 = 5 hari naungan 50%, L2 = 5 hari gelap total, L3 = 3 hari naungan 50% + 5 hari cahaya 100%, L4 = 3 hari naungan 50% + 3 hari cahaya 100% + 5 hari gelap total. Angka di dalam kurung merupakan persentase nilai rata-rata terhadap kontrol.

Kandungan klorofil total. Rata-rata kandungan klorofil total yang

merupakan gabungan kandungan klorofil a dan b pada masing-masing genotipe

Page 84: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

59

terhadap berbagai intensitas cahaya rendah menunjukkan pola peningkatan dan

penurunan yang sama dengan yang ditunjukkan pada kandungan klorofil a

maupun klorofil b. Pada Gambar 15 terlihat bahwa genotipe toleran Ceneng dan

Pangrango memiliki kandungan klorofil total lebih tinggi dibanding genotipe peka

Godek dan Slamet pada semua kondisi intesitas cahaya rendah termasuk pada

kondisi cahaya penuh.

a a

a

a

a

a c

d

c

d

b

b

b

b

b

b c

c

c

c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cahaya (Kontrol) 5 hr Naung 5 hr Gelap 3Naung+5Chy 3Naung+3Chy+5Glp

Klo

rofil

Tot

al (m

g/g

BB

)

Ceneng Pangrango Godek Slamet Gambar 15 Histogram rata-rata klorofil total genotipe kedelai pada masing-masing

perlakuan intensitas cahaya. Histogram dilengkapi standar deviasi dari 3 ulangan. Histogram pada masing-masing perlakuan cahaya yang diikuti huruf yang sama tidak berbeda nyata berdasarkan uji BNT 5%.

Tabel 7 Repon kandungan klorofil total (mg/g berat basah daun) genotipe kedelai

terhadap berbagai perlakuan intensitas cahaya

Perlakuan Intensitas Cahaya Genotipe L0 L1 L2 L3 L4

BNT 5%

Ceneng 2.140 b

2.536 a (119)

1.278 d (60)

2.656 a (124)

1.484 c (69)

0.134

Pangrango 2.071 c

2.343 b (113)

1.224 d (59)

2.502 a (121)

1.334 d (64)

0.157

Godek 1.921 b

2.030 a (106)

0.601 d (31)

2.108 a (110)

0.708 c (37)

0.079

Slamet 1.920 b

1.979 b (103)

0.803 d (42)

2.112 a (110)

0.994 c (52)

0.074

Keterangan: Angka yang diikuti huruf yang sama pada baris yang sama tidak berbeda nyata berdasarkan uji BNT 5%. L0 = cahaya 100% (kontrol), L1 = 5 hari naungan 50%, L2 = 5 hari gelap total, L3 = 3 hari naungan 50% + 5 hari cahaya 100%, L4 = 3 hari naungan 50% + 3 hari cahaya 100% + 5 hari gelap total. Angka di dalam kurung merupakan persentase nilai rata-rata terhadap kontrol.

Page 85: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

60

Peningkatan yang nyata terhadap kandungan klorofil total terjadi pada

kondisi naungan (L1 dan L3), sedangkan penurunan terjadi pada kondisi gelap

(L2 dan L4) (Tabel 7). Peningkatan klorofil total terhadap kontrol lebih besar

terjadi pada genotipe toleran dibanding genotipe peka. Penurunan klorofil total

yang cukup besar terjadi pada genotipe peka Godek dan Slamet dibanding

genotipe toleran Ceneng dan Pangrango.

Rasio klorofil a/b. Pada Gambar 16 terlihat bahwa pada kondisi 5 hari

naungan (L1) dan 3 hari naungan + 5 hari cahaya (L3) genotipe toleran Ceneng

dan Pangrango memiliki rasio klorofil a/b lebih rendah dibanding genotipe peka

Godek dan Slamet. Sebaliknya, pada kondisi 5 hari gelap (L2) dan 3 hari naungan

+ 3 hari cahaya + 5 hari gelap (L4) genotipe toleran Ceneng dan Pangrango lebih

tinggi dari pada genotipe peka Godek dan Slamet. Rendahnya rasio klorofil a/b

genotipe toleran pada kondisi naungan terjadi karena adanya peningkatan klorofil

b yang lebih besar dibanding peningkatan klorofil a. Sebaliknya pada kondisi

gelap (L2 dan L4), rasio klorofil a/b pada genotipe toleran lebih tinggi dari pada

genotipe peka. Hal ini karena pada genotipe toleran penurunan kandungan klorofil

a maupun klorofil b pada kondisi gelap tidak sebesar pada genotipe peka. Pada

genotipe peka selama kondisi gelap diduga terjadi degradasi klorofil a maupun b,

dimana terlihat daun menguning dan layu sementara pada genotipe toleran daun

masih terlihat hijau (lihat Lampiran 2).

ab

a b

a

b

a

b

a

a

a b

a b

a

b

a

ab

aa

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Cahaya (Kontrol) 5 hr Naung 5 hr Gelap 3Naung+5Chy 3Naung+3Chy+5Glp

Ras

io K

loro

fil a

/b

Ceneng Pangrango Godek Slamet Gambar 16 Histogram rata-rata rasio klorofil a/b genotipe kedelai pada masing-

masing perlakuan intensitas cahaya. Histogram dilengkapi standar deviasi dari 3 ulangan. Histogram pada masing-masing perlakuan cahaya yang diikuti huruf yang sama tidak berbeda nyata berdasarkan uji BNT 5%.

Page 86: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

61

Terjadi penurunan rasio klorofil a/b pada semua genotipe baik toleran

maupun genotipe peka pada kondisi intensitas cahaya rendah (Tabel 8). Pada

genotipe toleran Ceneng dan Pangrango, penurunan yang cukup besar terjadi pada

kondisi 5 hari naungan (L1) dan 5 hari gelap (L2) sekitar 40% terhadap kontrol.

Pada kondisi on/of gelap (L4) genotipe toleran mampu mempertahankan

kandungan klorofil a maupun klorofil b tetap tinggi. Pada genotipe peka Godek

dan Slamet penurunan yang cukup besar terjadi pada kondisi gelap baik pada

kondisi gelap langsung 5 hari gelap (L2) maupun on/of gelap 3 hari naungan + 5

hari cahaya + 5 hari gelap (L4). Diduga genotipe peka tidak mampu

mempertahankan degradasi klorofi a maupun b pada kondisi gelap tersebut.

Tabel 8 Repon rasio klorofil a/b genotipe kedelai terhadap berbagai perlakuan intensitas cahaya

Perlakuan Intensitas Cahaya Genotipe

L0 L1 L2 L3 L4 BNT 5%

Ceneng 3.377 a

1.885 c (56)

1.985 c (59)

2.502 b (74)

2.489 b (74)

0.191

Pangrango 3.232 a

2.155 bc (67)

1.916 c (59)

2.488 b (77)

2.407 b (74)

0.387

Godek 3.043 a

2.705 b (89)

1.680 c (55)

3.014 ab (99)

1.759 c (58)

0.328

Slamet 3.140 a

2.904 a (92)

1.844 b (59)

3.022 a (96)

1.794 b (57)

0.303

Keterangan: Angka yang diikuti huruf yang sama pada baris yang sama tidak berbeda nyata berdasarkan uji BNT 5%. L0 = cahaya 100% (kontrol), L1 = 5 hari naungan 50%, L2 = 5 hari gelap total, L3 = 3 hari naungan 50% + 5 hari cahaya 100%, L4 = 3 hari naungan 50% + 3 hari cahaya 100% + 5 hari gelap total. Angka di dalam kurung merupakan persentase nilai rata-rata terhadap kontrol.

Secara keseluruhan, hasil penelitian ini sejalan dengan yang dilaporkan

Khumaida (2002); Handayani (2003); Lautt (2003); Lestari (2005), Tyas (2006);

Jufri (2006); Sopandie et al. (2006); Muhuria (2007) bahwa pada kondisi cekaman

cahaya rendah, genotipe toleran memiliki kandungan klorofil yang lebih tinggi

dan rasio klorofil a/b yang lebih rendah dari pada genotipe peka. Hidema et al.

(1992) melaporkan bahwa intensitas cahaya rendah pada tanaman padi

menurunkan nisbah klorofil a/b, karena adanya peningkatan klorofil b. Dilaporkan

pula oleh Neidhardt et al. (1998), ketika sel D. Salina dipindahkan ke kondisi

intensitas cahaya rendah (LL), maka seketika itu terjadi peningkatan ukuran

Page 87: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

62

antena klorofil yang disertai peningkatan sel klorofil, apoprotein LHC dan

penurunan rasio klorofil a/b akibat terakumulainya klorofil b.

Peningkatan klorofil b terkait dengan peningkatan light harvesting

chlorophyll a/b protein fotosistem II (LHCIIb). LHCIIb merupakan kompleks

trimerik yang mengikat sekitar 60% klorofil PSII. Karena sebagian besar klorofil

b merupakan komponen pemanenan cahaya dari PSII, maka perubahan rasio

klorofil a/b mencerminkan perubahan pada jumlah kompleks pemanen cahaya

(LHC) pada PSII dan PSI. Hal senada juga banyak dibahas oleh Walter dan

Horton (1995); Bailey et al. (2004) tentang aklimatisasi Arabidopsis terhadap

cahaya tinggi dan rendah. Hal senada juga dilaporkan Khumaida (2002) bahwa

genotipe kedelai toleran naungan memiliki kapasitas penangkapan cahaya yang

lebih besar dari pada genotipe peka karena memiliki kemampuan yang lebih tinggi

dalam mengkonversi klorofil a menjadi klorofil b. Park et al. (1996) menyatakan

bahwa PSII merupakan kompleks aparatus fotosintetik yang paling peka

(vulnerable) terhadap stres cahaya. Perilaku PSII sangat ditentukan oleh dosis

foton atau intensitas cahaya yang diterima.

Respon klorofil terhadap intensitas cahaya rendah penting mengingat

klorofil a dan klorofil b merupakan komponen kompleks antena periferal

kloroplas yang ditentukan oleh kondisi cahaya yang diterima sebagai bentuk atau

mekanisme adaptasi tanaman. Hidema et al. (1992) menyatakan bahwa

peningkatan antenna size untuk PSII dapat meningkatkan efisiensi pemanenan

cahaya. Ketika tanaman mendapatkan intensitas cahaya rendah, maka kloroplas

akan bergerak ke permukaan luar untuk memaksimalkan absorpsi cahaya. Cahaya

yang diterima selanjutnya digunakan untuk proses fotosintesis. Menurut Salisbury

dan Ross (1992), intensitas cahaya rendah terbukti mempengaruhi orientasi

kloroplas tanaman.

Pada intensitas cahaya rendah, kloroplas akan mengumpul pada dua bagian,

yaitu pada kedua sisi dinding sel terdekat dan terjauh dari cahaya. Hal ini

menyebabkan warna daun pada tanaman ternaungi lebih hijau dari yang mendapat

cahaya penuh. Park et al. (1996) juga menyatakan hal yang sama bahwa sebagai

respon tanaman terhadap intensitas cahaya dan arah datangnya cahaya adalah

berpindahnya kloroplas di dalam sel ke dinding sel daun. Intensitas cahaya rendah

Page 88: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

63

menyebabkan terjadi peningkatan jumlah kloroplas per sel, volume kloroplas dan

membran tilakoid serta grana (stack granum), seperti pada Gusmania monostachia

(Maxwell et al. 1999). Hal yang sama juga dilaporkan dari hasil penelitian pada

tanaman Arabidopsis (Weston et al. 2000) dan wortel (Daucus carota) (Sato-Naro

et al. 2004). Walters et al. (1999) menyebut aklimatisasi kloroplas ini sebagai

mekanisme toleransi terhadap naungan ‘shade tolerance’. Linchtenthaler dan

Burkart (1999) juga mendiskripsikan kloroplas daun tanaman yang ternaungi

sebagai berikut: jumlah tilakoid yang lebih besar per kloroplas, stack grana yang

lebih besar, tingkat stacking grana yang lebih tinggi, tilakoid yang tertekan

(appressed), jumlah LHCP yang banyak, rasio klorofil a/b yang rendah, tidak

mengandung pati, sedikit plastoglobuli yang berukuran kecil, jumlah kolofil total

yang lebih besar per kloroplas.

Selama lima hari gelap total, baik pada perlakuan langsung gelap (L2) atau

on/of naungan/cahaya/gelap (L4), kandungan klorofil (klorofil a, b, total) jauh

lebih tinggi pada genotipe toleran dibanding genotipe peka. Hal senada juga

dilaporkan oleh Khumaida (2002); Sopandie et al. (2003a). Pada padi gogo

toleran juga dilaporkan kandungan klorofil a dan b lebih tinggi dibanding

genotipe peka (Sopandie et al. 2003b). Fenomena ini diduga merupakan cerminan

kekuatan melawan degradasi klorofil dan ini sangat penting bagi daya adaptasi

terhadap naungan, yaitu dengan meningkatkan jumlah kloroplas per luas daun

(Hale dan Orchut 1987) dan dengan peningkatan jumlah klorofil pada kloroplas.

Kondisi gelap total merupakan faktor umum yang menjadi pemicu (induser)

dari fenomena senesen. Senesen dicirikan dengan daun menjadi kuning atau

pucat, terjadi degradasi chlorophyll a/b binding protein (CAB), total klorofil dan

protein yang berkurang, dan umumnya perkembangannya terhenti pada kondisi

gelap (Weaver dan Amasino 2001). Tyas (2006) dalam penelitiannya

menggunakan TEM (transmission electron microscope) melaporkan bahwa

kloroplas kedelai peka naungan ‘Godek’ mengalami degradasi membran yang

lebih parah pada kondisi gelap dibanding genotipe toleran ‘Ceneng’. Pemberian

kondisi lima hari gelap ini terlihat sangat efektif untuk menapis genotipe toleran

dan genotipe peka intensitas cahaya rendah. Hasil ini sesuai dengan yang

direkomendasikan Sopandie et al. (2003c) pada penelitian ‘efektivitas uji cepat

Page 89: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

64

ruang gelap untuk seleksi ketenggangan terhadap naungan pada padi gogo’ bahwa

uji cepat ruang gelap ini merupakan metode penyaringan genotipe toleran dan

peka yang cukup efektif.

KESIMPULAN

Pada kondisi intensitas cahaya rendah, genotipe toleran menunjukkan

ukuran daun lebih luas, bobot daun spesifik lebih rendah (lebih tipis), kandungan

klorofil lebih tinggi, dan rasio klorofil a/b yang lebih rendah dibanding genotipe

peka, sehingga karakter morfo-fisiologi daun tersebut dapat dijadikan sebagai

penciri adaptasi kedelai terhadap intensitas cahaya rendah.

Page 90: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

BAB IV

ANALISIS GENETIK ADAPTASI KEDELAI TERHADAP INTENSITAS CAHAYA RENDAH BERDASARKAN

KARAKTER MORFO-FISIOLOGI DAUN

Abstrak

Penelitian ini bertujuan untuk mendapatkan informasi tentang parameter genetik adaptasi kedelai terhadap intensitas cahaya rendah berdasarkan karakter morfo-fisiologi daun. Bahan genetik yang digunakan adalah tetua toleran (Ceneng), tetua peka (Godek) masing-masing 22 tanaman sampel, populasi F1 hasil persilangan Ceneng x Godek sebanyak 21 tanaman, dan 114 tanaman populasi F2. Populasi tersebut ditanam di bawah paranet 50% dan disusun dengan rancangan acak kelompok dengan 2 ulangan. Analisis genetik karakter-karakter morfologi dan fisiologi daun yang terkait adaptasi kedelai terhadap intensitas cahaya rendah meliputi: pendugaan koefisien korelasi, heritabilitas arti luas, jumlah gen (effective factor), dan aksi gen. Hasil penelitian menunjukkan bahwa: Adaptasi kedelai terhadap intensitas cahaya rendah dicirikan dengan karakter hasil biji per tanaman yang terkait erat dengan karakter luas daun, bobot daun spesifik, dan kandungan klorofil. Karakter hasil dikendalikan sekurang-kurangnya 6 gen minor, aksi gen dominan parsial, dan nilai heritabilitas arti luas (h2

bs) tinggi (68%). Karakter luas daun dan bobot daun spesifik masing-masing dikendalikan sekurang-kurangnya 4 dan 5 gen minor, aksi gen aditif, dan nilai heritabilitas arti luas (h2

bs) tinggi dan sedang (63%, 48%). Adaptasi berdasarkan karakter klorofil a, klorofil b, dan klorofil total masing-masing dikendalikan 2 gen mayor, aksi gen isoepistasis, dan nilai heritabilitas arti luas (h2

bs) tinggi (78%, 84%, 86%). Adaptasi berdasarkan karakter rasio klorofil a/b dikendalikan 2 gen mayor, aksi gen dominan dan resesif epistasis, dan nilai heritabilitas arti luas (h2

bs) tinggi (70%). _________ Kata kunci: kedelai, karakter morfologi daun, analisis genetik, heritabilitas, aksi

gen

Page 91: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

66

GENETIC ANALYSIS OF ADAPTATION OF SOYBEAN TO LOW LIGHT INTENSITY BASED ON LEAF MORPHO-

PHYSIOLOGICAL CHARACTERS

Abstract

This study was aimed to obtain the valuable genetic information of adaptation of soybean to low light intensity based on leaf morpho-physiological characters. Genetic materials used in this study consisted of 22 plants each of low irradiance (LI)-tolerant genotype (Ceneng) and LI-sensitive genotype (Godek); 21 plants of F1 (Ceneng x Godek); and 114 plants of F2 populations (derived from F1). These populations were planted under shading of paranet 50%, each population was arranged based on randomized block design with two replicates. Analisis of genetic parameters of soybean adaptation involved of estimation of phenotypic correlation, heritability (broad sense), number of gen (effective factor), and gen action. Results of this study showed that: adaptation of soybean to low light intensity was characterized by yield per plant highly correlated with leaf morpho-physiological characters such as leaf area, specific leaf weight, and chlorophyll content. Adaptation of soybean to low light stress based on characters of yield per plant was highly heritable (68% of broad sense), controlled by at least 6 effective factors with partial dominant mode of action. Characters of leaf area and specific leaf weight were highly (68% of broad sense) and moderately (48% of broad sense) heritable, controlled by at least 4 and 5 minor genes (effective factors) respectively with additive mode of action. Adaptation based on leaf physiological characters (chlorophyll contents) were highly heritable (70% - 86% of broad sense), controlled by at least two major genes in epistatic mode of action. __________ Key words: soybean, leaf morphologycal character, genetic analysis, heritability,

gene action

Page 92: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

67

PENDAHULUAN

Latar Belakang

Kendala utama pengembangan tanaman kedelai sebagai tanaman sela di

bawah tegakan tanaman perkebunan, lingkungan agroforestri, atau tumpang sari

dengan tanaman pangan lain adalah rendahnya intensitas cahaya akibat faktor

naungan. Pada kondisi lingkungan intensitas cahaya rendah, tanaman memerlukan

sifat adaptasi tertentu untuk mampu bertahan hidup, berkembang dan berproduksi

dengan baik (Mohr dan Schooper 1995). Oleh karena itu diperlukan upaya

perbaikan genetik adaptasi kedelai terhadap cekaman intensitas cahaya rendah

melalui program pemuliaan tanaman.

Pemuliaan tanaman untuk adaptasi kedelai terhadap naungan dengan tujuan

untuk mendapatkan genotipe yang toleran dengan produktivitas tinggi pada

kondisi lingkungan intensitas cahaya rendah sudah dimulai dengan pembentukan

12 populasi bersegregasi dengan metode bulk terbatas (restricted bulk) hasil

persilangan dialel lengkap dari empat tetua terpilih (masing-masing dua tetua

toleran dan tetua peka) (Trikoesoemaningtyas et al. 2003). Dalam setiap tahapan

seleksi untuk mendapatkan genotipe toleran, karakter hasil merupakan kriteria

seleksi yang utama meskipun perolehan kemajuan genetik (genetic advance) tidak

cukup besar seperti yang diharapkan (Fehr 1987; Roy 2000). Hal ini karena

karakter hasil umumnya dipengaruhi oleh banyak gen (poligenik) dengan nilai

heritabilitas yang rendah (Wallace et al. 1993). Wallace et al. (1993); Chahal dan

Gosal (2002) menyarankan agar seleksi terhadap hasil hendaknya disertai dengan

seleksi secara simultan dengan komponen agronomi, morfologi, atau fisiologi lain

yang terkait dan dikendalikan secara genetik. Dalam hal ini, daun sebagai organ

utama tanaman yang berperan secara langsung dalam aktivitas fotosintesis dan

menentukan kapasitas fotosintetik optimum melalui berbagai bentuk mekanisme

adaptasi pada kondisi lingkungan intensitas cahaya rendah menjadi sangat

penting.

Beberapa karakter morfologi dan fisiologi daun yang dapat dijadikan

sebagai penciri adaptasi kedelai terhadap intensitas cahaya rendah antara lain:

kandungan klorofil (klorofil a, b, dan total), rasio klorofil a/b, luas daun dan bobot

daun spesifik (hasil Percobaan 1). Hasil penelitian sebelumnya juga

Page 93: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

68

menunjukkan bahwa kandungan klorofil dapat dijadikan sebagai marka fisiologi

dalam seleksi adaptasi kedelai terhadap intensitas cahaya rendah (Handayani

2003). Sopandie et al. (2003b); Khumaida (2002) melaporkan bahwa tanaman

yang toleran naungan mempunyai daun yang lebih lebar dan tipis, kandungan

klorofil b yang lebih tinggi dan rasio klorofil a/b yang lebih rendah dari pada

tanaman peka. Perubahan karakter morfologi dan fisiologi daun tersebut

merupakan bentuk mekanisme adaptasi tanaman terhadap cekaman intensitas

cahaya rendah (Evans dan Poorter 2001; Kim et al. 2005; Jufri 2006; Muhuria

2007). Dengan demikian karakter morfo-fisiologi daun dapat memberikan andil

besar dalam perbaikan adaptasi tanaman terhadap intensitas cahaya rendah.

Penggunaan karakter morfo-fisiologi daun sebagai penciri adaptasi atau

kriteria seleksi untuk perbaikan sifat adaptasi kedelai terhadap intensitas cahaya

rendah perlu didukung oleh pengetahuan mengenai parameter genetik, seperti

koefesien korelasi genotipik, nilai heritabilitas, dan jumlah gen (effective factor)

yang mengendalikan karakter tersebut. Menurut Grami et al. (1977) parameter

genetik bermanfaat di dalam merumuskan program pemuliaan yang akan

digunakan dan mengetahui kemajuan genetik hasil seleksi. Poehlman dan Sleper

(1995); Roy (2000) juga menyatakan seleksi terhadap karakter yang berkontribusi

terhadap sifat adaptasi tanaman akan lebih efektif apabila didasari oleh informasi

genetik seperti pendugaan heritabilitas, jumlah dan tipe aksi gen pengendali.

Sejauh ini, informasi tentang parameter genetik karakter morfo-fisiologi

daun sebagai penciri adaptasi kedelai terhadap intensitas cahaya rendah belum

banyak dilaporkan. Informasi ini penting agar karakter morfo-fisiologi daun dapat

dijadikan sebagai kriteria seleksi adaptasi kedelai terhadap intensitas cahaya

rendah. Seleksi terhadap karakter sekunder akan lebih efektif apabila karakter

tersebut memiliki hubungan genetik kuat dengan karakter primer dan memiliki

nilai heritabilitas yang lebih tinggi dibanding karakter primer (Roy 2000).

Tujuan

Penelitian ini bertujuan untuk memperoleh pengetahuan tentang parameter

genetik karakter morfo-fisiologi daun sebagai karakter penciri adaptasi kedelai

terhadap intensitas cahaya rendah

Page 94: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

69

BAHAN DAN METODE

Bahan Tanaman

Bahan genetik yang digunakan adalah kedelai toleran naungan Ceneng (P1)

dan peka naungan Godek (P2), keduanya merupakan genotipe lokal (Sopandie et

al. 2002) masing-masing sebanyak 22 tanaman, F1 hasil persilangan Ceneng x

Godek sebanyak 21 tanaman, dan F2 hasil selfing populasi F1 sebanyak 114

tanaman. Penanaman di bawah naungan paranet 50% dilakukan di Kebun

Percobaan Balitbiogen, Cimanggu, Bogor mulai Agustus – November 2005.

Pengolahan tanah di bawah paranet 50% dilakukan dengan cara dibajak dua

kali menggunakan traktor. Pada pengolahan tanah kedua diberikan pupuk kandang

20 ton/ha secara merata. Sebelum penanaman, lubang tanam ditaburi Carbofuran

3G. Selanjutnya sebanyak masing-masing 2 benih kedelai dari populasi P1, P2, F1,

dan F2 ditanam pada setiap lubang tanam pada masing-masing petak dengan jarak

tanam 30 x 15 cm. Petak percobaan disusun berdasarkan rancangan acak

kelompok dengan dua ulangan. Penyulaman dilakukan setelah tanaman berumur

satu minggu setelah tanam (MST) dengan mengganti tanaman yang kurang sehat

atau mati. Pemupukan dilakukan pada umur tanaman 1 MST dengan dosis 30 kg

urea/ha, 100 kg SP-36/ha, dan 100 kg KCl/ha. Pemeliharaan tanaman seperti

penyiangan dan pengendalian hama dan penyakit dilakukan setiap tiga minggu

sekali atau apabila diperlukan.

Pengamatan

Karakter yang diamati terdiri atas karakter morfo-fisiologi daun dan hasil

per tanaman. Karakter morfo-fisiologi daun yang diamati meliputi: luas daun,

bobot daun spesifik (BDS), kandungan klorofil (klorofil a, klorofil b, klorofil

total) and rasio klorofil a/b.

Pengambilan sampel daun dari setiap individu tanaman dilakukan pada

umur tanaman 5 MST. Sampel daun yang diamati adalah daun trifoliat ketiga dan

keempat dari ujung atas batang utama yang telah berkembang sempurna.

Pengukuran kandungan klorofil dan antosianin dilakukan di lab RGCI

(Research Group on Crop Improvement) Fakultas Pertanian IPB. Analisis

Page 95: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

70

kandungan klorofil a, b, dan klorofil total dilakukan menggunakan metode yang

digunakan Richardson et al. (2002) yang merupakan perbaikan metode yang

digunakan Arnon (1949) (lihat Lampiran 1). Pengukuran luas daun dan bobot

daun spesifik (BDS) dilakukan di lab Ekofisiologi Faperta IPB. Luas daun trifoliat

diamati dengan menggunakan leaf area meter, sedangkan BDS yang

mengindikasikan ketebalan daun, dihitung dengan cara membagi berat kering

daun dengan luas daun.

Pengukuran hasil biji per tanaman dilakukan dengan cara memanen masing-

masing individu tanaman setelah polong kering berwarna coklat kehitaman

kemudian dibijikan dan ditimbang bobot kering biji per tanaman setelah biji

mencapai kadar air sekitar 11%.

Analisis Data

Keragaan hasil dan morfo-fisiologi daun pada tetua. Untuk mengetahui

apakah kedua genotipe tetua yang digunakan (Ceneng, genotipe toleran naungan;

Godek, genotipe peka naungan) memiliki karakter hasil dan morfo-fisiologi daun

yang berbeda nyata, dilakukan uji t terhadap masing-masing karakter pada

masing-masing genotipe tersebut. Karakter yang berbeda dari kedua tetua akan

dilanjutkan pada analisis parameter genetik berikutnya.

Korelasi karakter morfo-fisiologi daun dengan hasil pada populasi F2.

Untuk mengetahui karakter-karakter morfo-fisiologi daun yang terkait erat dengan

adaptasi kedelai terhadap intensitas cahaya rendah, maka dilakukan analisis

korelasi Pearson antara karakter morfo-fisiologi dengan karakter hasil (referensi

adaptasi) pada populasi segregasi F2 (Wallace et al. 1993; Grami et al. 1977).

Koefesien korelasi fenotipik yang menunjukkan hubungan antara dua peubah

dihitung menggunakan rumus (Steel et al. 1997; Roy 2000) atau menggunakan

fungsi korelasi pada program Minitab Release 13.

))((1/))((

),( 22 yxnyyxx

yxrσσ

−−−= ∑

Page 96: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

71

Karakter-karakter yang terkait erat dengan sifat adaptasi kedelai terhadap

intensitas cahaya rendah adalah karakter-karakter yang memiliki koefesien

korelasi tinggi dan nyata terhadap hasil.

Pengujian sebaran fenotipe F2. Untuk melakukan pendugaan jumlah gen

masing-masing karakter yang diamati, terlebih dahulu ditentukan apakah sebaran

fenotipe karakter tersebut mengikuti kurva normal atau tidak. Analisis sebaran

fenotipe karakter morfo-fisiologi daun dilakukan dengan menggunakan analisis

statistik deskriptif dengan menggunakan program Minitab Release 13. Hasil

analisis deskriptif selain menunjukkan tingkat kemenjuluran (skewness dan

kurtosis) juga pengujian normalitas menggunakan model Anderson-Darling.

Selanjutnya untuk mengetahui kecenderungan posisi sebaran populasi F2 dengan

kedua tetua dan populasi F1, dilakukan analisis dengan menggunakan kaidah

Sturge (Nasoetion dan Barizi 1973) yaitu dengan cara data pengamatan masing-

masing karakter dari seluruh individu tanaman F2 dikelompokkan menjadi 9 kelas

(jumlah tanaman kurang dari 250 tanaman) dengan interval tertentu. Selanjutnya

data dianalisis menggunakan program Minitab Release 13.

Pendugaan jumlah gen. Berdasarkan hasil analisis statistik deskriptif

seperti tingkat kemenjuluran dan uji normalitas serta histogram masing-masing

karakter yang diuji, selanjutnya ditentukan apakah sebaran fenotipe karakter

tersebut mengikuti sebaran normal atau tidak. Apabila suatu karakter memiliki

nilai uji normalitas (A2) dengan nilai probabilitas p > 0.05 maka sebaran fenotipe

karakter tersebut bersifat kontinu dan mengikuti kurva normal. Apabila nilai

probabilitas p ≤ 0.05 maka sebaran fenotipe karakter tersebut bersifat kontinu

dengan sebaran tidak mengikuti kurva normal. Karakter dengan sebaran kontinu

dan mengikuti kurva normal menunjukkan bahwa karakter tersebut lebih banyak

dipengaruhi oleh gen-gen minor. Karakter dengan sebaran kontinu tetapi tidak

mengikuti kurva normal menunjukkan karakter tersebut selain dipengaruhi oleh

gen minor juga dipengaruhi oleh satu atau dua gen mayor (Chandraratna 1964;

Fehr 1987; Crowder 1993). Menurut Chandraratna (1964) apabila dalam suatu

karakter kuantitatif ikut serta pengaruh gen mayor dengan arah dominansi yang

sama, maka akan terlihat adanya kemenjuluran puncak (peak skewness) sebaran

frekuensi. Apabila gen mayor mempunyai dominansi sendiri-sendiri maka akan

Page 97: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

72

terlihat adanya bentuk sebaran frekuensi dengan puncak lebih dari satu (bimodal

atau trimodal) pada generasi F2.

Pendugaan jumlah gen yang mengendalikan karakter dengan sebaran

fenotipe F2 mengikuti sebaran normal dihitung menggunakan rumus Castle (1921)

dalam Roy (2000) sebagai berikut:

)(8)(

12

22

221

FFppnσσ −

−=

dimana, n = jumlah gen; 1p = rata-rata tetua 1; 2p = rata-rata tetua 2; σ2F1 = varians populasi F1; σ2F2 = varians populasi F2.

Selanjutnya pendugaan aksi gen yang mengendalikan karakter tersebut

dihitung berdasarkan rumus pendugaan nilai nisbah potensi (hp) yang digunakan

Petr dan Frey (1966) sebagai berikut:

MPHPMPFhp

−−

=

dimana hp = nilai nisbah potensi atau derajat dominansi gen, F = rata-rata nilai F1, HP = rata-rata nilai tetua tertinggi, MP = nilai tengah kedua tetua

Berdasarkan nilai potensi rasio (hp), derajat dominansi atau aksi gen yang

mengendalikan karakter kuantitatif diklasifikasikan sebagai berikut (Petr dan Frey

1966): aditif, tidak ada dominansi apabila 0.00 < hp ≤ 0.25; dominan parsial atau

dominan tidak sempurna apabila 0.25 < hp ≤ 0.75; dominan penuh atau dominan

sempurna apabila 0.75 < hp ≤ 1.25; dan dominan berlebih atau over-dominan

apabila hp >1.25.

Pendugaan jumlah gen yang mengendalikan karakter dengan sebaran

fenotipe F2 yang tidak mengikuti sebaran normal dihitung melalui pendekatan

analisis genetika Mendel yaitu dengan membandingkan nisbah sebaran frekuensi

fenotipik hasil pengamatan dengan nisbah harapan atau nisbah hipotetik

menggunakan uji Chi-kuadrat (χ2) (Allard 1960; Fehr 1987; Crowder 1993).

Page 98: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

73

Untuk keperluan analisis tersebut maka setiap karakter dikelompokkan ke dalam

2, 3 atau 4 kelas toleransi sesuai dengan jumlah nisbah harapan. Pengelompokan

tersebut didasarkan atas 9 kelas interval sesuai sebaran frekuensi fenotipik

populasi F2 seperti ditentukan sebelumnya menggunakan kaidah Sturge

(Nasoetion dan Barizi 1973). Untuk pengelompokan 2 kelas toleransi (P, peka : T,

toleran), kelompok peka terdiri atas kelas interval (1,2) dan kelompok toleran

terdiri atas kelas interval (3,4,5,6,7,8,9); 3 kelas tolerasi (P, peka : M, moderat : T,

toleran), kelompok peka terdiri atas (1,2), moderat (3,4,5), dan toleran (6,7,8,9); 4

kelas toleransi (P, peka : AP, agak peka : AT, agak toleran : T, toleran), kelompok

peka terdiri atas (1,2), agak peka (3,4), agak toleran (5,6), dan toleran (7,8,9).

Pengujian kesesuaian nisbah pengamatan dengan nisbah harapan dilakukan

menggunakan Uji Chi-kuadrat (χ2) dengan rumus sebagai berikut:

EiEiOiX

22 )( −

∑=

dimana χ2 merupakan nilai chi-square hitung; i = 1,2,3,….n; Oi = nilai pengamatan; Ei = nilai yang diharapkan dalam kelas ke i.

Apabila nilai χ2 hitung lebih kecil dari χ2 tabel, berarti sebaran fenotipik

pada populasi F2 mengikuti nisbah harapan fenotipik tertentu. Untuk keperluan

analisis genetik, batas kesesuaian uji χ2 dianggap cukup apabila digunakan batas

peluang (p) = 0.20. Beberapa nisbah fenotipe hipotetik yang biasa digunakan

terkait dengan pendugaan jumlah gen mayor, disajikan pada Tabel 9.

Pendugaan nilai heritabilitas arti luas. Untuk mengetahui apakah karakter

yang terkait adaptasi intensitas cahaya rendah lebih banyak ditentukan oleh ragam

genetik atau lingkungan, maka dilakukan pendugaan nilai heritabilitas arti luas

(h2bs) dengan melibatkan ragam tetua (P1, P1), F1 dan F2 dengan rumus seperti

yang dikemukakan Warner (1952) dalam Fehr (1987).

Nilai heritabilitas tersebut oleh McWhirter (1979) digolongkan menjadi nilai

heritabilitas tinggi apabila h2 > 50%, nilai heritabilitas sedang apabila 20% < h2 <

50%, dan heritabilitas rendah apabila h2 < 20%. Karakter dengan nilai heritabilitas

tinggi menunjukkan bahwa karakter tersebut dipengaruhi lebih banyak oleh faktor

Page 99: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

74

genetik, sementara karakter dengan nilai heritabilitas rendah menunjukkan bahwa

keragaan karakter lebih banyak dipengaruhi oleh faktor lingkungan dari pada

faktor genetik.

100))()((

h2

2

32

21

21

22

2

bs2 x

FPPFF

σσσσσ −

=

dimana, h2

bs = nilai heritabilitas arti luas; σ2F1 = ragam populasi F1; σ2F2 = ragam populasi F2 sama dengan ragam fenotipik; σ2P1 = ragam populasi tetua 1; dan σ2P2 = ragam populasi tetua 2; 3

22

12

12 ))()(( PPF σσσ merupakan nilai duga ragam

lingkungan secara tidak langsung. Ragam total genotipik (ragam aditif + ragam dominan + ragam epistasis) merupakan ragam fenotipik dikurangi ragam lingkungan.

Tabel 9 Nisbah fenotipe karakter yang terkait adaptasi terhadap suatu cekaman yang dikendalikan oleh gen mayor pada populasi bersegregasi F2 (Fehr 1987; Crowder 1993)

Jumlah gen dan tipe aksi gen berdasarkan nisbah T AT AP P Satu (1) pasang gen: a. Dominan penuh 3 - - 1 b. Resesif 1 - - 3 c. Tidak ada dominansi 1 2 - 1 Dua (2) pasang gen: a. Tidak ada epistasis 9 3 3 1 b. Resesif epistasis: aa epistatik terhadap B dan b 9 3 - 4 c. Dominan epistasis: A epistatik terhadap B dan b 12 - 3 1 d. Dominan dan resesif epistasis, A epistatik terhadap B

dan b; bb epistatik terhadap aa 13 - - 3

e. Resesif ganda (duplikat resesif epistasis): aa epistatik terhadap B dan b; bb epistatik terhadap A dan a

9 - - 7

f. Isoepistasis: duplikat dominan epistasis. A epistatik terhadap B; B epistatik terhadap A dan a

15 - - 1

g. Semiepistatis (interaksi duplikat) 9 6 - 1 h. Interaksi kompleks 10 3 - 3 Tiga (3) pasang gen (epistasis kompleks) a 37 - - 27 b. 45 - - 19 c 55 - - 9 d 27 9 9 19 Keterangan: T = toleran, AT = agak toleran, AP = agak peka, P = peka

Page 100: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

75

HASIL DAN PEMBAHASAN

Hasil dan Morfo-fisiologi Daun pada Tetua Toleran dan Peka Naungan

Untuk mengetahui perbedaan keragaan nilai tengah beberapa karakter yang

diamati pada kedua tetua, telah dilakukan uji t. Karakter-karakter yang berbeda

nyata pada kedua tetua tersebut dilanjutkan dengan analisis parameter genetik.

Keragaan dan hasil uji t nilai tengah karakter morfo-fisiologi daun yang diamati

seperti hasil biji per tanaman, luas daun, bobot spesifik daun (tebal daun),

kandungan klorofil a, klorofil b, klorofil total, dan rasio klorofil a/b pada tetua

toleran (Ceneng) dan tetua peka (Godek) pada kondisi lingkungan naungan 50%

disajikan pada Tabel 10.

Tabel 10 Keragaan karakter hasil dan morfo-fisiologi daun tetua toleran (Ceneng) dan peka (Godek) pada kondisi naungan 50%

Nilai tengah Karakter yang diamati

Ceneng (P1)

Godek (P2)

Nilai t test

Hasil per tanaman (g) 7.842 a 4.223 b 20.35**Luas daun (cm2) 41.193 a 31.286 b 16.29**Bobot spesifik daun (mg/cm2) 1.743 b 2.059 a -10.20**Klorofil a (mg/g) 2.099 a 1.706 b 14.13**Klorofil b (mg/g) 1.072 a 0.728 b 14.26**Klorofil total (mg/g) 3.170 a 2.433 b 17.23**Rasio klorofil a/b 1.967 b 2.366 a -6.70**

** sangat berbeda nyata dengan uji t

Pada Tabel 10 terlihat bahwa terdapat perbedaan yang nyata antar kedua

tetua toleran dan peka naungan pada semua karakter yang diamati berdasarkan uji

t. Rata-rata hasil per tanaman tetua toleran (Ceneng) lebih tinggi dari pada tetua

peka (Godek). Pada tetua toleran, rata-rata luas daun lebih tinggi, kandungan

klorofil a, klorofil b, dan klorofil total juga lebih tinggi, sedangkan bobot spesifik

daun dan rasio klorofil a/b lebih rendah dari pada tetua peka. Perbedaan keragaan

genotipe Ceneng (tetua toleran) terhadap genotipe Godek (tetua peka naungan)

pada karakter tersebut juga dilaporkan oleh peneliti sebelumnya (Sopandie et al.

2002, 2006; Khumaida 2002; Handayani 2003; Lestari 2005; Tyas 2006; Jufri

Page 101: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

76

2006; Muhuria 2007). Berdasarkan hasil uji t tersebut tetua Ceneng dan Godek

masing-masing konsisten sebagai tetua toleran dan tetua peka naungan. Adanya

perbedaan dasar genetik yang jelas antar kedua tetua yang digunakan diperlukan

untuk memperoleh kemajuan seleksi yang baik.

Korelasi Karakter Morfo-fisiologi Daun dengan Hasil pada Populasi F2

Koefesien korelasi fenotipik atau koefesien korelasi total menggambarkan

derajat hubungan atau kedekatan hubungan linier antar dua karakter atau dua

peubah (Roy 2000). Batas nilai koefesien korelasi adalah -1 ≤ r ≤ 1, artinya

apabila nilai r mendekati 1 atau -1 maka kedua karakter memiliki hubungan

positif atau negatif yang sangat kuat, sedangkan apabila nilai r = 0.0 maka kedua

karakter tidak mempunyai hubungan atau dikatakan sebagai karakter bebas.

Informasi korelasi ini penting dalam kegiatan pemuliaan tanaman terutama dalam

melakukan seleksi sifat-sifat baik (desired characters). Dalam seleksi genotipe

kedelai yang adaptif pada kondisi cekaman intensitas cahaya rendah dimana

karakter hasil merupakan karakter utama (primer) maka karakter yang memiliki

keeratan hubungan dengan hasil merupakan karakter penting yang dapat

digunakan sebagai karakter sekunder dalam seleksi tidak langsung (inderect

selection).

Tabel 11 Koefisien korelasi fenotipik karakter morfo-fisiologi daun dan hasil pada populasi F2 dari persilangan tetua toleran Ceneng dengan tetua peka (Godek)

Karakter Hasil per tanaman

Luas daun

Bobot daun

spesifik

Klorofil a

Klorofil b

Klorofil total

Luas daun 0.75** Bobot daun spesifik -0.68** -0.82** Klorofil a 0.70** 0.49** -0.40** Klorofil b 0.71** 0.59** -0.55** 0.85** Klorofil total 0.73** 0.56** -0.50** 0.96** 0.96** Rasio klorofil a/b -0.59** -0.54** 0.51** -0.65** -0.94** -0.83**

Keterangan: ** sangat nyata

Hasil analisis korelasi fenotipik antar karakter morfo-fisiologi daun dan

hasil pada populasi F2 pada kondisi naungan (Tabel 11) menunjukkan bahwa

Page 102: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

77

karakter yang memiliki nilai koefesien korelasi tinggi dan nyata adalah luas daun

(0.75), bobot spesifik daun (-0.68); kandungan klorofil a (0.70), klorofil b (0.71),

klorofil total (0.73), dan rasio klorofil a/b (-0.59). Hasil penelitian ini senada

dengan yang dilaporkan Handayani (2003) dan Muhuria (2007). Nilai koefesien

korelasi yang positif dan nyata antara karakter kandungan klorofil dan luas daun

dengan karakter hasil biji per tanaman pada kondisi lingkungan intensitas cahaya

rendah mengindikasikan bahwa karakter tersebut memberikan kontribusi yang

besar pada keragaan hasil. Artinya bahwa apabila terjadi peningkatan karakater-

karakter tersebut maka akan diikuti peningkatan hasil tanaman. Dengan demikian

untuk mendapatkan genotipe kedelai dengan hasil yang tinggi pada kondisi

lingkungan intensitas cahaya rendah diperlukan genotipe dengan kandungan

klorofil terutama klorofil b yang tinggi, morfologi daun yang lebih luas dan lebih

tipis. Informasi ini memberikan gambaran bahwa mekanisme adaptasi kedelai

terhadap cekaman intensitas cahaya rendah terjadi melalui peningkatan

kandungan klorofil terutama klorofil b dan morfologi daun yang lebih luas dan

lebih tipis untuk memaksimalkan penangkapan cahaya.

Hasil penelitian ini penting bagi program perbaikan hasil kedelai pada

kondisi cekaman intensitas cahaya rendah melalui seleksi tidak langsung.

Sebagaimana yang diuraikan Pandini et al. (2002) bahwa perbaikan hasil dapat

dilakukan dengan melakukan seleksi terhadap karakter yang terkait erat dengan

hasil. Hasil percobaan ini juga mendukung hasil percobaan sebelumnya mengenai

respon karakter morfo-fisiologi daun bahwa kandungan klorofil yang tinggi

dengan daun yang lebar dan tipis pada kondisi lingkungan intensitas cahaya

rendah ditunjukkan oleh genotipe toleran naungan.

Nilai koefesien korelasi negatif dan nyata antara rasio klorofil a/b dan bobot

spesifik daun dengan hasil biji per tanaman menunjukkan bahwa apabila terjadi

penurunan rasio klorofil a/b dan bobot spesifik daun (tebal daun) maka akan

diikuti peningkatan hasil biji per tanaman. Informasi ini memberikan gambaran

bahwa mekanisme adaptasi kedelai terhadap cekaman intensitas cahaya rendah

terjadi melalui penurunan rasio klorofil a/b dan morfologi daun yang lebih tipis.

Hasil penelitian ini juga sejalan dengan yang dilaporkan Handayani (2003); Jufri

(2006); Muhuria (2007).

Page 103: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

78

Rasio klorofil a/b yang rendah menunjukkan rata-rata klorofil b lebih besar

dari pada rata-rata klorofil a. Fenomena ini mencerminkan bahwa klorofil b

sebagai salah satu pigmen antena pemanen cahaya berperan cukup penting di

dalam meningkatkan efisiensi penangkapan cahaya pada kondisi cekaman

intensitas cahaya rendah. Hasil penelitian ini sejalan dengan yang dilaporkan

Hidema et al. (1992) pada tanaman padi bahwa intensitas cahaya rendah

menurunkan nisbah klorofil a/b, karena adanya peningkatan klorofil b pada

tanaman yang dinaungi. Hal ini karena pada kondisi cahaya rendah, kloroplas

lebih banyak terdapat pada permukaan sel mesofil daun. Hal yang sama juga

dilaporkan Khumaida (2002), Handayani (2003), Jufri (2006), dan Muhuria

(2007) pada tanaman kedelai dan Lautt (2003) pada tanaman padi gogo. Secara

umum mereka melaporkan bahwa pada kondisi cekaman cahaya rendah, genotipe

toleran memiliki kandungan klorofil b yang lebih tinggi, rasio klorofil a/b yang

lebih rendah, dan morfologi daun yang lebih tipis dari pada genotipe peka.

Hasil uji korelasi tersebut juga memberikan informasi bahwa mekanisme

adaptasi kedelai terhadap cekaman intensitas cahaya rendah dapat melalui

peningkatan kandungan klorofil a, klorofil b, klorofil total, dan luas daun, serta

melalui penurunan rasio klorofil a/b dan bobot spesifik daun. Selanjutnya,

berdasarkan uji korelasi tersebut karakter-karakter yang berkorelasi tinggi dan

nyata dilanjutkan dengan analisis parameter genetik untuk mempelajari pola

pewarisan sifat adaptasi kedelai terhadap intensitas cahaya rendah.

Pola Pewarisan Sifat Adaptasi Kedelai berdasarkan Morfo-fisiologi Daun

Pengujian sebaran fenotipe F2. Untuk mengetahui apakah sebaran fenotipe

karakter morfo-fisiologi daun penciri adaptasi kedelai terhadap intensitas cahaya

rendah mengikuti kurva normal atau tidak, telah dilakukan analisis statistik

deskriptif sebaran fenotipe karakter morfo-fisiologi daun pada populasi memisah

(F2) termasuk sifat kemenjuluran (skewness dan kurtosis), dan uji normalitas

menggunakan program Minitab versi 13.30 (Lampiran 4). Secara ringkas hasil

analisis statistik deskriptif disajikan pada Tabel 12, sedangkan histogram masing-

masing karakter dengan kurva normal sebagai pembanding disajikan pada

Gambar 17 - 24.

Page 104: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

79

Tabel 12 Nilai rata-rata fenotipe, kemenjuluran (skewness), nilai normalitas dan probabilitas karakter morfo-fisiologi pada populasi F2

Karakter Rata-

rata StDev Skewness Kurtosis Nilai

A2 Nilai Prob.

Hasil per tanaman (g) 6.053 1.495 -0.176 -0.632 0.503 0.201 Luas daun (cm2) 36.620 3.620 -0.100 -0.564 0.325 0.519 Bobot daun spesifik (mg/cm2)

1.795 0.216 -0.075 -0.720 0.614 0.108

Klorofil a (mg/g) 2.030 0.160 -0.492 0.209 1.162** 0.005 Klorofil b (mg/g) 1.003 0.171 -0.493 -0.203 1.139** 0.005 Klorofil total (mg/g) 3.033 0.318 -0.609 0.047 1.822** 0.000 Rasio klorofil a/b 2.069 0.260 0.953 0.933 1.892** 0.000

Keterangan: A2 = nilai statistik uji normalitas Anderson-Darling; ** berbeda sangat nyata pada taraf kepercayaan 95%

9.58.57.56.55.54.53.52.5

15

10

5

0

F2-Hasil per Tanaman

Freq

uenc

y

Histogram of F2-Hasil per Tanaman, with Normal Curve

Gambar 17 Histogram fenotipe karakter hasil per tanaman pada populasi F2

dengan kurva normal sebagai pembanding.

Page 105: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

80

45403530

15

10

5

0

F2-Luas Daun

Freq

uenc

y

Histogram of F2-Luas Daun, with Normal Curve

Gambar 18 Histogram fenotipe karakter luas daun pada populasi F2 dengan kurva

normal sebagai pembanding.

2.32.22.12.01.91.81.71.61.51.41.3

20

10

0

F2-Bobot Daun Spesifik

Freq

uenc

y

Histogram of F2-Bobot Daun Spesifik, with Normal Curve

Gambar 19 Histogram fenotipe karakter bobot daun spesifik pada populasi F2 dengan kurva normal sebagai pembanding.

Page 106: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

81

2.452.352.252.152.051.951.851.751.651.55

20

10

0

F2-Klorofil a

Freq

uenc

y

Histogram of F2-Klorofil a, with Normal Curve

Gambar 20 Histogram fenotipe karakter klorofil a pada populasi F2 dengan kurva

normal sebagai pembanding.

1.51.41.31.21.11.00.90.80.70.60.5

15

10

5

0

F2-Klorofil b

Freq

uenc

y

Histogram of F2-Klorofil b, with Normal Curve

Gambar 21 Histogram fenotipe karakter klorofil b pada populasi F2 dengan kurva normal sebagai pembanding.

Page 107: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

82

3.73.22.72.2

20

10

0

F2-Klorofil Total

Freq

uenc

y

Histogram of F2-Klorofil Total, with Normal Curve

Gambar 22 Histogram fenotipe karakter klorofil total pada populasi F2 dengan

kurva normal sebagai pembanding.

3.02.52.01.5

30

20

10

0

F2-Rasio Klorofil a/b

Freq

uenc

y

Histogram of F2-Rasio Klorofil a/b, with Normal Curve

Gambar 23 Histogram fenotipe karakter rasio klorofil a/b pada populasi F2 dengan

kurva normal sebagai pembanding.

Page 108: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

83

Berdasarkan Tabel 12 dan Gambar 17- 23, diketahui bahwa sebaran

fenotipe karakter hasil biji per tanaman, luas daun, dan bobot daun spesifik pada

populasi F2 bersifat kontinu dan mengikuti kurva normal sebagaimana nilai uji

statistik normalitas (A2) yang tidak berbeda (p >0.10). Dengan demikian,

karakter-karakter tersebut dikendalikan banyak gen minor (poligenik) dengan

pengaruh total gen minor lebih besar dari pengaruh lingkungan tetapi pengaruh

per satuan gen lebih kecil dari pengaruh lingkungan. Hasil penelitian ini sejalan

yang dilaporkan Handayani (2003) dimana karakter hasil dan luas daun

merupakan karakter adaptasi kedelai terhadap naungan yang dikendalikan banyak

gen minor.

Sebaran finotipe karakter kandungan klorofil bersifat kontinu dan tidak

mengikuti kurva normal sebagaimana ditunjukkan dengan nilai uji normalitas (A2)

yang sangat berbeda nyata (p<0.01). Dengan demikian, karakter kandungan

klorofil dikendalikan oleh gen minor tetapi terdapat satu atau dua gen mayor.

Pendugaan Jumlah Gen dan Tipe Aksi Gen Pengendali Adaptasi

Jumlah gen minor. Pendugaan jumlah gen minor atau effective factor atau

‘quantitative trait loci (QTL)’ (Grami et al. 1977; Roy 2000) yang mengendalikan

adaptasi berdasarkan karakter dengan sebaran fenotipe mengikuti kurva normal

seperti hasil biji per tanaman, luas daun, dan bobot daun spesifik dihitung

menggunakan rumus Castle (1921) dalam Roy (2000), dan tipe aksi gen dianalisis

menggunakan rumus potensi rasio (hp) (Petr dan Frey 1966).

Tabel 13 Pendugaan jumlah gen minor (effective factor) dan tipe aksi yang mengendalikan karakter-karakter dengan pola sebaran kontinu dan mengikuiti kurva normal pada populasi F2

Karakter Jumlah

effective factor Potensi

rasio (hp) Tipe aksi

gen Hasil biji per tanaman 6 0.45 Dominan parsial Luas daun 4 0.23 Aditif Bobot spesifik daun 5 0.14 Aditif

Hasil pendugaan jumlah gen minor dan tipe aksinya terhadap karakter

tersebut menunjukkan bahwa keragaan karakter hasil biji pertanaman, luas daun,

Page 109: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

84

dan bobot daun spesifik masing-masing melibatkan sekurang-kurangnya 6, 4, dan

5 effective factor, dengan tipe aksi berturut-turut adalah dominan parsial, aditif,

dan aditif (dengan nilai hp berturut-turut 0.45, 0.22, dan 0.14) (Tabel 13).

Faktor efektif (effective factor) yang diduga terlibat dalam ekspresi karakter

hasil biji per tanaman antara lain gen-gen yang mengendalikan kandungan klorofil

maupun morfologi daun, sebagaimana yang ditunjukkan oleh koefesien korelasi

yang tinggi antara karakter hasil dengan kandungan klorofil dan morfologi daun.

Selain itu, faktor komponen hasil seperti jumlah polong isi, jumlah biji per

polong, dan jumlah cabang produktif juga mempengaruhi fenotipe hasil per

tanaman (Handayani 2003; Muhuria 2007). Handayani (2003) dan Muhuria

(2007) dalam penelitian sidik lintas pada tanaman kedelai juga melaporkan bahwa

pada kondisi cahaya rendah, kandungan klorofil dan luas daun berkontribusi

secara tidak langsung terhadap hasil biji per tanaman melalui karakter jumlah

polong berisi.

Pada karakter morfologi daun seperti luas daun dan bobot daun spesifik,

diketahui sekurang-kurangnya ada empat sampai lima effective factor dengan aksi

aditif. Faktor-faktor yang diduga terlibat mempengaruhi morfologi daun antara

lain lapisan palisade (Khumaida 2002; Muhuria 2007), sel-sel mesofil (Taiz dan

Zeiger 2002), hormon gibberellin dan auksin (Taiz dan Zeiger 2002). Hasil

penelitian Muhuria (2007) menunjukkan bahwa pada kondisi naungan lapisan

palisade kedelai toleran lebih tipis dibanding kedelai peka. Demikian pula yang

dilaporkan Khumaida (2002) pada tanaman padi gogo. Menurut Morelli dan

Ruberti (2002); Taiz dan Zeiger (2002); Bultynck dan Lambers (2004), selama

tanaman dalam kondisi naungan, biosintesis asam gibberellin dan auksin menjadi

meningkat terkait dengan regulasi sistem fitokrom dan ATHB. Biosintesis hormon

endogeneous gibberellin berfungsi dalam pembesaran dan pembelahan sel

jaringan daun sehingga daun menjadi lebih lebar.

Jumlah gen mayor. Pendugaan jumlah gen mayor yang mengendalikan

adaptasi berdasarkan karakter dengan sebaran kontinu tetapi tidak mengikuti

kurva normal seperti kandungan klorofil a, klorofil b, klorofil total, dan rasio

klorofil a/b dilakukan menggunakan pendekatan analisis genetika Mendel yaitu

dengan cara membandingkan nisbah frekuensi fenotipik karakter F2 hasil

Page 110: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

85

pengamatan dengan nisbah fenotipik harapan atau nisbah hipotetik dengan uji chi-

kuadrat (χ2) (Allard 1960; Fehr 1987; Crowder 1993). Untuk keperluan analisis

tersebut maka setiap karakter dikelompokkan ke dalam kelas-kelas tertentu (2, 3

dan 4 kelas) sesuai dengan jumlah nisbah harapan. Pengelompokan tersebut

didasarkan atas 9 kelas sesuai sebaran frekuensi fenotipik pada populasi F2.

Pengelompokan 2 kelas (peka, toleran) adalah peka (1,2) dan toleran

(3,4,5,6,7,8,9); 3 kelas (peka, moderat, toleran) adalah peka (1,2), moderat (3,4,5),

toleran (6,7,8,9); 4 kelas (peka, agak peka, agak toleran, toleran) adalah peka

(1,2), agak peka (3,4), agak toleran (5,6), toleran (7,8,9). Model pendugaan ini

selain untuk menduga jumlah gen juga dapat menduga tipe aksi gen yang

bersegregasi.

Hasil analisis genetika Mendel dengan menggunakan rumus chi-kuadrat

(Tabel 14) menunjukkan bahwa pengelompokan skor yang sesuai dengan nisbah

harapan adalah pengelompokan skor dalam 2 kelas (T:P). Nisbah sebaran

frekuensi fenotipik tingkat toleransi populasi F2 atas dasar karakter klorofil a,

klorofil b, klorofil total, dan antosianin nisbah 15 toleran :1 peka dikendalikan

oleh dua gen mayor dengan aksi gen isoepistasis (epistasis dominan ganda),

sedangkan rasio klorofil a/b sesuai dengan nisbah 13 toleran : 3 peka,

dikendalikan dua gen dengan aksi gen dominan resesif epistasis.

Tabel 14 Pendugaan jumlah gen mayor dan tipe aksi gen yang mengendalikan karakter-karakter klorofil pada populasi F2

Frekuensi

Fenotipe F2 Karakter Kelas

O E

Nisbah χ2 hit Prob.

Jmlgen

Tipe aksi gen

Klorofil a 2(T:P) 105:9 107:7 15:1 0.082 0.604 2 IE Klorofil b 2(T:P) 103:11 107:7 15:1 0.965 0.326 2 IE Klorofil total

2(T:P) 104:10 107:7 15:1 0.572 0.449 2 IE

Rasio klorofil a/b

2(T:P) 96:18 93:21 13:3 0.278 0.598 2 DRE

Keterangan: T = toleran; P = peka; O = observasi; E = ekspektasi; IE = isoepistasis; DRE =

dominan & resesif epistasis

Page 111: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

86

Nisbah fenotipik 15:1 berarti bahwa tingkat toleransi dikendalikan oleh dua

gen yang bersifat dominan epistatik dengan tipe aksi gen isoepistasis (Crowder

1993) atau epistasis dominan ganda (Fehr 1987; Yusuf 2001). Menurut Crowder

(1993), aksi gen isoepistasis terjadi apabila dua gen berperanan sama dan

mengatur sifat yang sama. Keberadaan salah satu gen dominan dapat mengganti

gen dominan lain untuk menampilkan sifat toleran. Hal yang sama juga dijelaskan

Yusuf (2001), bahwa isoepistasis atau interaksi duplikasi terjadi akibat dua gen

memproduksi bahan yang sama dan memproduksi fenotipe yang sama.

Estimasi nisbah fenotipik 15 toleran : 1 peka pada populasi F2 hasil

persilangan Ceneng (toleran) x Godek (peka) dapat dijelaskan sebagai berikut.

Sifat toleransi dikendalikan oleh pasangan alel dominan-resesif yang terdapat

pada dua gen yang berbeda lokus. Sifat toleran akan muncul apabila terdapat alel

dominan di salah satu atau kedua lokus. Sebagai contoh, alel-alel pada kedua

lokus adalah A, a, B, dan b. Semua tanaman yang bergenotipe A_ atau B_ akan

menampilkan sifat toleran terhadap intensitas cahaya rendah, sedangkan tanaman

yang bergenotipe aabb menampakkan sifat peka. Dengan demikian pada populasi

F2 terdapat nisbah 15 toleran : 1 peka.

Nisbah fenotipik 13:3 atas dasar karakter rasio klorofil a/b mengindikasikan

adanya dua gen yang bekerja secara dominan dan resesif epistasis, yaitu terjadi

interaksi dua gen dimana satu gen dominan pada satu lokus dan homosigot resesif

pada lokus yang lain maka akan bersifat epistasis, dengan kata lain apabila

terdapat salah satu gen tersebut maka akan menyebabkan tanaman menjadi

toleran. Yusuf (2001) juga menjelaskan bahwa penyimpangan nisbah Mendel

menjadi 13:3 karena adanya interaksi modifikasi yaitu aksi salah satu gen pada

suatu lokus menekan atau merubah hasil kerja gen pada lokus yang berbeda.

Pendugaan Nilai Heritabilitas Arti Luas

Diketahui ada dua macam pendugaan nilai heritabilitas, yaitu pendugaan

nilai heritabilitas arti sempit (h2ns) dan arti luas (h2

bs). Pendugaan nilai h2ns

dimaksudkan untuk mengetahui pewarisan suatu sifat dipengaruhi oleh ragam

aditif atau ragam lingkungan. Apabila nilai h2ns tinggi berarti pewarisan sifat

banyak dipengaruhi oleh ragam aditif (ragam kuantitatif) (Poespodarsono 1988).

Page 112: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

87

Dalam rangka perbaikan sifat adaptasi kedelai terhadap intensitas cahaya

rendah, pendugaan nilai heritabilitas arti sempit menjadi lebih penting karena

mencerminkan nilai tambah pada sifat yang dikendalikan gen aditif. Semakin

tinggi nilai heritabilitas arti sempit, semakin besar pengaruh gen aditif yang

berarti semakin besar pula nilai tambah pada perbaikan sifat yang diinginkan.

Pada penelitian ini hanya pendugaan nilai heritabilitas arti luas (h2bs) saja

yang dapat dilakukan karena keterbatasan populasi dasar yang tersedia.

Pendugaan nilai h2bs dimaksudkan untuk mengetahui pewarisan suatu sifat

dipengaruhi oleh ragam genetik atau ragam lingkungan. Apabila nilai h2bs tinggi

berarti pewarisan sifat lebih banyak dipengaruhi oleh ragam genetik atau ragam

genetik total dan sedikit pengaruh ragam lingkungan (Fehr 1987; Roy 2000).

Tabel 15 Nilai duga heritabilitas arti luas karakter-karakter yang terkait dengan adaptasi kedelai terhadap intensitas cahaya rendah

Ragam (σ2) populasi

Karakter P1Ceneng

P2Godek

F1C x G

F2 C x G

h2 bs (%)

Hasil per tanaman 0.523 0.351 1.956 2.235 68 Luas daun 3.401 3.862 9.555 13.104 63 Bobot daun spesifik 0.030 0.011 0.041 0.047 48 Klorofil a 0.008 0.007 0.003 0.026 78 Klorofil b 0.004 0.006 0.004 0.029 84 Klorofil total 0.015 0.021 0.009 0.101 86 Rasio klorofil a/b 0.014 0.039 0.016 0.068 70

Nilai heritabilitas arti luas dari semua karakter hasil per tanaman dan morfo-

fisiologi daun yang menjadi penciri adaptasi kedelai terhadap intensitas cahaya

rendah tergolong tinggi kecuali bobot daun spesifik yang tergolong sedang

(berdasarkan penggolongan nilai heritabilitas sesuai Halloran et al. 1979). Nilai

h2bs untuk karakter hasil, luas daun, bobot daun spesifik, klorofil a, klorofil b,

klorofil total, dan rasio klorofil a/b berturut-turut adalah 68%, 63%, 48%, 78%,

84%, 86%, dan 70% (Tabel 15). Hasil penelitian ini tidak berbeda dengan yang

dilaporkan peneliti sebelumnya (Handayani 2003; Muhuria 2007).

Nilai duga heritabilitas arti luas yang tinggi pada karakter hasil, luas daun,

kandungan klorofil a, klorofil b dan klorofil total, dan rasio klorofil a/b

mengindikasikan bahwa pewarisan karakter tersebut ditentukan oleh ragam

Page 113: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

88

genetik yang besar dengan sedikit pengaruh ragam lingkungan. Dalam hal ini

ragam genetik merupakan ragam genetik total yang mencakup ragam dominan

(σ2D), ragam aditif (σ2A), dan ragam epistasis (σ2I) (Fehr 1987; Nyquist 1991;

Roy 2000).

Agar nilai h2bs bermakna bagi program pemuliaan untuk adaptasi kedelai

terhadap intensitas cahaya rendah maka harus dilengkapi dengan analisis tipe aksi

gen yang mengendalikan sifat tersebut. Apabila h2bs tinggi dan aksi gen dominan

atau epistasis maka ragam aditifnya menjadi kecil, kemajuan genetik akan sulit

dicapai. Apabila nilai h2bs tinggi dan tipe aksi gen pengendali adalah aditif, maka

karakter tersebut potensial untuk diperbaiki atau dijadikan sebagai kriteria seleksi

untuk adaptasi kedelai terhadap intensitas cahaya rendah karena karakter tersebut

lebih respon terhadap seleksi. Pada karakter dengan heritabilitas arti luas tinggi

dengan aksi gen aditif tidak memerlukan populasi yang besar, seleksi dapat

dilakukan pada generasi awal, dapat menggunakan seleksi individu atau seleksi

massa. Karakter dengan nilai heritabilitas sedang seperti bobot daun spesifik

(48%), diperlukan seleksi dengan jumlah populasi seleksi yang lebih besar,

dilakukan pada generasi lanjut, menggunakan seleksi pedigri, sib atau uji progeni

(Roy 2000).

Dalam usaha perbaikan adaptasi kedelai terhadap intensitas cahaya rendah,

informasi aksi gen ini penting untuk melengkapi pengetahuan tentang nilai

heritabilitas arti luas yang sudah ada. Aksi gen dominan parsial dan aditif pada

karakter hasil per tanaman dan luas daun dengan nilai heritabilitas arti luas yang

tinggi (68%) pada masing-masing karakter tersebut mengindikasikan bahwa

ragam genetik yang menentukan pewarisan sifat lebih banyak ditentukan ragam

aditif. Persilangan antara dua tetua dengan latar belakang genetik terhadap

karakter berbeda maka penyatuan gen dari kedua tetua tersebut akan memberikan

nilai tambah pada karakter tersebut sehingga dapat diharapkan kemajuan genetik

yang tinggi (Poespodarsono 1988). Menurut Allard (1960) ragam aditif

merupakan aksi gen yang responsif terhadap seleksi. Aksi gen aditif merupakan

komponen penting sifat genetik yang dapat diamati dari populasi serta penentu

respon populasi terhadap seleksi.

Page 114: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

89

Selama ini perbaikan adaptasi kedelai terhadap intensitas cahaya rendah

hanya menggunakan karakter hasil per tanaman saja. Hasil penelitian ini

membuktikan bahwa karakter luas daun memenuhi persyaratan sebagai karakter

sekunder dan sebagai salah satu kriteria seleksi dalam perbaikan adaptasi kedelai

terhadap intensitas cahaya rendah. Seleksi menggunakan kriteria seleksi luas daun

dapat dilakukan pada generasi awal sehingga mempercepat kemajuan seleksi.

Aksi gen isoepistasis pada karakter fisiologi daun seperti kandungan klorofil

a, klorofil b, klorofil total, dan rasio klorofil a/b mengindikasikan bahwa ragam

genetik total yang tinggi pada pewarisan karakter tersebut (nilai heritabilitas arti

luas yang tinggi) lebih banyak ditentukan oleh ragam interaksi atau ragam

epistasis. Pewarisan karakter dengan tindak gen epistasis seperti ini tidak banyak

bermanfat bagi kegiatan pemuliaan karena tidak banyak menghasilkan kemajuan

genetik dalam perbaikan adaptasi kedelai terhadap intensitas cahaya rendah.

KESIMPULAN

1. Adaptasi kedelai terhadap intensitas cahaya rendah dicirikan dengan karakter

hasil biji per tanaman yang terkait erat dengan karakter luas daun, bobot daun

spesifik, dan kandungan klorofil.

2. Karakter hasil biji per tanaman dikendalikan sekurang-kurangnya 6 gen

minor, aksi gen dominan parsial, dan nilai heritabilitas arti luas (h2bs) tinggi

(68%).

3. Karakter luas daun dan bobot daun spesifik masing-masing dikendalikan

sekurang-kurangnya 4 dan 5 gen minor, aksi gen aditif, dan nilai heritabilitas

arti luas (h2bs) tinggi dan sedang (63%, 48%).

4. Adaptasi berdasarkan karakter klorofil a, klorofil b, dan klorofil total masing-

masing dikendalikan 2 gen mayor, aksi gen isoepistasis, dan nilai heritabilitas

arti luas (h2bs) tinggi (78%, 84%, 86%).

5. Adaptasi berdasarkan karakter rasio klorofil a/b dikendalikan 2 gen mayor,

aksi gen dominan dan resesif epistasis, dan nilai heritabilitas arti luas (h2bs)

tinggi (70%).

Page 115: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

BAB V

ANALISIS SEKUEN LENGKAP GEN YANG TERKAIT ADAPTASI KEDELAI TERHADAP

INTENSITAS CAHAYA RENDAH

Abstrak

Penelitian ini bertujuan untuk melakukan karakterisasi sekuen lengkap JJ3 yang merupakan salah satu kandidat gen yang telah berhasil diisolasi dari tanaman kedelai yang terkait adaptasi kedelai terhadap intensitas cahaya rendah. Karakterisasi sekuen lengkap mencakup analisis struktur sekuen lengkap, analisis kerangka translasi atau sekuen pengkode, analisis tingkat homologi, dan analisis domain protein yang dikode JJ3. Kegiatan karakterisasi dilakukan menggunakan jasa bioinformatika dan beberapa program pendukung. Hasil penelitian menunjukkan bahwa: sekuen lengkap cDNA JJ3 yang terkait dengan mekanisme adaptasi kedelai terhadap intensitas cahaya rendah memiliki coding sequence (CDS) 633 bp dengan 210 asam amino deduksi tersusun atas 136 asam amino terkonservasi dan 77 asam amino beragam. cDNA JJ3 yang diperoleh pada tanaman kedelai mempunyai fungsi yang sama dengan gen psaD yang terdapat pada tanaman tembakau kayu (Nicotiana sylvestris), padi (Oryza sativa), tomat (Lycopersicon esculentum), barley (Hordeum vulgare), bayam (Spinacia oleracea), Arabidopsis (Arabidopsis thaliana), dan kentang (Solanum tuberosum). Kata kunci: sekuen lengkap, gen, sekuen pengkodean (CDS), homolog, basa

nukleotida.

Page 116: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

91

ANALYSIS OF FULL LENGTH SEQUENCE OF GENE RELATED TO ADAPTATION OF SOYBEAN

TO LOW LIGHT INTENSITY

Abstract

The aim of this study was to characterise full length sequence of JJ3, a cDNA corresponding to adaptation of soybean to low light intensity, obtain from soybean leaves under low light intensity. Characterization of the full length sequence of JJ3 was carried out using bioinformatics tools, in the aspects of analyses of prediction of sequence structure, open reading frame (ORF) or coding sequence, homology, and domain analysis of protein JJ3. The results of this study showed that: full length sequence of JJ3, a gene related to mechanism of adaptation of soybean to low light intensity, consisted of 633 bp nucleotides coding sequence was constituted of conserved domain (136 amino acids) and 77 varied domains (77 amino acids). JJ3 isolated from low irradiance tolerant soybean leaves have the same function with psaD from wood tobacco (Nicotiana sylvestris), rice (Oryza sativa), Spinach (Spinacia oleracea), tomato (Lycopersicon esculentum), barley (Hordeum vulgare), Arabidoposis (Arabidopsis thaliana), and potato (Solanum tuberosum). __________ Key words: full length sequence, gene, coding sequence (CDS), homolog,

nucleotide.

Page 117: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

92

PENDAHULUAN

Latar Belakang

Organisme fotosintetik, termasuk tanaman kedelai, yang dikembangkan

pada kondisi lingkungan intensitas cahaya rendah seperti di bawah tegakan

perkebunan karet atau tumpang sari dengan tanaman lain yang berpotensi

menaungi, hendaknya mampu mengembangkan berbagai perubahan atau

mekanisme baik pada tingkat morfologi, fisiologi sampai tingkat molekuler

sehingga mampu beraklimatisasi dalam kondisi lingkungan cahaya terbatas. Pada

tingkat molekuler, kemampuan tanaman untuk beradaptasi pada lingkungan

intensitas cahaya rendah tergantung dari ada tidaknya gen yang mengendalikan

karakter-karakter yang terkait dengan kemampuan tanaman untuk memanfaatkan

intensitas cahaya yang terbatas secara efisien untuk melangsungkan proses

fotosintesis maksimum.

Hasil penelitian sebelumnya tentang ‘analisis genetik adaptasi kedelai

terhadap intensitas cahaya rendah’ (Percobaan 2) dilaporkan bahwa adaptasi

kedelai terhadap intensitas cahaya rendah yang terkait dengan proses fotosintesis

dikendalikan sekurang-kurangnya oleh dua gen mayor untuk karakter kualitatif

seperti kandungan klorofil dan oleh banyak gen untuk karakter kuantitatif seperti

hasil dan morfologi daun. Handayani (2003) juga melaporkan bahwa terdapat

banyak gen yang mengendalikan adaptasi kedelai terhadap intensitas cahaya

rendah.

Menurut Allen dan Forsberg (2001); Pfannschmidt (2003); Fey et al. (2005),

gen-gen fotosintesis yang berperan kunci dalam proses adaptasi tanaman terhadap

intensitas cahaya rendah berasal dari inti (gen fotosintetik inti) dan ada juga yang

berasal dari kloroplas (gen fotosintetik kloroplas). Gen-gen tersebut sangat

menentukan kelangsungan proses fotosintesis termasuk transfer elektron di dalam

pusat reaksi fotosistem I dan II. Terdapat 10 gen-gen fotosintetik inti yang

mengkode protein komponen PSI, salah satunya adalah gen psaD (Hiyama 1997).

Gen fotosintetik kloroplas terutama menyandi komponen protein dari 4 kelompok

kompleks protein yang terdapat pada membran tilakoid yaitu: 6 gen untuk protein

PSI (psaA-C,I,J,M), 12 gen untuk protein PSII (psbA-F,H-N), 6 gen untuk cyt

Page 118: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

93

b6/f (petA-B,D,G), dan 6 gen untuk ATPase (atpA-B, atpE-I), serta gen yang

mengkode subunit besar Rubisco (rbcL) (Hachtel 1997; Joshi 1997; Tyagi et al.

2000).

Sistem kerja gen-gen fotosintetik baik yang berasal dari inti maupun

kloroplas umumnya dikontrol oleh status redoks yang tergantung dari aliran

elektron fotosintetik di dalam fotosistem. Komponen dari rantai transpor elektron

fotosintetik tersebut akan mengalami perubahan yang signifikan apabila mendapat

stres lingkungan seperti intensitas cahaya rendah. Signal redoks seperti ini

berfungsi sebagai parameter signaling yang mengontrol ekspresi gen fotosintetik

kloroplas dan inti dan berperan penting di dalam koordinasi dari kedua

kompartmen genetik tersebut (Fey et al. 2005). Perubahan intensitas cahaya yang

diterima tanaman dapat mempengaruhi transport elektron fotosintetik dan dapat

mengurangi efisiensi fotosintesis dengan cepat. Pada kondisi stres seperti ini,

respon aklimatisasi dapat mempertahankan aliran elektron fotosintetik, dengan

demikian fiksasi energi netto sebanyak mungkin dapat berlangsung terus.

Di dalam PSI, terminal kofaktor transfer elektron bekerja berangkai seperti

kabel elektron yang menghubungkan elektron dari tempat awal pemisahan muatan

yang terletak di dalam membran ke ferredoksin yang merupakan akseptor elektron

solubel yang terletak di dalam subunit PsaD pada permukaan stroma membran

tilakoid. Dengan demikian keberadaan subunit PsaD, protein ekstrinsik yang

terletak periferal di sisi stroma, menjadi sangat penting. Menurut Lagoutte et al.

(2001) subunit PsaD PSI yang dikode gen psaD berperan kunci dalam stabilitas

transpor elektron fotosintetik di dalam kompleks PSI karena merupakan tempat

docking ferredoxin (Fd).

Beberapa kajian tentang PsaD subunit PSI sudah dilaporkan sebelumnya

antara lain analisis in vivo PsaD pada tanaman jagung (Heck et al. 1999), bentuk

isoformis PsaD sub unit pada tanaman tembakau (Obokata et al. 1993), tingkat

homologi dan struktur gen psaD dari beberapa tanaman seperti mentimun

(Cucumis sativus), barley (Hordeum vulgare), tomat (Lycopersicum esculentum),

tembakau kayu (Nicotiana sylvestris), dan bayam (Spinacia oleracea) (Hiyama

1997). Pada tanaman kedelai, penelitian tentang gen psaD dan gen-gen

fotosintetik lain masih sangat terbatas.

Page 119: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

94

Khumaida (2002) telah memulai kajian molekuler adaptasi kedelai terhadap

cekaman naungan dengan melaporkan bahwa terdapat tiga fragmen cDNA yaitu

JJ3, EE2, dan E3 yang merupakan kandidat gen fotosintetik yang positif terkait

erat dengan gen yang mengkode protein kompleks membran tilakoid berturut-

turut fotosistem I (PS-I), sitokrom, dan fotosistem II (PS-II). Kandidat gen JJ3

yang terkait dengan fotosistem I tersebut menjadi menarik untuk dikaji lebih

lanjut karena homolog dengan psaD, gen yang mengkode protein PsaD pada

subunit PSI. Selanjutnya, fragmen cDNA JJ3 yang berukuran 261 bp basa

nukleotida tersebut berhasil dibuat sekuen lengkapnya (full length sequence)

menjadi 841 bp (Sopandie et al. 2005).

Sejauh ini karakterisasi, konfirmasi fungsi dan analisis pola ekspresi sekuen

lengkap cDNA JJ3 tersebut terkait dengan mekanisme molekuler adaptasi kedelai

terhadap intensitas cahaya rendah belum dilakukan. Diharapkan sekuen lengkap

cDNA JJ3 tersebut juga dapat didaftarkan di GenBank melalui situs NCBI

(www.ncbi.nlm.nih.gov) untuk dapat diakses oleh pengguna di seluruh dunia.

Dengan semakin banyak gen-gen yang diperoleh yang terkait dengan kemampuan

tanaman beradaptasi pada lingkungan cekaman intensitas cahaya rendah, maka

semakin banyak tersedia materi genetika dan molekuler yang dapat digunakan,

dan akan semakin mempermudah dan mempercepat perbaikan adaptasi tanaman

terhadap lingkungan cekaman tersebut.

Tujuan

Penelitian ini bertujuan untuk melakukan karakterisasi sekuen lengkap

cDNA JJ3 yang diisolasi dari tanaman kedelai toleran naungan, dan selanjutnya

dilakukan pendaftaran di database GenBank sebagai coding sequence lengkap

(complete CDS) baru yang diisolasi dari tanaman kedelai toleran naungan.

BAHAN DAN METODE Bahan

Bahan yang digunakan adalah sekuen lengkap (full length) cDNA JJ3 yang

telah diperoleh pada penelitian sebelumnya (Sopandie et al. 2005).

Page 120: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

95

Analisis Sekuen Lengkap cDNA JJ3

Analisis sekuen lengkap (full length) cDNA JJ3 dilakukan melalui beberapa

tahapan sebagai berikut. Deduksi asam amino sekuen lengkap cDNA JJ3

menggunakan program translasi (www.expasy.ch/tools/dna.html). Analisis

tingkat homologi urutan basa nukleotida dan deduksi asam amino sekuen lengkap

cDNA JJ3 dengan database gen di GenBank menggunakan program BLAST

(Basic Local Aligment Search Tool) (www.ncbi.nlm.nih.gov/BLAST) dan

program progam clustalW (http://www.ebi.ac.uk/clustalW/index.html). Analisis

kerangka translasi (ORF) atau sekuen pengkodean (CDS) dan domain

terkonservasi (conserved region) menggunakan program ORF Finder

(www.ncbi.nlm.nih.gov/gorf/gorf.html) dan program GeneScanW

(http://genes.mit.edu/GENSCANS.html). Analisis kedekatan hubungan dan

kekerabatan JJ3 dengan gen homolog dari berbagai tanaman menggunakan

program phylodraw. Domain sekuen lengkap cDNA JJ3 ditentukan dengan

program motif scan (www.expasy.ch/prosite). Analisis hidrofobisitas dilakukan

menggunakan program BioEdit versi 7.0.0 (Hall 1999).

HASIL DAN PEMBAHASAN

Sekuen Lengkap (Full Length) JJ3

Sekuen lengkap JJ3 yang berukuran 841 bp terdiri atas 232 adenin (a), 234

sitosin (c), 192 guanin (g) dan 183 timin (t) seperti yang disajikan pada Gambar

24. Sekuen lengkap ini merupakan hasil penggabungan sekuen-sekuen parsial

hasil pemanjangan 5’-RACE dan 3’-RACE. Dengan membandingkan sekuen

lengkap tersebutt dengan data fragmen sebelum pemanjangan dengan RACE,

maka terdapat penambahan sejumlah 485 basa nukleotida ke arah ujung 5’ dan

sekitar 73 bp ke arah ujung 3’. Hasil translasi sekuen lengkap cDNA JJ3

menggunakan program translasi (www.expasy.ch/tools/dna.html) diperoleh asam

amino sejumlah 284 asam amino dengan empat asam amino start codon (Met) dan

dua stop codon (*). Start codon tersebut tidak berada persis di awal sekuen begitu

juga stop codon tidak di akhir sekuen.

Page 121: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

96

Gambar 24 (A). Sekuen lengkap basa nukleotida JJ3 hasil pemanjangan

menggunakan metode PCR-RACE. (B). Asam amino hasil translasi dari sekuen lengkap basa nukleotida JJ3.

Analisis Struktur Sekuen Lengkap JJ3

Estimasi struktur sekuen lengkap JJ3 dilakukan dengan menggunakan

program GeneScanW (http://genes.mit.edu/GENSCANS.html) dengan hasil

seperti pada Gambar 25. Tampak bahwa sekuen lengkap JJ3 terdiri atas sekuen

pengkode (coding sequence, CDS) lengkap yang merupakan ekson tunggal (single

exon) dengan panjang 633 bp dimulai dari nukleotida nomor 68 sampai 700

dengan nilai probabilitas cukup tinggi (85%). Panjang poly-Adenin (polyA)

adalah 6 bp dimulai dari nukleotida nomor 813 sampai 818. Sekuen full length ini

tidak memiliki intron karena merupakan sekuen cDNA. Peptida yang dihasilkan

CDS JJ3 tersusun atas 210 asam amino. Pada coding sequence tersebut terdapat

domain terkonservasi (asam amino 78 sampai 210) dan domain tidak

terkonservasi beragam yang terletak pada asam amino 1 sampai 77 seperti pada

Gambar 25.

A. BASE COUNT 232 a 234 c 192 g 183 t 1 gcaagcagtggtatcaacgcagagtggccattacggccggggaacacttgtattatctca 61 agcaaccatggcaatggcaacccaagcctctctcttaaccccacccctctccggtctcaa 121 agccagcgaccgcgcctccgtgccatggaagcaaaactccagcctctccttctccagccc 181 gaagcccctcaagttctccagaacaatcagagcagcagccgccgacgagaccacagaggc 241 accagcaaaagtagaggctgcaccggtcgggttcaccccaccagaacttgacccaaacac 301 cccttccccgatcttcgggggcagcaccggcgggctcctgcgcaaggcacaggtggagga 361 gttttatgtcattacgtgggactcacccaaagaacagatctttgaaatgcccactggcgg 421 cgccgctatcatgagggagggtcctaaccttctcaagttggccaggaaggagcagtgctt 481 ggctcttgggactaggctcaggtccaagtacaagatcaagtaccagttctacagggtctt 541 ccctaatggggaggttcagtatttgcaccctaaggatggtgtttaccctgagaaggtcaa 601 cgccggacgccaaggggtgggtcaaaacttcaggtctattggtaagaatgttagtcctat 661 tgaggtcaagttcactggcaagcagccctatgatttgtgagcacacaactctatcttcat 721 catcatcatcccccgtgcttcctttatatgctatatattctcatgtgatatcatgtacct 781 attgtcaattttattatgccacaaatattgctaaaaaaaaaaaaaaaaaaaaaaaaaaaa 841 a B. 284 asam amino X X X X Q A V V S T Q S G H Y G R G T L V L S Q A T M A M A T Q A S L L T P P L S G L K A S D R A S V P W K Q N S S L S F S S P K P L K F S R T I R A A A A D E T T E A P A K V E A A P V G F T P P E L D P N T P S P I F G G S T G G L L R K A Q V E E F Y V I T W D S P K E Q I F E M P T G G A A I M R E G P N L L K L A R K E Q C L A L G T R L R S K Y K I K Y Q F Y R V F P N G E V Q Y L H P K D G V Y P E K V N A G R Q G V G Q N F R S I G K N V S P I E V K F T G K Q P Y D L * A H N S I F I I I I P R A S F I C Y I F S C D I M Y L L S I L L C H K Y C * K K K K K K K K K

Page 122: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

97

Gambar 25 (A) Estimasi struktur sekuen lengkap JJ3, (B) Prediksi sekuen

pengkodean, CDS lengkap, dan (C) prediksi sekuen peptida, (D) domain terkonservasi (conserved domain) berwarna merah dan yang tidak terkonservasi (domain beragam) berwarna hitam.

Untuk mengetahui fungsi dari sekuen lengkap JJ3 yang diperoleh maka

perlu dilakukan analisis bagian yang bisa dibaca dalam proses translasi (open

reading frame, ORF) atau sekuen pengkodean (Coding sequence, CDS) yang

merupakan bagian yang ditranslasikan membentuk protein fungsional. Hasil

analisis menggunakan program ORF Finder (www.ncbi.nlm.nih.gov/gorf/gorf.

html) menunjukkan bahwa terdapat sekuen pengkodean (coding sequence, CDS)

Hasil GENSCANW sekuen cDNA JJ3

A. Prediksi struktur gen/exon: Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr.. ----- ---- - ------ ------ ---- -- -- ---- ---- ----- ----- ------ 1.01 Sngl + 68 700 633 1 0 106 53 397 0.848 33.89 1.02 PlyA + 813 818 6 -0.45 B. Prediksi coding sequence, CDS: 633 bp atggcaatggcaacccaagcctctctcttaaccccacccctctccggtctcaaagccagcgaccgcgcctccgtgccatggaagcaaaactccagcctctccttctccagcccgaagcccctcaagttctccagaacaatcagagcagcagccgccgacgagaccacagaggcaccagcaaaagtagaggctgcaccggtcgggttcaccccaccagaacttgacccaaacaccccttccccgatcttcgggggcagcaccggcgggctcctgcgcaaggcacaggtggaggagttttatgtcattacgtgggactcacccaaagaacagatctttgaaatgcccactggcggcgccgctatcatgagggagggtcctaaccttctcaagttggccaggaaggagcagtgcttggctcttgggactaggctcaggtccaagtacaagatcaagtaccagttctacagggtcttccctaatggggaggttcagtatttgcaccctaaggatggtgtttaccctgagaaggtcaacgccggacgccaaggggtgggtcaaaacttcaggtctattggtaagaatgttagtcctattgaggtcaagttcactggcaagcagccctatgatttgtga C. Prediksi sekuen peptida: 210 asam amino MAMATQASLLTPPLSGLKASDRASVPWKQNSSLSFSSPKPLKFSRTIRAAAADETTEAPAKVEAAPVGFTPPELDPNTPSPIFGGSTGGLLRKAQVEEFYVITWDSPKEQIFEMPTGGAAIMREGPNLLKLARKEQCLALGTRLRSKYKIKYQFYRVFPNGEVQYLHPKDGVYPEKVNAGRQGVGQNFRSIGKNVSPIEVKFTGKQPYDL D

Page 123: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

98

atau open reading frame (ORF) dan domain terkonservasi (putative conserved

domain) sekuen lengkap JJ3 seperti pada Gambar 26.

Gambar 26 Open reading frame (ORF) atau coding sequence dari sekuen lengkap

JJ3. Sekuen yang ditulis dengan huruf kecil merupakan CDS JJ3 dan huruf kapital merupakan deduksi asam amino.

Hasil analisis menunjukkan bahwa salah satu segmen dari sekuen lengkap

JJ3 memiliki salah satu daerah pengkodean (coding region) lengkap yang

merupakan kerangka translasi atau open reading frame (ORF) lengkap dengan

coding sequence (CDS) yang menghasilkan protein PsaD photosystem I (PS-I)

subunit, protein ekstrinsik yang terletak di bagian sisi stroma pada membran

Gcaagcagtggtatcaacgcagagtggccattacggccggggaacacttgtattatctcaa gcaacc

68 atggcaatggcaacccaagcctctctcttaaccccacccctctcc M A M A T Q A S L L T P P L S 113 ggtctcaaagccagcgaccgcgcctccgtgccatggaagcaaaac G L K A S D R A S V P W K Q N 158 tccagcctctccttctccagcccgaagcccctcaagttctccaga S S L S F S S P K P L K F S R 203 acaatcagagcagcagccgccgacgagaccacagaggcaccagca T I R A A A A D E T T E A P A 248 aaagtagaggctgcaccggtcgggttcaccccaccagaacttgac K V E A A P V G F T P P E L D 293 ccaaacaccccttccccgatcttcgggggcagcaccggcgggctc P N T P S P I F G G S T G G L 338 ctgcgcaaggcacaggtggaggagttttatgtcattacgtgggac L R K A Q V E E F Y V I T W D 383 tcacccaaagaacagatctttgaaatgcccactggcggcgccgct S P K E Q I F E M P T G G A A 428 atcatgagggagggtcctaaccttctcaagttggccaggaaggag I M R E G P N L L K L A R K E 473 cagtgcttggctcttgggactaggctcaggtccaagtacaagatc Q C L A L G T R L R S K Y K I 518 aagtaccagttctacagggtcttccctaatggggaggttcagtat K Y Q F Y R V F P N G E V Q Y 563 ttgcaccctaaggatggtgtttaccctgagaaggtcaacgccgga L H P K D G V Y P E K V N A G 608 cgccaaggggtgggtcaaaacttcaggtctattggtaagaatgtt R Q G V G Q N F R S I G K N V 653 agtcctattgaggtcaagttcactggcaagcagccctatgatttg S P I E V K F T G K Q P Y D L

698 tga 700 *

gcacacaactctatcttcatcatcatcatcccccgtgcttcctttatatgctatatattct catgtgatatcatgtacctattgtcaattttattatgccacaaatattgctaaaaaaaaaa aaaaaaaaaaaaaaaaaaa

Page 124: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

99

tilakoid kloroplas. Protein PsaD tersebut tersusun atas 210 asam amino yang

diawali dengan start codon atg (Met) dan diakhiri dengan stop codon tga

(Gambar 26). PsaD merupakan protein ekstrinsik PSI subunit yang terletak pada

sisi stromal pada membran tilakoid (Xia et al. 1998), fungsinya terlibat dalam

transpor elektron dalam transduksi signal cahaya. Analisis fungsi dari protein

PsaD menunjukkan bahwa protein berberat molekul rendah tersebut terkait

dengan transport elektron dalam fotosintesis.

Protein PsaD yang dikode JJ3 tersebut terletak di bagian luar (periferal) sisi

stroma membran tilakoid pada fotosistem I (PSI). Hasil kajian bioinformatika

tentang struktur tiga dimensi protein PsaD menunjukkan bahwa PsaD terkait

dengan dengan tiga subunit lain (PsaC dan PsaE) dalam menstabilkan docking

feredoksin yang berperan penting dalam transport elektron selama proses

fotosintesis berlangsung (Klukas et al. 1999). Lagoutte et al (2001) dalam

penelitiannya menggunakan cyanobacterium Synechocystis sp PCC 6803,

melaporkan bahwa subunit PsaD fotosistem I (PSI) mempunyai peranan penting

di dalam stabilitas kompleks PSI dan merupakan bagian dari tempat docking

ferredoxin (Fd). Fotosistem I (PSI) merupakan kompleks multisubunit yang

menempel pada membran tilakoid yang mampu memfoto-induksikan transfer

elektron menjadi akseptor elektron yaitu ferredoxin (Fd) yang bersifat dapat larut.

PSI terdiri atas 11 subunit, baik yang bersifat integral seperti yang mengikat

sentral kofaktor menjadi transfer elektron, maupun yang bersifat periferal seperti

PsaD subunits.

Lagoutte et al. (2001) menduga bahwa subunit PsaD periferal mempunyai

beberapa fungsi yang berbeda pada kompleks PSI. yang pertama berperan penting

secara struktural dalam melengkapi kompleks PSI menjadi subunit yang dikode

inti pertama dari kompleks yang disintesa dengan iluminasi atau pencahayaan.

Polipeptida ini berinteraksi dengan banyak subunit berbeda. Fungsi secara

struktural dari PsaD adalah mendukung sekitar 70% dari pemanjangan dan

pelebaran rantai polipeptida. Juga terdapat sekuen dasar yang kuat pada bagian

tengah dari PsaD yang menjaga stabilitas hubungan PsaD dengan core PSI. Fungsi

yang lain dari PsaD adalah memberikan sekuen spesifik untuk mengarahkan dan

menempatkan (guiding and docking) elektrostatik feredoksin (Fd) pada PSI.

Page 125: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

100

Menurut Jiao et al. (2004), protein fotosistem tipe I (PSI) seperti PsaD juga

berfungsi sebagai oksidoreduktase dari plastocyanin : ferredoxin yang

mengkatalisis transfer elektron dari plastocyanin terreduksi ke ferredoxin

teroksidasi di dalam rantai transport elektron pada membran tilakoid. PSI

menghasilkan ATP dan NADPH dan juga berfungsi untuk meregulasi

metabolisme karbon dan nitrogen di dalam kloroplas. Selanjutnya ekspresi gen-

gen fotosintesis di dalam inti maupun kloroplas berikut prosesing subunit protein

untuk pembentukan kompleks protein (PSI, PSII) diaktivasi oleh cahaya. (Biswal

1997; Tyagi et al. 2000).

Analisis Homologi Sekuen Lengkap JJ3

Analisis homologi basa nukleotida atau asam amino sekuen lengkap cDNA

JJ3 dengan gen psaD tanaman lain yang tersimpan di database DNA di GenBank

dilakukan dengan menggunakan program BLAST (Basic Local Aligment Search

Tool) melalui situs (www.ncbi.nlm.nih. gov/BLAST2). Hasil program BLAST

ditampilkan dalam bentuk skoring dari yang paling tinggi sampai yang paling

rendah, disertai dengan persentase identitas JJ3 dengan gen psaD tanaman lain.

Semakin tinggi skor dan persentase identitas maka tingkat homologi sekuen

lengkap JJ3 dengan gen psaD semakin tinggi. Dengan menggunakan Local

aligment dapat diketahui daerah terkonservasi (conserved region) yang

merupakan domain utama suatu gen. Program BLAST merupakan alat

bioinformatika yang cukup penting untuk menentukan identitas suatu sekuen yang

belum diketahui dengan menganalisis tingkat homologinya dengan gen lain di

GenBank yang telah dikarakterisasi (Mount 2001).

Seperti yang dilaporkan sebelumnya (Khumaida 2002) bahwa fragmen JJ3

homolog dengan gen psaD pada fotosistem I subunit II. Oleh karena itu

pensejajaran sekuen lengkap dilakukan terhadap sekuen DNA yang terkait dengan

gen psaD dan memiliki skor BLAST di atas skor 100 sampai tertinggi. Hasil

analisis pensejajaran menggunakan program ClustalW (http://www.ebi.ac.uk/

clustalW/index.html) (Tabel 16) mencerminkan tingkat kesamaan seluruh basa

nukleotida atau asam amino dari sekuen lengkap JJ3 yang diperoleh termasuk

bagian yang berada diluar sekuen pengkodean (coding sequence) atau daerah

Page 126: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

101

terkonservasi (conserved region). Diperoleh bahwa sekuen lengkap JJ3 memiliki

tingkat homologi yang cukup tinggi baik berdasarkan homologi sekuen basa

nukleotida maupun homologi sekuen asam amino. Tingkat homologi tertinggi

berdasarkan sekuen lengkap basa nukleotida ditunjukkan pada tanaman padi

(Oryza sativa) (XM48378) (73) kemudian beberapa tanaman lain seperti pada

tembakau kayu (Nicotiana sylvestris) (Q70PN9) (65%), bayam dan Arabidopsis.

Tingkat homologi sekuen lengkap asam amino JJ3 tertinggi (81%) dengan

tembakau kayu (Nicotiana sylvestris) (P29302) dan kentang (Solanum tuberosum)

(Q70PN9) kemudian tomat dan bayam.

Tabel 16 Matriks tingkat homologi (%) sekuen lengkap basa nukleotida dan asam

amino JJ3 dengan tanaman lain

A.. amino Nukleotida

JJ3 Temba- kau kayu

Padi Barley Arabi-dopsis

Kentang Tomat Bayam

JJ3 - 81 69 69 71 80 79 76 Tembakau 65 - 73 68 73 92 91 73 Padi 73 53 - 84 67 79 77 70 Barley 54 38 85 - 66 73 70 68 Arabidopsis 60 56 53 48 - 73 73 73 Kentang 59 77 55 42 69 - 98 74 Tomat 57 73 54 37 70 91 - 74 Bayam 62 66 56 53 69 63 66 -

Keterangan: Persentase di bagian bawah diagonal adalah tingkat kesamaan basa nulkeotida sekuen lengkap JJ3, dan bagian atas diagonal adalah tingkat kesamaan berdasarkan asam amino.

Hasil pensejajaran menggunakan BLAST terhadap bagian terkonservasi

(conserved domain), tingkat homologi cDNA JJ3 dengan tanaman lain baik

berdasarkan sekuen DNA atau asam amino menunjukkan tingkat homologi yang

lebih tinggi dibanding hasil pensejajaran berdasarkan sekuen lengkap (Tabel 17).

Tingkat homologi tertinggi cDNA JJ3 adalah dengan gen psaD pada tanaman

tembakau kayu (Nicotiana sylvestris) (X60008) yaitu 83% berdasarkan sekuen

nukleotida dan dengan tanaman yang sama tembakau kayu (Nicotiana sylvestris)

(P29302) yaitu 96% berdasarkan sekuen asam amino.

Page 127: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

102

Tabel 17 Tingkat homologi cDNA JJ3 dengan gen psaD beberapa spesies tanaman lain menggunakan domain terkonservasi sekuen basa nukleotida dan asam amino

Basa nukleotida JJ3 Asam amino JJ3 Spesies tanaman

No. Aksesi Homologi (%)

No. Aksesi

Homo-logi (%)

Fungsi gen

Tembakau kayu Nicotiana sp

X60008 340/407 (83)

P29302 56/58 (96)

Gen psaDa PSI-D2

Padi Oryza sativa

AY224449 262/317 (82)

XM483783

53/58 (91)

Pusat reaksi PSI subunit II

Bayam Spinacia sp

X14017 165/199 (82)

P12353 53/58 (91)

Pusat reaksi PSI protein 20 kDA (psaD)

Barley Hordeum sp

M98254 247/302 (81)

P36213 53/58 (91)

Fotosistem I subunit PSI-D

(PsaD) Tomat Lycopersicon sp

M21344 310/389 (79)

P12372 55/58 (93)

Pusat reaksi PSI subunit II

(gen psaD) Arabidopsis Arabidopsis sp

AJ245906 312/392 (79)

Q9SA56 51/58 (88)

Gen psaD untuk subunit

II Kentang Solanum sp

AJ556864 323/407 (79)

Q70PN9 51/58 (88)

Pusat reaksi PSI subunit

PSI-D (PsaD)

Hasil pensejajaran ganda atau multiple aligment menggunakan program

clustalW (http://www.ebi.ac.uk/clustalW/index.html) menunjukkan bahwa cDNA

JJ3 memiliki elemen konsensus yang cukup tinggi baik berdasarkan basa

nukleotida maupun asam amino seperti disajikan pada Gambar 27 dan 28.

Elemen konsensus atau daerah terkonservasi (consensus element atau conserved

region) merupakan bagian, elemen atau sekuen basa nukleotida atau asam amino

yang sama atau paling sering muncul pada bagian fungsional suatu gen tertentu

(Khal 2001). Adanya elemen yang tidak terkonservasi menunjukkan bahwa pada

organisme tersebut telah terjadi mutasi dalam bentuk penambahan, pengurangan,

atau pertukaran elemen.

Page 128: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

103

Gambar 27 Sebagian hasil pensejajaran (multi-alignment) sekuen basa nukleotida

cDNA JJ3 dengan spesies tanaman lain menggunakan progran clustalW. Tanda aktris (*) menunjukkan nukleotida terkonservasi.

Hasil pensejajaran ganda (multiple aligment) sekuen asam amino cDNA JJ3

dengan tanaman lain, menunjukkan bagian konsensus atau conserved region yang

lebih tinggi dari pada hasil pensejajaran sekuen basa nukleotida (Gambar 27).

Hal ini karena beberapa kodon atau triplet yang memiliki basa nukleotida berbeda

dapat membentuk asam amino yang sama, misalnya valin (V) oleh triplet GTT,

GTC, GTG atau GTA (Dale dan von Schantz 2002).

Hasil ini juga membuktikan bahwa JJ3 yang diisolasi dari kedelai toleran

merupakan cDNA yang homolog dengan gen psaD yang merupakan conserved

domain mengkode protein PsaD PSI subunit. Meskipun demikian, ada beberapa

asam amino cDNA JJ3 yang berbeda, misalnya dengan tembakau kayu seperti

arginin (R) yang menggantikan posisi glutamin (Q) atau alanin (A) yang

menggantikan prolin (P) pada padi dan barley. Adanya perbedaan ini diduga

karena adanya mutasi.

JJ3 AACACCCCTTCCCCGATCTTCGGGGGCAGCACCGGCGGGCTCCTGCGCAAGGCACAGGTG 355 Tembakau AACACACCTTCCCCAATCTTCGGTGGCAGCACCGGTGGGCTTCTCCGCAAGGCCCAAGTT 811 Padi AACACGCCGTCCCCGATCTTCGGCGGGAGCACGGGGGGACTCCTCCGGAAGGCGCAGGTG 267 Bayam ACACTCCCTCCCCCATCTTTGCTGGAAGCACAGGTGGGCTATTGAGGAAGGCACAAGTAA 354 Barley TCCACGCCGTCCCCGATCTTCGGCGGCAGCACCGGCGGGCTGCTCCGCAAGGCCCAGGTC 312 Tomat AACACACCCTCCCCAATCTTCGGTGGCAGCACCGGTGGGCTTCTTCGCAAAGCCCAAGTG 323 Arabidopsis AACACACCGTCTCCGATCTTCGCTGGAAGCACCGGTGGTCTTCTACGTAAAGCGCAAGTG 282 kentang AACACACCTTCCCCAATCTTCGGTGGCAGCACTGGTGGGCTTCTTCGCAAAGCCCAAGTA 316 *** ** ** ** ***** * ** ***** ** ** ** * * ** ** ** ** JJ3 GAGGAGTTTTATGTCATTACGTGGGACTCACCCAAAGAACAGATCTTTGAAATGCCCACT 415 Tembakau GAGGAGTTTTACGTAATTACTTGGGAATCACCTAAAGAACAGATCTTTGAGATGCCAACT 871 Padi GAGGAGTTCTACGTCATCACATGGACGTCGCCCAAGGAGCAGGTGTTCGAGATGCCCACG 327 Bayam GAGGAGTTTTACGTGATAACATGGGAATCACCAAAAGAGCAAATATTCGAGATGCCAACA 414 Barley GAGGAGTTTTACGTCATCACCTGGACCTCCCCCAAGGAGCAGGTCTTCGAGATGCCCACC 372 Tomat GAAGAATTCTACGTCATCACATGGGAATCACCAAAGGAACAGATCTTTGAGATGCCAACA 383 Arabidopsis GAAGAGTTCTACGTTATCACGTGGAACTCACCGAAAGAACAGATCTTTGAGATGCCGACA 342 kentang GAAGAATTCTACGTCATCACATGGGAATCACCAAAGGAACAGATCTTCGAGATGCCAACA 376 ** ** ** ** ** ** ** *** ** ** ** ** ** * ** ** ***** ** JJ3 GGCGGCGCCGCTATCATGAGGGAGGGTCCTAACCTTCTCAAGTTGGCCAGGAAGGAGCAG 475 Tembakau GGTGGTGCAGCTATTATGAGGGAAGGTGCTAATTTGCTGAAATTGGCGAGGAAAGAGCAG 931 Padi GGCGGCGCCGCCATCATGCGCGAGGGCCCCAACCTGCTGAAGCTGGCCAGGAAGGAGCAG 387 Bayam GGAGGAGCAGCAATAATGAGGGAAGGACCAAACTTGCTAAAATTAGCACGTAAAGAGCAA 474 Barley GGCGGCGCCGCCATCATGCGCGAGGGCCCCAACCTCCTCAAGCTCGCCCGCAAGGAGCAG 432 Tomat GGTGGTGCTGCTATAATGAGACAAGGACCAAATTTGTTGAAATTGGCAAGGAAAGAACAG 443 Arabidopsis GGAGGAGCAGCGATCATGAGAGAAGGTCCGAATCTTCTGAAGCTAGCGAGGAAAGAGCAG 402 kentang GGTGGTGCTGCTATAATGAGAGAAGGACCCAATTTGTTGAAATTGGCCAGGAAAGAACAG 436 ** ** ** ** ** *** * * ** * ** * * ** * ** * ** ** **

Page 129: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

104

Gambar 28 Hasil pensejajaran sekuen lengkap asam amino cDNA JJ3 dengan tanaman tingkat tinggi lain. Tanda aktris (*) menunjukkan daerah konsensus, (:) menunjukkan bagian yang di dalamnya mempunyai ukuran dan hidrofobisitas yang sama, dan (.) menunjukkan bagian atau kolom dimana ukuran atau hidrofobisitasnya tidak pernah berubah (preserved) selama proses evolusi.

Pada Gambar 28 selain dapat diketahui daerah terkonservasi dan daerah

beragam, juga dapat diketahui posisi yang memiliki profil hidrofobisitas yang

tidak pernah berubah selama proses evolusi atau memiliki profil yang sama.

Berdasarkan hasil pensejajaran di atas dapat dinyatakan bahwa JJ3 yang

diisolasi dari kedelai toleran naungan memiliki tingkat kesamaan nukleotida yang

cukup tinggi (sekitar 80%) begitu juga dengan sekuen asam amino (sekitar 95%)

dengan gen psaD pada tanaman tembakau kayu (Nicotiana sylvestris), kentang

(Solanum tuberosum), tomat (Lycopersicon esculentum), bayam (Spinacia

JJ3 MAMATQAS-LLTP-PLSGLKASDR-ASVPWKQNSSLSFSSPKPLKFSRTIRAAAADETTE 57 Nicotiana MAMATQAS-LFTP-ALSAPKS-----SAPWKQ-SLASFS-PKQLKSTVSAPRPIRAMAEE 51 Oryza MAMATQAS-AAKCHLL-AAWAP--------AKPRSSTLSMPTS-RAPTSLRAAAED-QPA 48 Spinacia MAMATQAT-LFSPSSLSSAKPIDTRLTTSFKQPSAVTFA-SKPASRHHSIRAAAAAEGKA 58 Hordeum MAMATQAS-AATRHLITAAWSPS-------AKPRPATLAMPSSARGPAPLFAAAPD-TPA 51 Lycopersicon MAMATQAS-LFTP-PLSVPKST----TAPWKQ-SLVSFSTPKQLKSTVSVTRPIRAMAEE 53 Arabidopsis --MATQAAGIFSP-AITTTTS------AVKKLHLFSSSHRPKSLSFTKTAIRAEKTESSS 51 Solanum MAMATQAS-LFTP-ALSVPKS-----TAPWKQ-SLLSFSTPKQLKSTVSVTRPIRAMAEE 52 *****: . : . : .. . . JJ3 AP--AKVEAAPVGFTPPELDPNTPSPIFGGSTGGLLRKAQVEEFYVITWDSPKEQIFEMP 115 Nicotiana A--ATKEAEAPVGFTPPQLDPNTPSPIFGGSTGGLLRKAQVEEFYVITWESPKEQIFEMP 109 Oryza AAATEEKKPAPAGFVPPQLDPNTPSPIFGGSTGGLLRKAQVEEFYVITWTSPKEQVFEMP 108 Spinacia AA-ATETKEAPKGFTPPELDPNTPSPIFAGSTGGLLRKAQVEEFYVITWESPKEQIFEMP 117 Hordeum PAAPP-AEPAPAGFVPPQLDPSTPSPIFGGSTGGLLRKAQVEEFYVITWTSPKEQVFEMP 110 Lycopersicon APAATEEKPAPAGFTPPQLDPNTPSPIFGGSTGGLLRKAQVEEFYVITWESPKEQIFEMP 113 Arabidopsis AA--PAVKEAPVGFTPPQLDPNTPSPIFAGSTGGLLRKAQVEEFYVITWNSPKEQIFEMP 109 Solanum APAATEEKPAPAGFTPPQLDPNTPSPIFGGSTGGLLRKAQVEEFYVITWESPKEQIFEMP 112 ** ** **:***.******.******************** *****:**** JJ3 TGGAAIMREGPNLLKLARKEQCLALGTRLRSKYKIKYQFYRVFPNGEVQYLHPKDGVYPE 175 Nicotiana TGGAAIMREGANLLKLARKEQCLALGTRLRSKYKINYRFYRVFPNGEVQYLHPKDGVYPE 169 Oryza TGGAAIMREGPNLLKLARKEQCLALGTRLRSKYKINYQFYRVFPNGEVQYLHPKDGVYPE 168 Spinacia TGGAAIMREGPNLLKLARKEQCLALGTRLRSKYKIKYQFYRVFPSGEVQYLHPKDGVYPE 177 Hordeum TGGAAIMREGPNLLKLARKEQCLALGNRLRSKYKIAYQFYRVFPNGEVQYLHPKDGVYPE 170 Lycopersicon TGGAAIMRQGPNLLKLARKEQCLALGTRLRSKYKINYQFYRVFPNGEVQYLHPKDGVYPE 173 Arabidopsis TGGAAIMREGPNLLKLARKEQCLALGTRLRSKYKITYQFYRVFPNGEVQYLHPKDGVYPE 169 Solanum TGGAAIMREGPNLLKLARKEQCLALGTRLRSKYKINYQFYRVFPNGEVQYLHPKDGVYPE 172 ********:*.***************.******** *:******.*************** JJ3 KVNAGRQGVGQNFRSIGKNVSPIEVKFTGKQPYDL 210 Nicotiana KVNAGRQGVGQNFRSIGKNKSPIEVKFTGKQVYDL 204 Oryza KVNAGRQGVGQNFRSIGKNVSPIEVKFTGKNVFDI 203 Spinacia KVNPGRQGVGLNMRSIGKNVSPIEVKFTGKQPYDL 212 Hordeum KVNAGRQGVGQNFRSIGKNVSPIEVKFTGKNSFDI 205 Lycopersicon KVNPGREGVGQNFRSIGKNKSAIEVKFTGKQVYDI 208 Arabidopsis KANPGREGVGLNMRSIGKNVSPIEVKFTGKQSYDL 204 Solanum KVNPGREGVGQNFRSIGKNKSAIEVKFTGKQVYDI 207 *.*.**:*** *:****** *.********: :*:

Page 130: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

105

oleracea), Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare), dan

padi (Oryza sativa). Tingkat homologi ini lebih besar dari yang dilaporkan

sebelumnya (Hiyama 1997). Tanaman-tanaman tersebut berpotensi untuk

dikembangkan di daerah dengan kondisi lingkungan intensitas cahaya rendah

karena memiliki gen psaD.

Hasil analisis pensejajaran di atas juga didukung oleh hasil analisis

kekerabatan menggunakan urutan asam amino seperti pada Gambar 29. terlihat

bahwa, cDNA JJ3 lebih dekat dengan gen psaD pada tanaman tembakau kayu,

tanaman tomat, kentang, mentimun, bayam, Arabidopsis, padi dan barley.

Gambar 29 Filogenetik cDNA JJ3 dengan gen psaD pada beberapa tanaman

berdasarkan urutan asam amino

Tingkat homologi dan kekerabatan yang tinggi mengindikasikan bahwa

mekanisme adaptasi tanaman kedelai terhadap intensitas cahaya rendah

berhubungan erat dengan efisiensi proses elektron transport pada reaksi cahaya

yang terjadi di dalam membran tilakoid. Dengan kata lain, keberadaan cDNA JJ3

akan meningkatkan laju transpor elektron fotosintetik sehingga dalam kondisi

kurang cahaya pun fiksasi energi dari fotosintesis berjalan dengan normal. Hal ini

sejalan dengan yang dilaporkan oleh Muhuria (2007) bahwa laju transport

elektron pada genotipe toleran naungan (Ceneng) lebih tinggi dibanding genotipe

peka naungan (Godek). Khumaida (2002) mendapatkan adanya korelasi yang

Page 131: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

106

positif antara struktur membran tilakoid dengan ekspresi gen lhcp pada kedelai

yang tahan naungan. Beberapa genotipe tanaman yang toleran naungan telah

dilaporkan antara lain pada tanaman padi gogo (Sopandie et al. 2001, 2003b,

2003c, 2006; Khumaida 2002) dan Arabidopsis (Carabelli et al. 1996; Franklin et

al. 2003; Vandenbussche et al. 2005).

Dengan demikian dapat dinyatakan bahwa JJ3 merupakan kandidat gen

fotosintetik inti, homolog dengan gen psaD yang bekerja di dalam pusat reaksi

PSI subunit untuk mengkode protein PsaD fotosistem I subunit II. Menurut

Hiyama (1997), gen psaD merupakan gen fotosintetik inti yang mengkode protein

PsaD yang ditransfer ke kloroplas.

JJ3 telah terdaftar di database di GenBank dengan nomor aksesi EF628505

sebagai kandidat gen yang menyandi PsaD pada tanaman kedelai (Lampiran 5).

KESIMPULAN

1. Sekuen lengkap cDNA JJ3, kandidat gen yang terkait dengan mekanisme

adaptasi kedelai terhadap intensitas cahaya rendah, memiliki coding sequence

(CDS) 633 bp dengan 210 asam amino deduksi tersusun atas 136 asam amino

terkonservasi dan 77 asam amino beragam.

2. Sekuen CDS JJ3 homolog dengan PsaD PSI subunit, fungsinya terkait dengan

transport elektron fotosintesis pada pusat reaksi PSI.

3. cDNA JJ3 homolog dengan gen psaD pada tanaman tembakau liar, padi,

barley, Arabidopsis, kentang, tomat, dan bayam.

Page 132: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

BAB VI

ANALISIS EKSPRESI GEN-GEN YANG TERKAIT ADAPTASI KEDELAI TERHADAP INTENSITAS CAHAYA RENDAH

Abstrak

Tujuan penelitian ini adalah untuk mendapatkan informasi mengenai pola ekspresi JJ3, CAB, phyB, dan ATHB yang terkait adaptasi kedelai terhadap cekaman intensitas cahaya rendah. Tanaman kedelai genotipe toleran Ceneng dan genotipe peka Godek yang telah berumur 21 HST pada kondisi cahaya penuh, diberikan berbagai perlakuan intensitas cahaya rendah yaitu: cahaya penuh (kontrol), lima hari naungan menggunakan paranet 50%, dan lima hari gelap total. Isolasi RNA total dari daun sampel dilakukan dengan menggunakan metode TRIzol (Invitrogen) dan pembentukan utas pertama (first strand) cDNA dilakukan dengan menggunakan metode Reverse Transcriptase Moloney Murine Leukemia Virus (RT-M-MLV) (RNase H-) (Takara Bio Inc). Analisis ekspresi gen dilaksanakan dengan menggunakan RT-PCR. Sebagai kontrol internal digunakan ß-actin. Hasil penelitian menunjukkan bahwa: pada kedelai toleran naungan, ekspresi JJ3, phyB, dan ATHB-2 dapat dideteksi pada kondisi intensitas cahaya rendah, akan tetapi pada genotipe peka naungan JJ3 dan phyB kurang terdeteksi pada kondisi naungan sedangkan ATHB-2 tidak terdeteksi pada kondisi gelap menggunakan metode RT-PCR. Pada kedelai toleran naungan, ekspresi gen CAB-3 terdeteksi kuat pada kondisi naungan 50%, akan tetapi pada kedelai peka naungan kurang terdeteksi. Pola ekspresi JJ3, CAB-3, phyB, dan ATHB-2 menunjukkan bahwa adaptasi kedelai terhadap intensitas cahaya rendah secara molekuler melalui mekanisme penghindaran (avoidance) dan toleransi (tolerance). Pada kondisi naungan 50%, ekspresi gen CAB-3 dan phyB berpotensi dijadikan sebagai marka untuk skrining kedelai toleran naungan. ____________ Kata-kata kunci: ekspresi gen, gen regulator, gen fungsional, RT-PCR, marka

molekuler

Page 133: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

108

ANALYSIS OF GENE EXPRESSIONS RELATED TO ADAPTATION OF SOYBEAN TO LOW LIGHT INTENSITY

Abstract

The main purpose of this study was to get the information on the expression patterns of JJ3, CAB-3 phyB, and ATHB-2 on soybean under shade conditions. Twenty one day old plants of soybean genotypes, Ceneng (shade tolerant) and Godek (shade sensitive), were exposed to three levels of light intensity: fully sun light (control), 5 days shading (paranet 50%), and 5 days dark. Total RNA was extracted using TRIzol method (Invitrogen) and first strand cDNA synthesis was carried out by using Reverse Transcriptase Moloney Murine Leukemia Virus (RT-M-MLV) (RNase H-) method (Takara Bio Inc). Gene expression analysis was done using two step format RT-PCR. ß-actin was used as an internal control for the gene expression analyses. Results of the study showed that expressions of JJ3, phyB, and ATHB-2 under low light intensity were detected at the LI-tolerant genotype (Ceneng), whereas JJ3 and phyB were less detected at the LI-sensitive genotype (Godek) under 50% shading and ATHB-2 was not detected under dark condition using RT-PCR method. Gene expression of CAB-3 at the LI-tolerant genotype was highly detected under 50% shade condition, but no expression was shown at the LI-sensitive genotype. The pattern of gene expression of JJ3, CAB-3, phyB, ATHB-2 indicated that molecular mechanism of adaptation of soybean to low light intensity occurred through mechanism of avoidance and tolerance. Under 50% shading, gene expression of CAB-3 and phyB could be potentially used as marker to screen for shading tolerant genotypes of soybean. ___________ Key words: gene expression, regulatory gene, functional gene, RT-PCR,

molecular marker

Page 134: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

109

PENDAHULUAN

Latar Belakang

Cahaya merupakan salah satu faktor lingkungan penting yang selain sebagai

sumber energi, juga signal cahaya membantu tanaman menerima informasi

tentang lingkungan sekelilingnya. Proses tanaman mengenali cekaman intensitas

cahaya rendah mencakup empat proses pokok, yaitu: signal stres diterima (stress

perception), diinterpretasi (signal interpretation), ditransduksi (transduction of

stress signal), dan direspon (final response). Tanaman menerima signal stres,

mengenali signal stres dengan benar, dan menggunakan signal tersebut sebagai

isyarat (cue) untuk membentuk perubahan-perubahan spesifik pada berbagai

tingkatan sebagai bentuk adaptasi tanaman, seperti perubahan struktur morfologi,

fisiologi, modifikasi lintasan biokimia, dan ekspresi gen-gen spesifik (stress-

specific gene expression) (Biswal dan Biswal 1999).

Gen fotosintetik yang terkait dengan adaptasi tanaman terhadap naungan,

antara lain gen phytochrome (phy) yang meregulasi dua fenomena utama adaptasi

tanaman terhadap lingkungan cahaya, yaitu proximity perception yang

berhubungan dengan respon penghindaran (shade avoidance) dan photoperiodic

perception yang berhubungan dengan induksi pembungaan. Gen phyB mengkode

apoprotein fitokrom B (PHYB), fitokrom stabil, yang bersifat sebagai fotoreseptor

intensitas cahaya rendah dengan rasio R:FR rendah sebagai indikator naungan

(Ballare, 1999). PHYB yang menerima cahaya pada kondisi naungan langsung

memicu perubahan morfologi dan anatomi seperti merangsang pertumbuhan

panjang hipokotil dan petiole, daun mengarah ke atas (hyponasty), penurunan

perkembangan daun, pengurangan percabangan, percepatan pembungaan dan

pengurangan sumber cadangan untuk disimpan dan reproduksi (Ballare 1999;

Morelli dan Ruberti 2002).

Selain fitokrom B (phyB), terdapat juga beberapa gen yang terkait dengan

adaptasi tanaman terhadap naungan, antara lain gen ATHB (Arabidopsis thaliana

homeobox) gen yang terkait shade avoidance (perubahan morfologi dan anatomi

tanaman), dan CAB (chlorophyll a/b binding protein) gen yang terlibat

pembentukan protein kompleks pemanen cahaya, CHS (chalchone synthase) gen

Page 135: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

110

yang terlibat pembentukan antosianin, CAO (chlorophyll a oxygenase) gen yang

terlibat dalam konversi klorofil a menjadi klorofil b, CHLD gen yang mengkode

enzim biosintesis (Ma et al. 2001; Lu et al. 2002). Pada tanaman kedelai, analisis

pola ekspresi gen-gen yang terkait adaptasi naungan tersebut belum banyak

dilaporkan. Namun demikian, informasi gen-gen tersebut telah tersedia di

database GenBank setelah berhasil diisolasi dan diidentifikasi.

Pada tanaman model Arabidopsis thaliana, ekspresi beberapa gen yang

terkait naungan sudah banyak dipublikasikan. Carabelli et al. (1996); Franklin et

al. (2003); Vandenbussche et al. (2005) melaporkan peran kerja fitokrom B

(phyB) sebagai fotoreseptor aktif dan terkait dengan peningkatan ekspresi gen

ATHB-2 yang diinduksi oleh rasio R:FR rendah (analogi naungan). Steindler et al.

(1999) dan Devlin et al. (2003) memperkuat keterlibatan ATHB sebagai shade up-

regulated homeodomain transcription factor pada respon adaptasi terhadap

naungan. Escoubas et al. (1995) melaporkan bahwa ekspresi gen CAB dipengaruhi

oleh intensitas cahaya rendah pada level transkripsi melalui sistem signaling yang

dihasilkan oleh status redoks dari pool plastoquinon PSII.

cDNA JJ3 merupakan kandidat gen yang telah diketahui sekuen lengkapnya

yang diisolasi dari tanaman kedelai (Sopandie et al. 2005) dan memiliki coding

sequence yang mengkode protein PsaD, suatu protein periferal yang fungsinya

sangat penting pada proses transport elektron pada PSI (hasil Percobaan 3). Akan

tetapi analisis pola ekspresinya sampai sekarang belum diketahui.

Keberhasilan memperoleh informasi pola ekspresi gen-gen tersebut penting

untuk memahami mekanisme molekuler adaptasi kedelai terhadap cekaman

intensitas cahaya rendah, sekaligus mendapatkan gen ’master switch’ yang dapat

mengaktifkan program pengiriman signal cekaman intensitas cahaya rendah

sehingga dapat meningkatkan kemampuan adaptasi kedelai terhadap cekaman

intensitas cahaya rendah .

Tujuan

Penelitian ini bertujuan untuk mengetahui pola ekspresi gen-gen yang

terkait adaptasi kedelai terhadap intensitas cahaya rendah.

Page 136: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

111

BAHAN DAN METODE

Bahan Tanaman

Genotipe kedelai yang digunakan adalah genotipe Ceneng (toleran naungan)

dan genotipe Godek (peka naungan) (Sopandie et al. 2002), keduanya merupakan

genotipe lokal yang homozigot homogenus.

Analisis Ekspresi Gen

Analisis ekspresi gen-gen yang terkait adaptasi kedelai terhadap cekaman

naungan dilakukan dengan menggunakan metode Reverse Transcription-PCR

(RT-PCR) sebagaimana yang digunakan Oh et al. (2000) pada tanaman

Arabidopsis, dengan tahapan kegiatan sebagai berikut.

Persiapan bahan isolasi RNA. Penanaman kedelai genotipe toleran

(Ceneng) dan peka (Godek) dilakukan di Kebun Percobaan BALITBIOGEN,

Cimanggu, Bogor pada Agustus 2005. Tanaman yang telah berumur 21 hari pada

kondisi cahaya penuh kemudian diberikan perlakuan intensitas cahaya rendah

sebagai berikut: (1) Cahaya penuh (Kontrol), (2) 5 hari naungan 50%

menggunakan paranet, dan (3) 5 hari gelap total.

Sampel daun yang telah membuka sempurna (daun 2 dan 3) dipanen dan

dipertahankan tetap dalam kondisi jaringan segar dengan cara langsung

dibenamkan dalam larutan N2 cair dikering bekukan (freeze dried) menggunakan

freeze drier.

Isolasi RNA total. Isolasi RNA total sampel daun genotipe toleran

(Ceneng) dan peka (Godek) dilakukan di lab Tolerance Mechanism ANESC di

Universitas Tokyo pada bulan September – Oktober 2005 menggunakan metode

TRIzol (Invitrogen) dengan prosedur baku perusahaan yang dimodifikasi, sebagai

berikut.

Satu gram sampel daun trifoliat muda yang telah dihancurkan sampai halus

dalam nitrogen cair dimasukkan ke dalam tabung falcon 50 ml yang berisi 5 ml

TRIzol reagent. Sampel tersebut dihomogenkan kemudian diinkubasi pada suhu

ruang selama 5 menit. Selanjutnya ditambahkan 1 ml kloroform, kemudian

diinkubasi di atas es selama 15 menit. Pemisahan dilakukan dengan disentrifius

Page 137: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

112

10.000 rpm pada suhu 4 oC selama 20 menit, dan fase atas diambil kemudian

dipindahkan ke tabung baru.

Presipitasi dilakukan dengan penambahan 1 x volume isopropanol dingin,

kemudian disentrifius 10.000 rpm pada suhu 4 oC selama 10 menit. Fase cair

dibuang dan diperoleh pelet RNA total. Selanjutnya pelet RNA total ditambahkan

dengan 2 ml 4M LiCl kemudian disentrifius 3.000 x g pada suhu 4oC selama 10

menit. Pelet RNA yang diperoleh diencerkan lagi dengan cara dilarutkan ke dalam

0.67 ml buffer Tris-EDTA-SDS dan 0.67 ml kloroform, lalu disentrifius 15.000

rpm pada suhu ruang selama 5 menit. Fase atas dipindahkan ke eppendorf baru

steril, ditambahkan 67 μl 0,2M sodium acetat pH 5,0 dan 0.67 ml isopropanol,

kemudian disentrifius 15.000 rpm pada suhu 4oC selama 15 menit. Fase cair

dibuang dan diperoleh pelet RNA total. Pelet RNA total yang diperoleh

dikeringkan secepatnya kemudian diencerkan dalam 15 - 25 μl milliQ.

Pengujian kuantitas RNA menggunakan spektrofotometer, sedangkan

kualitas RNA total dilakukan menggunakan elektroforesis 0.8% gel agarose

dengan marka RNA 23S 16S ribosomal. RNA total yang diperoleh dijadikan

sebagai template untuk sintesis first strand cDNA menggunakan RT-M-MLV.

Sintesis first strand cDNA. Pembentukan cDNA dari RNA total dilakukan

di lab Mekanisme Toleransi ANESC di Universitas Tokyo pada bulan September

sampai Oktober 2005 menggunakan metode Reverse Transcriptase Moloney

Murine Leukemia Virus (RT-M-MLV) (Takara Bio Inc) sesuai dengan prosedur

baku, sebagai berikut. Sepuluh μl RNA mix yang terdiri atas 5μg RNA dari

masing-masing perlakuan cahaya, 300 pmol primer oligo (dT) dan milliQ

diinkubasikan pada suhu 70oC selama 5 menit kemudian didinginkan di atas es

selama 2 menit. Campuran RNA template tersebut ditambahkan dengan reaction

mix hingga volume 20 μl yang terdiri atas 4 μl 5x RTase M-MLV buffer, 1 μl

10mM dNTP mix, 20 unit RNase inhibitor, 200 unit RTase M-MLV (RNase H-)

dan 3 μl milliQ. Campuran RNA total mix diinkubasi pada 42 oC selama 60 menit,

kemudian dipanaskan 70 oC selama 10 menit, didinginkan di atas es selama 2

menit dan selanjutnya disimpan pada suhu -20 oC.

Perancangan primer spesifik (GSP). Sekuen nukleotida gen target yang

digunakan adalah sekuen cDNA atau coding sequence (CDS) lengkap atau parsial

Page 138: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

113

dari tanaman yang sama (kedelai) yang dapat diperoleh di database di GenBank

melalui situs www.ncbi.nlm.nih.gov. Pasangan primer spesifik ATHB dan CAB

didesain menggunakan program Primer3 yang dapat diakses bebas lewat internet,

melalui situs www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi/cgi. Begitu juga

internal standard (ß-actin), salah satu house keeping gene (Lu et al. 2002; Nicot et

al. 2005). Sedangkan primer spesifik phyB dibuat dari sekuen konsensus

(conserved regions) dari CDS lengkap beberapa spesies tanaman berbeda

menggunakan program BLAST (www.ncbi.nlm.nih.gov/BLAST) dan ClustalW

(www.ebi.ac. uk/clustalw/). Tabel 18 Diskripsi GSP (gene specific primer) yang digunakan untuk analisis

ekspresi gen-gen yang terkait adaptasi kedelai terhadap cekaman intensitas cahaya rendah

Gen Sekuen Primer Spesifik (‘5 – 3’) GC

(%) Tm (oC)

Produk (bp)

Sumber gen / No.aksesi

JJ3 F: GCAACCCAAGCCTCTCTCTT R: CCTGAAGTTTTGACCCACCC

55 55

62 62 600 EF628505 (Full

length JJ3) CAB-3 F: GAGGGTCAGCATGAGGAAGA

R: CCAGGCATTGTTGTTGACTG 55 50

62 60 600 U39475

ATHB-2 F: GACTCTCCAAAGATCAGTC R: CCGCGAGTCTAAGATCTGGG

55 60

56 64 600 X68146

phyB F: GGGCTCCTCATGGTTGTC R: GATGCTTCGCACCACCCC

61 67

58 60 600 Bagian

terkonservasi ß-Actin F: GAAGCACCTCTCAACCCAAA

R: GACATCTGAAACGCTCAGCA 55 55

60 60 712 AF049106

Analisis pola ekspresi gen. Analisis pola ekspresi JJ3, phyB, ATHB-2, dan

CAB-3 dilakukan di lab RGCI (Research Group on Crop Improvement)

Departemen Agronomi dan Hortikultura IPB mulai November 2005 dengan

menggunakan reaksi RT-PCR, yaitu PCR dengan templat cDNA (sistem 2

langkah). PCR dilaksanakan dengan menggunakan volume reaksi 30 μl yang

mengandung 1 μl cDNA (sebagai template), 3 μl 10x buffer PCR, 3 μl 2.5 mM

dNTP mix, masing-masing 2 μl primer GSP forward dan GSP reverse, 1 U Ex

Taq polimerase, dan milliQ (Takara, Japan). Reaksi PCR pertama dengan satu

siklus yaitu 94oC selama 2 menit, 55-60oC selama 1 menit, dan 72oC selama 1

menit, dan kedua dengan 34 siklus denaturasi 94oC selama 1 menit, annealing 55-

60oC selama 1 menit, dan pemanjangan 72oC selama 1 menit, diikuti

pemanjangan akhir 72oC selama 7 menit. Produk PCR selanjutnya dielektroforesis

Page 139: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

114

dengan 1% gel agarose untuk mendapatkan pola ekspresi masing-masing gen,

dengan kontrol internal ß-actin.

HASIL DAN PEMBAHASAN

Karakteristik utama tanaman yang tumbuh pada kondisi intensitas cahaya

rendah adalah terjadinya penurunan kapasitas fotosintetik secara drastis.

Penurunan kapasitas fotosintetik tanaman akibat intensitas cahaya rendah

bervariasi antar jenis tanaman maupun antar genotipe tanaman. Kemampuan

tanaman memperkecil penurunan kapasitas fotosintetik tersebut melalui

perubahan morfologi, anatomi, lintasan biokimia, hingga perubahan pada tingkat

molekuler merupakan bentuk respon atau mekanisme adaptasi tanaman terhadap

cekaman intensitas cahaya rendah. Pada tingkat molekuler, respon atau

mekanisme ini terkait langsung dengan ekspresi gen-gen yang meregulasi karakter

fotosintetik tersebut baik pada tahap transkripsional maupun post transkripsional.

Penelitian tentang ekspresi gen-gen yang terkait fotosintesis pada kedelai

toleran dan peka naungan sangat penting untuk mengetahui sistim regulasi yang

terjadi dalam penurunan kapasitas fotosintetik antara genotipe toleran dan peka

sehingga dapat diketahui perbedaan mekanisme adaptasi masing-masing genotipe

terhadap intensitas cahaya rendah. Beberapa gen pada tanaman yang terkait

dengan penerimaan cahaya dan karakter fotosintesis antara lain gen phytochrome

famili (phyB, phyA), chlorophyll a/b binding protein (CAB-3), dan Arabidopsis

thaliana homeobox (ATHB-2).

Sebelum uji ekspresi gen-gen fotosintesis, terlebih dahulu dilakukan

pengujian ekspresi gen ß-Actin untuk mengetahui keberadaan dan keseragaman

jumlah cDNA masing-masing sampel yang akan dianalisis. ß-Actin merupakan

salah satu gen yang berfungsi sebagai kontrol internal yang merupakan salah satu

house keeping gene. Ekspresi gen ß-Actin tidak dipengaruhi oleh kondisi luar

(faktor lingkungan, seperti cahaya) maupun kondisi dalam (faktor dalam sel atau

jaringan baik spasial maupun temporal) (Lu et al. 2002; Nicot et al. 2005).

Sebagaimana yang terlihat pada Gambar 30 dan 31, ß-Actin terekspresi relatif

sama pada semua kondisi cahaya baik pada kondisi cahaya penuh, naungan

Page 140: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

115

maupun gelap total baik pada genotipe toleran Ceneng maupun pada genotipe

peka Godek.

Analisis Ekspresi JJ3 dan CAB-3

Pola ekspresi JJ3 dan CAB-3 pada kedelai toleran naungan (Ceneng) dan

peka (Godek) dapat dilihat pada Gambar 30.

Gambar 30 Pola ekspresi JJ3 dan CAB-3 pada kedelai toleran naungan (Ceneng)

dan peka naungan (Godek). Hasil elektroforesis 1% agarose. Gen ß-actin sebagai kontrol internal (house keeping gene).

JJ3 dan gen CAB-3 keduanya merupakan gen inti yang bekerja pada pusat

reaksi fotosistem dalam proses fotosintesis tanaman yaitu berturut-turut pada

fotosistem I (PSI) (Klukas et al. 1999) dan fotosistem II (PSII) (Escoubas et al.

1995). Kedua gen tersebut juga bekerja dipengaruhi oleh status reduksi oksidasi

pada pusat reaksi fotosistem (Escoubas et al. 1995; Nelson dan Ben-Shem 2004).

cDNA JJ3. cDNA JJ3 merupakan kandidat gen yang homolog dengan gen

psaD yang berhasil diisolasi dan diidentifikasi dari daun kedelai toleran naungan

(Ceneng) (Khumaida 2002; Sopandie et al. 2005). Pada Percobaan 3, cDNA JJ3

telah berhasil dikarakterisasi dimana cDNA JJ3 dengan panjang sekuen

nukleotida 841 bp, mempunyai kesamaan (homologi) yang tinggi (80% basa

nukleotida dan 90% asam amino) dengan gen psaD yang mengkode protein PsaD

A B

Ceneng (Toleran) Godek (Peka) --------------------------------- --------------------------------

Cahaya Naungan Gelap Cahaya Naungan Gelap kontrol 5 hari 5 hari kontrol 5 hari 5 hari

JJ3

CAB-3

ß-Actin

600 bp

656 bp

712 bp

Page 141: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

116

PSI subunit pada tanaman tembakau kayu (Nicotiana sylvestris), padi (Oryza

sativa), bayam (Spinacia oleracea), barley (Hordeum vulgare), tomat

(Lycopersicon esculentum), Arabidopsis (Arabidopsis thaliana), dan kentang

(Solanum tuberosum).

Pola ekspresi cDNA JJ3 pada kedelai toleran naungan (Ceneng) dan

genotipe peka (Godek) pada kondisi intensitas cahaya rendah disajikan pada

Gambar 30.

Pada kondisi cahaya penuh (kontrol) JJ3 tidak terekspresi, kemudian

terekspresi setelah tanaman diberikan kondisi naungan 50% dan gelap total

selama lima hari baik pada genotipe toleran Ceneng maupun pada genotipe peka

Godek. Ekspresi JJ3 pada kondisi lima hari gelap total lebih kuat pada genotipe

toleran Ceneng dibanding pada genotipe peka Godek. Ekspresi JJ3 yang

terdeteksi kuat pada kedelai toleran pada kondisi gelap merupakan indikasi kuat

bahwa JJ3 merupakan salah satu kandidat gen yang terkait erat dengan

mekanisme adaptasi kedelai terhadap cekaman intensitas cahaya rendah. Hal ini

terkait dengan peran JJ3 yang homolog dengan gen psaD yang menyandi protein

PsaD PSI subunit yang berperan penting meningkatkan stabilitas pusat reaksi

fotosistem I (PSI) dan penempatan akseptor elektron ferredoksin selama proses

fotosintesis berlangsung. Pola ekspresi JJ3 tersebut juga menjadi indikasi yang

kuat adanya transport elektron yang terjadi di dalam pusat reaksi PSI yang

terinduksi oleh cahaya rendah. Hasil penelitian ini juga mendukung hasil

penelitian yang dilaporkan Muhuria (2007) bahwa laju transport elektron lebih

tinggi pada genotipe toleran naungan (Ceneng) dibanding genotipe peka naungan

(Godek).

Nelson dan Ben-Shem (2004) menyatakan di dalam PSI terdapat donor

elektron (plastosianin) dan penerima elektron (ferredoksin) yang memberikan

struktur yang lebih lengkap tentang mekanisme transfer elektron pada fotosistem

I. Plastosianin menerima elektron dari sitokrom b6f, kemudian secara langsung

memberikan elektron ke P700. Ferredoksin merupakan protein Fe-S, menerima

elektron dari PSI, dan membentuk kompleks dengan enzim flavoprotein

(ferredoksin:NADP oksidoreduktase, FNR) yang mereduksi NADP menjadi

NADPH. Pada kondisi tertentu ferredoksin tereduksi dan memberikan elektron

Page 142: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

117

secara langsung kepada kompleks cytochrome b6f dan memfasilitasi pembentukan

ATP melalui fosforilasi siklik. Dengan demikian keberadaan JJ3 pada kondisi

stress intensitas cahaya rendah menjadi salah satu gen yang menyebabkan

genotipe Ceneng lebih adaptif pada kondisi intensitas cahaya rendah.

Gen CAB-3. Gen CAB-3 mengkode kompleks protein pemanen cahaya yang

mengikat klorofil a/b (chlorophyll a/b binding protein) yang terdapat pada PSII.

Protein LHCII PSII atau CAB mengikat 150-200 molekul klorofil, 50 molekul

klorofil berhubungan dengan PSII dan sekitar 70-80% energi cahaya pada PSII

diperoleh pada antena LHCII (CAB). Rasio klorofil a/b pada protein CAB adalah

1.4 artinya kandungan klorofil a lebih besar dari pada klorofil b.

Pola ekspresi gen CAB-3 berbeda dengan gen JJ3. Gen CAB-3 terekspresi

pada kondisi cahaya penuh dan kondisi naungan dan menjadi tidak terekspresi

pada kondisi lima hari gelap total pada genotipe toleran Ceneng, sedangkan pada

genotipe peka Godek hanya terekspresi pada kondisi cahaya penuh (Gambar 30).

Hal yang sama dilaporkan Carabelli et al. (1996) dan Lu et al. (2002) bahwa

ekspresi gen CAB menurun drastis pada tanaman barley yang diberi kondisi gelap

selama dua hari karena adanya degradasi kompleks protein CAB menyebabkan

status redoks semakin menurun pada fososistem II (PSII). Transkrip gen CAB

menjadi meningkat nyata setelah diberikan cahaya. Degenhardt dan Tobin (1996)

juga melaporkan hal yang senada bahwa ekspresi gen CAB diinduksi oleh cahaya

dan ekspresinya menjadi rendah pada kondisi gelap.

Selain itu, tidak terekspresinya gen CAB pada kondisi gelap baik pada

genotipe toleran maupun peka diduga karena sistem kerja promotor gen CAB yang

dipengaruhi oleh jumlah foton atau intensitas cahaya yang dapat diserap oleh daun

tanaman. Lu et al. (2002) melaporkan bahwa ekspresi gen CAB ditentukan sistem

kerja promoter yang diinduksi oleh cahaya dan terhambat pada kondisi gelap.

Selain itu, menurunnya ekspresi gen CAB pada kondisi defisit cahaya juga diduga

karena status redoks yang semakin menurun pada fososistem II (PSII). Menurut

Escoubas et al. (1995), transkrip gen CAB, yang mengkode protein kompleks

pemanen cahaya (chlorophyll a/b binding protein) yang terkait PSII (LHCIIs)

dipengaruhi oleh reaksi redoks dari PQ-pool. Dunford dan Falkowski (1997) juga

menjelaskan bahwa ekspresi gen yang terjadi akibat induksi stres cahaya, terkait

Page 143: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

118

dengan perubahan kuantitatif komponen tilakoid dan stroma kloroplas. Hasil

penelitian gen CAB yang merupakan gen inti menunjukkan bahwa intensitas

cahaya rendah mempengaruhi gen CAB pada level transkripsi melalui sistem

signaling redoks dari pool plastoquinon PSII.

Tidak terekspresinya gen CAB-3 pada kondisi gelap total juga diduga karena

teroksidasinya PQ pool pada PSII sehingga mengurangi akstifitas fosforilasi

protein kinase (PKC) sebagai sarana korespondensi membran dan ini akan

menghambat transduksi signal ke inti sehingga gen CAB menjadi tidak

terekspresi. Laporan yang menarik tentang hal ini disampaikan oleh Dunford dan

Falkowski (1997) bahwa ada keterkaitan antara sistem stress-induced signaling

yang dihasilkan dari perubahan reaksi fotokimia dan perubahan ekspresi gen inti,

sebagai respon adaptasi dari organel fotosintesis. Signal dari perubahan intensitas

cahaya tidak hanya mempengaruhi level LHC PSII, tetapi variasi intensitas cahaya

juga dapat meningkatkan atau menurunkan ekspresi gen untuk sintesis protein

fotosistem. Akibat intensitas cahaya rendah, sebagian besar pool plastoquinon

pada PSII berada dalam bentuk teroksidasi sehingga aktifitas enzim protein kinase

dalam reaksi fosforilasi sangat lemah dan selanjutnya mematikan lintasan

pengiriman signal ke inti.

Terdapat perbedaan ekspresi gen CAB-3 pada kondisi lima hari naungan

50% pada genotipe toleran dan peka naungan. Pada genotipe toleran Ceneng, gen

CAB-3 terekspresi cukup kuat sedangkan pada genotipe peka hampir tidak

terekspresi. Hal ini terkait dengan pengaturan ukuran antena (antena size

adjustment) klorofil a dan klorofil b dan terutama klorofil b yang mengalami

peningkatan yang cukup besar atau rendahnya rasio klorofil a/b pada genotipe

toleran pada kondisi naungan 50% dibanding genotipe peka (hasil Percobaan 1).

Menurut Anderson (1986); Melis (1991), organisme fotosintesis akan

melakukan aklimatisasi terhadap tingkat radiasi (photoaclimation) dengan cara

mengatur ukuran antena klorofil yang terkait dengan fotosistem. Tanaman pada

kondisi intensitas cahaya rendah, fotosistem yang mengandung klorofil b dalam

jumlah yang relatif banyak, mempunyai kompleks pemanen cahaya klorofil a-b

(LHC) yang besar dan rasio LHC/fotosistem yang tinggi. Sebaliknya, tanaman

pada intensitas cahaya tinggi, fotosistem mengandung klorofil b yang relatif

Page 144: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

119

rendah, antena LHC yang kecil, dan rasio LHC : fotosistem yang rendah (Larsson

et al. 1987). Andersson (2003) menambahkan bahwa perbedaan ukuran dan

komposisi antena mempengaruhi kandungan klorofil daun secara kuantitatif dan

kualitatif. Pada intensitas cahaya tinggi kandungan klorofil per luas daun lebih

tinggi dan karena antena luar yang lebih kecil maka rasio klorofil a/b lebih tinggi

(klorofil b hanya terdapat pada antena luar saja).

Analisis Ekspresi Gen phyB dan ATHB-2

Gen phyB dan gen ATHB-2 merupakan gen-gen yang meregulasi perubahan

morfologi dan anatomi terutama organ daun pada mekanisme penghindaran

(avoidance) tanaman dalam kondisi stres inensitas cahaya rendah (Quail 2002;

Gyula 2003). Ekspresi gen phyB dan gen ATHB-2 tersebut dapat dilihat pada

Gambar 31.

Gen phyB. Ekspresi gen phyB (phytocrome B) pada kedelai genotipe toleran

berbeda dengan genotipe peka. Pada kedelai toleran, ekspresi gen phyB terdeteksi

cukup kuat pada kondisi intensitas cahaya rendah. Sebaliknya pada genotipe peka

ekspresinya hampir tidak terdeteksi pada kondisi intensitas cahaya rendah. Pada

kondisi cahaya penuh, ekspresi gen phyB pada genotipe toleran terdeteksi rendah

namun pada genotipe peka terjadi overekspresi.

Gambar 31 Pola ekspresi gen PhyB dan ATHB-2 pada kedelai toleran naungan (Ceneng) dan peka naungan (Godek). Hasil elektroforesis 1% agarose. Gen ß-actin sebagai internal standar (house keeping gene).

A B

Ceneng (Toleran) Godek (Peka) --------------------------------- --------------------------------

Cahaya Naungan Gelap Cahaya Naungan Gelap kontrol 5 hari 5 hari kontrol 5 hari 5 hari

phyB

ATHB-2

ß-actin

656bp

600 bp

Page 145: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

120

Ekspresi gen phyB pada hasil penelitian ini memberikan bukti bahwa

fitokrom B (phyB) merupakan fotoreseptor yang berperan kunci pada kemampuan

kedelai untuk beradaptasi pada cekaman intensitas cahaya rendah. Menurut Gyula

(2003) dan Quail (2002), phyB meregulasi transkripsi gen-gen yang memiliki G-

box terkait cahaya (light-responsive G-box) dengan cara berinteraksi langsung

dengan phytochrome interacting factor (PIF) atau PIF-like (PIL) protein, seperti

gen ATHB-2, dan selanjutnya gen ATHB-2 menstimulasi respon shade avoidance

pada tanaman. Hasil penelitian pada tanaman Arabidopsis sp menunjukkan bahwa

fungsi phyB terkait dengan mekanisme adapatasi terhadap kondisi naungan

(McNellis dan Deng 1995; Howell 1998).

Sistem kerja phyB yang dapat memicu kerja gen GA3 yang mengkode

biosintesis gibberellin dapat mempercapat pembesaran dan pembelahan sel pada

daun sehingga daun menjadi lebih luas (mekanisme avoidance) (Taiz dan Zeiger

2002; Bultynck dan Lambers 2004).

Fenomena ekspresi gen phyB pada penelitian ini menarik karena dapat

mengindikasikan terjadinya perubahan kualitas cahaya di bawah paranet. Padahal

hasil-hasil penelitian sebelumnya menunjukkan tidak terjadi perubahan kualitas

cahaya di bawah paranet. Keterbatasan alat menyebabkan pengukuran perubahan

kualitas cahaya di bawah paranet tidak diamati. Beberapa hal yang dapat

mengubah kualitas cahaya yang diterima tanaman adalah karena adanya posisi

daun yang saling menutupi dengan daun tanaman tetangga karena jumlah tanaman

per polibag relatif banyak antara 3 sampai 5 tanaman.

Gen ATHB-2. Ekspresi gen ATHB-2 pada kondisi intensitas cahaya rendah

terdeteksi cukup kuat pada genotipe toleran namun pada genotipe peka hanya

terekspresi cukup kuat pada kondisi naungan saja (Gambar 31). Pola ekspresi gen

ATHB-2 hampir sama dengan pola ekspresi gen phyB pada kondisi cahaya rendah.

Fenomena ini menunjukkan adanya keterkaitan sistem kerja di antara kedua gen.

Menurut Carabelli et al. (1996) ekspresi ATHB-2 diinduksi oleh rasio R:FR

rendah, ciri cekaman lingkungan cahaya di bawah naungan kanopi, melalui kerja

fitokrom terutaman fitokrom B (phyB). Devlin et al (2003) juga menyebut ATHB-

2 sebagai shade up-regulated homeodomain transcription factor. Hal ini senada

Page 146: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

121

dengan yang dilaporkan Steidler et al. (1999); Devlin et al. (2003) pada tanaman

muda Arabidopsis bahwa intensitas ekspresi gen ATHB-2, gen yang mengkode

protein homeodomain-leucine-zipper (HD-Zip), meningkat pada kondisi naungan

dengan rasio R:FR rendah, sebaliknya menurun drastis setelah dipindahkan pada

kondisi cahaya penuh. Keterlibatan ATHB-2 pada respon shade avoidance telah

dibuktikan oleh Morelli dan Ruberti (2002) pada tanaman Arabidopsis transgenik.

Morelli dan Ruberti (2002) berhasil mengidentifikasi dua gen shade avoidance,

ATHB (homeodomain-leucine zipper transcription factor) yaitu ATHB-2 dan

ATHB-4 yang diregulasi oleh perubahan kualitas cahaya. ATHB-2 dan ATHB-4

merupakan anggota protein Arabidopsis yang dikarakterisasi oleh keberadaan

homeodomain-leucine zipper motif (HD-Zip) yang bisa bekerja sebagai regulator

positif atau regulator negatif. Keterlibatan ATHB-2 pada respon shade avoidance

juga diperkuat oleh hasil penelitian Steindler et al. (1999).

KESIMPULAN

1. Pada kedelai toleran naungan, ekspresi JJ3, phyB, dan ATHB-2 dapat

dideteksi pada kondisi intensitas cahaya rendah, akan tetapi pada genotipe

peka naungan ekspresi JJ3 dan phyB kurang terdeteksi, sedangkan ATHB-2

tidak terdeteksi pada kondisi gelap dengan menggunakan metode RT-PCR.

2. Pada kedelai toleran naungan, ekspresi gen CAB-3 terdeteksi kuat pada

kondisi naungan 50%, akan tetapi pada kedelai peka naungan kurang

terdeteksi.

3. Pola ekspresi JJ3, CAB-3, phyB, dan ATHB-2 menunjukkan bahwa adaptasi

kedelai terhadap intensitas cahaya rendah secara molekuler melalui

mekanisme penghindaran (avoidance) dan toleransi (tolerance).

4. Pada kondisi naungan 50%, ekspresi gen CAB-3 dan phyB berpotensi

dijadikan sebagai marka untuk skrining kedelai toleran naungan.

Page 147: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

BAB VII

PEMBAHASAN UMUM

Pengembangan tanaman kedelai sebagai tanaman sela atau tumpangsari

dengan tanaman perkebunan atau hutan tanaman industri atau tumpangsari dengan

tanaman pangan semusim lainnya menuntut tersedianya genotipe atau varietas

baru kedelai yang mampu beradaptasi pada kondisi intensitas cahaya rendah

akibat faktor naungan. Padahal tanaman kedelai termasuk kelompok tanaman

yang memerlukan intensitas cahaya penuh untuk proses pertumbuhan dan

perkembangannya (McNellis dan Deng 1995). Oleh karena itu, diperlukan usaha

ke arah perbaikan adaptasi atau pembentukan varietas baru kedelai yang mampu

beradaptasi terhadap intensitas cahaya rendah. Keberhasilan usaha tersebut sangat

ditentukan pemahaman yang komprehensif tentang mekanisme adaptasi. Pada

penelitian ini dikaji aspek fisiologi, genetika dan molekuler adaptasi kedelai

terhadap intensitas cahaya rendah.

Kemampuan tanaman kedelai untuk beradaptasi pada kondisi lingkungan

intensitas cahaya rendah dilakukan melalui mekanisme penghindaran (avoidance)

dan mekanisme toleransi (tolerance) (Levitt 1980). Mekanisme penghindaran

dilakukan tanaman melalui perubahan atau adaptasi pada tingkat anatomi dan

morfologi terutama organ daun untuk efisiensi penangkapan cahaya. Mekanisme

toleransi dilakukan tanaman melalui penggunaan cahaya yang efisien melalui

perubahan pada level biokimia dan fisiologi termasuk perubahan kandungan

pigmen kloroplas seperti klorofil, laju transport elektron, laju fotosintesis, dan

lain-lain (Levitt 1980; Evans dan Poorter 2001).

Dari aspek morfo-fisiologi daun, hasil penelitian ini menunjukkan bahwa

kemampuan beradaptasi tanaman kedelai terhadap intensitas cahaya rendah terjadi

melalui peningkatan luas daun, penurunan tebal daun (bobot daun spesifik), dan

peningkatan kandungan klorofil terutama klorofil b.

Hasil penelitian ini menunjukkan bahwa genotipe toleran Ceneng yang

ditanam pada kondisi naungan 50% baik dalam waktu singkat (perlakuan lima

hari di bawah paranet 50%, Percobaan 1) maupun jangka panjang (penanaman

sampai panen di bawah paranet 50%, Percobaan 2) mampu melakukan perubahan

Page 148: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

123

(adjustment) anatomi dan morfologi daun yang lebih cepat sehingga membentuk

daun yang lebih luas dan bobot daun spesifik atau tebal daun yang lebih tipis

dibanding genotipe peka Godek. Hal ini mengindikasikan bahwa genotipe toleran

memiliki kemampuan merespon signal defisit cahaya lebih baik dari pada

genotipe peka. Kemampuan tersebut dimungkinkan karena genotipe toleran

Ceneng memiliki gen-gen tertentu yang berfungsi meregulasi sistem atau

perubahan pada level biokimia, fisiologi, anatomi sampai morfologi.

Hasil analisis ekspresi gen pada penelitian ini menunjukkan bahwa terdapat

ekspresi gen phyB dan gen ATHB-2 yang cukup kuat pada genotipe toleran

Ceneng pada kondisi intensitas cahaya rendah (5 hari naungan dan 5 hari gelap)

dibanding pada genotipe peka Godek. Fenomena ekspresi gen phyB pada

penelitian ini menarik karena mengindikasikan terjadinya perubahan kualitas

cahaya di bawah paranet. Padahal hasil-hasil penelitian sebelumnya menunjukkan

tidak terjadi perubahan kualitas cahaya di bawah paranet. Beberapa hal yang

diduga dapat merubah kualitas cahaya yang diterima tanaman adalah karena

adanya posisi daun yang saling menutupi dengan daun tanaman tetangga pada

masing-masing polibag. Sebagaimana yang dilaporkan Vandenbussche et al.

(2005), peran kerja fitokrom B (phyB) sebagai fotoreseptor aktif diinduksi oleh

kualitas cahaya yaitu rasio R:FR rendah akibat naungan daun atau kanopi

tetangga.

Ekspresi gen phyB dan gen ATHB-2 pada penelitian ini memberikan bukti

bahwa fitokrom B (PHYB) merupakan fotoreseptor yang berperan kunci pada

kemampuan kedelai untuk beradaptasi pada cekaman intensitas cahaya rendah.

Menurut Gyula (2003) dan Quail (2002), phyB meregulasi transkripsi gen-gen

yang memiliki G-box terkait cahaya (light-responsive G-box) dengan cara

berinteraksi langsung dengan phytochrome interacting factor (PIF) atau PIF-like

(PIL) protein, seperti gen ATHB-2, dan selanjutnya gen ATHB-2 menstimulasi

respon shade avoidance pada tanaman. Hasil penelitian pada tanaman Arabidopsis

sp menunjukkan bahwa fungsi phyB terkait dengan mekanisme adapatasi terhadap

kondisi naungan (McNellis dan Deng 1995; Howell 1998).

Sistem kerja phyB juga dapat memicu biosintesis gibberellin sehingga

meningkatkan kandungan gibberellin pada daun yang dapat mempercepat

Page 149: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

124

pembesaran dan pembelahan sel pada daun sehingga daun menjadi lebih luas

(Taiz dan Zeiger 2002; Bultynck dan Lambers 2004). Menurut Morelli dan

Ruberti (2002) pada kondisi naungan, biosintesis asam gibberellin dan auksin

menjadi meningkat terkait dengan regulasi sistem fitokrom dan ATHB.

Peran gen phyB dan ATHB2 di dalam perubahan morfologi dan anatomi

daun pada kondisi cahaya rendah telah dilaporkan sebelumnya. Selain gen phyB,

ATHB2, juga gen ANGUSTIFOLIA dan ROTUNDIFOLIA3 (Tsuge et al. 1996;

Ballare 1999; Franklin et al. 2003; Devlin et al. 2003; Vandenbussche et al.

2005;). Dilaporkan bahwa pada kondisi naungan gen phyB akan menginduksi

kerja gen ATHB2 untuk bersama-sama memicu perubahan morfologi dan anatomi

daun menjadi lebih lebar dan lebih tipis sehingga lebih banyak menangkap cahaya

dan mengurangi refleksi cahaya. Gen ANGUSTIFOLIA dan gen

ROTUNDIFOLIA3 menurut Tsuge et al. (1996); Steindler et al. (1999) masing-

masing berfungsi meregulasi perluasan sel pada sisi lebar daun dan pada sisi

panjang daun.

Daun yang lebih luas dan lebih tipis pada genotipe toleran Ceneng

memungkinkan jumlah cahaya yang dapat ditangkap menjadi lebih banyak karena

bidang tangkapan yang lebih luas. Akibat menipisnya daun, distribusi kloroplas

menjadi lebih merata sehingga kandungan klorofil terutama klorofil b (pigmen

antena) menjadi meningkat. Dengan demikian, jumlah cahaya yang intersep

dengan bidang permukaan daun menjadi lebih banyak, jumlah cahaya yang

diteruskan ke kompleks protein semakin banyak, dan jumlah cahaya yang

dilewatkan atau ditransmisi menjadi lebih sedikit. Hal ini menyebabkan genotipe

Ceneng dan Pangrango memiliki kemampuan beradaptasi lebih tinggi dibanding

genotipe Godek. Hasil penelitian ini sejalan dengan yang dilaporkan beberapa

peneliti sebelumnya (Lestari 2005; Tyas 2006; Sopandie et al. 2006; Muhuria

2007).

Peningkatan luas daun dan berkurangnya tebal daun pada genotipe Ceneng

karena adanya pengurangan lapisan palisade pada sel mesofil daun (Horton 2000;

Khumaida 2002; Kim et al. 2005; Muhuria 2007). Perubahan morfologi dan

anatomi ini merupakan bentuk mekanisme penghindaran (avoidance) tanaman

kedelai terhadap cekaman intensitas cahaya rendah sehingga memungkinkan

Page 150: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

125

terjadinya efisiensi penangkapan cahaya (light captured efficiency), yaitu dapat

menangkap cahaya lebih banyak dan diteruskan ke bagian daun yang lebih bawah

dengan cepat sehingga kegiatan fotosintesis berlangsung maksimal (Levitt 1980;

Hale dan Orchut 1987; Evans dan Poorter 2001). Bentuk mekanisme melalui daun

yang lebih lebar dan lebih tipis juga terjadi pada tanaman padi gogo (Khumaida

2002; Sopandie et al. 2003a, 2003b).

Peningkatan luas daun dan penurunan tebal daun diikuti dengan peningkatan

kandungan klorofil daun. Hasil penelitian ini menunjukkan bahwa genotipe

toleran Ceneng memiliki kandungan klorofil (klorofil a, b, total) terutama klorofil

b yang lebih tinggi dan rasio klorofil a/b yang lebih rendah dibanding genotipe

peka Godek pada kondisi naungan 50%. Hal ini terkait dengan tingginya ekspresi

gen CAB-3 yang mengkode protein kompleks yang mengikat klorofil a/b (CAB)

atau protein komplek pemanen cahaya di dalam PSII pada kondisi 5 hari naungan.

Peningkatan transkrip RNA gen CAB-3 pada genotipe toleran pada kondisi

naungan berarti peningkatan protein enzim chlorophyll a/b binding protein (CAB)

yang berarti pula pigmen pemanen cahaya terutama klorofil b juga meningkat.

Kandungan klorofil b yang lebih besar dibanding klorofil a pada kondisi naungan

pada genotipe toleran Ceneng menyebabkan rasio klorofil a/b menjadi rendah.

Hasil penelitian ini sejalan dengan yang dilaporkan peneliti sebelumnya

(Khumaida 2002; Lestari 2005; Tyas 2006; Jufri 2006; Sopandie et al. 2006;

Muhuria 2007).

Tingginya kandungan klorofil pada genotipe toleran Ceneng dan Pangrango

pada kondisi intensitas cahaya rendah terjadi karena kloroplas bergerak ke

permukaan luar daun secara merata, akumulasi pada kedua sisi dinding sel, untuk

memaksimalkan penyerapan cahaya. Menurut Salisbury dan Ross (1992); Park et

al. (1996), intensitas cahaya rendah menyebabkan terjadinya peningkatan jumlah

kloroplas per sel, volume kloroplas dan membran tilakoid serta grana.

Peningkatan kandungan klorofil ini merupakan salah satu bentuk

mekanisme toleransi yang digunakan genotipe toleran (Ceneng) untuk beradaptasi

pada kondisi intensitas cahaya rendah. Peningkatan kandungan klorofil ini

memungkinkan tanaman melakukan panenan cahaya lebih banyak pada kondisi

cahaya rendah karena memiliki ukuran antena (antena size) yang lebih besar.

Page 151: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

126

Semakin banyak energi cahaya yang ditangkap klorofil b, semakin banyak yang

diteruskan ke kompleks protein utama pusat reaksi (PSII dan PSI) melalui klorofil

a sehingga terjadi perubahan status redoks, dan pada gilirannya laju transport

elektron, laju fotosintesis, dan aktivitas enzim fotosintesis semakin meningkat.

Sebagaimana yang dilaporkan Muhuria (2007) laju transport elektron, laju

fotosintesis, dan aktivitas enzim fotosintesis pada genotipe toleran Ceneng lebih

tinggi dibanding genotipe peka Godek.

Salah satu kandidat gen yang terkait dengan laju transport elektron dan telah

berhasil diisolasi dari genotipe toleran Ceneng adalah cDNA JJ3 (Khumaida

2002; Sopandie et al. 2005). Sekuen lengkap cDNA tersebut setelah dilakukan

karakterisasi pada Percobaan 3 menunjukkan bahwa JJ3 homolog dengan gen

psaD yang mengkode protein PsaD PSI subunit yang berperan penting dalam

pengaturan efisiensi transport elektron yang diinduksi cahaya rendah. Saat ini gen

JJ3 telah terdaftar di public database di GenBank dengan nomor aksesi

EF628505. Hasil analisis ekspresi cDNA JJ3 pada penelitian ini menunjukkan

cDNA JJ3 terekspresi cukup kuat pada genotipe toleran Ceneng pada kondisi

intensitas cahaya rendah. Fenomena ini semakin memperkuat dugaan bahwa

kemampuan adaptasi terhadap intensitas cahaya rendah dari kedelai toleran

Ceneng, salah satunya adalah karena peran JJ3 dalam efisiensi transpor elektron

pada PSI yang diinduksi intensitas cahaya rendah.

cDNA JJ3 homolog dengan gen psaD PSI subunit. Tingginya tingkat

homologi ini mengindikasikan bahwa mekanisme adaptasi tanaman kedelai

terhadap intensitas cahaya rendah berhubungan erat dengan efisiensi proses

transport elektron pada pusat reaksi yang terjadi di dalam membran tilakoid.

Dengan kata lain, keberadaan JJ3 pada genotipe toleran Ceneng akan

meningkatkan laju transpor elektron fotosintetik sehingga dalam kondisi kurang

cahaya pun fiksasi energi dari fotosintesis berjalan dengan normal. Hal ini

dibuktikan pada uji ekspresi JJ3 pada tanaman kedelai toleran naungan Ceneng

dalam berbagai kondisi intensitas cahaya rendah. Hasil penelitian ini

menunjukkan bahwa cDNA JJ3 masih terekspresi dengan semakin menurunnya

intensitas cahaya. Ini mengindikasikan bahwa pada genotipe toleran Ceneng,

proses transport elektron pada kondisi intensitas cahaya rendah masih berjalan

Page 152: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

127

normal dan berimplikasi fotosintesis juga berjalan normal. Hasil penelitian ini

memperkuat hasil penelitian Muhuria (2007) bahwa pada kondisi naungan 50%

laju transport elektron dan laju fotosintesis pada genotipe toleran Ceneng lebih

tinggi dibanding genotipe peka Godek. Transport elektron dan laju fotosintesis

yang lebih tinggi pada pada genotipe toleran juga dimungkinkan karena memiliki

struktur dan volume kloroplas yang lebih berkembang dengan tilakoid dan grana

yang lebih banyak (Khumaida 2002; Tyas 2006).

Hasil penelitian ini menunjukkan bahwa seluruh gen-gen yang dianalisis

(JJ3, CAB-3, phyB, dan ATHB-2) merupakan gen fungsional yang dapat

mengendalikan adaptasi kedelai terhadap intensitas cahaya rendah. Ekspresi gen-

gen tersebut dapat digunakan untuk mempelajari mekanisme adaptasi. Pada

tingkat DNA genom, gen-gen tersebut berpotensi untuk dijadikan sebagai penanda

genetik dalam seleksi (MAS) adaptasi kedelai terhadap intensitas cahaya rendah

melalui pengembangan SCAR marker (sequence characterized amplified region)

atau CAPS marker (cleavage amplified polymorphic sequence) (Sobir,

komunikasi pribadi). Teknik SCAR marker dilakukan dengan mendisain primer

spesifik pada daerah yang berbeda (unconserved region) sehingga akan

terekspresi pada genotipe toleran sedangkan pada genotipe peka tidak terekspresi.

Teknik CAPS marker dimungkinkan adanya pemotongan DNA yang berbeda oleh

enzim restriksi sehingga membentuk polimorfism yang dapat membedakan

genotipe toleran dan peka.

Karakter morfologi dan fisiologi daun tersebut memungkinkan untuk dapat

dijadikan sebagai marka adaptasi kedelai terhadap intensitas cahaya rendah.

Karakter morfologi daun yang berpotensi menjadi kriteria seleksi kedelai terhadap

intensitas cahaya rendah adalah karakter luas daun. Hasil penelitian ini

menunjukkan luas daun memiliki koefesien korelasi yang tinggi dengan hasil,

nilai duga heritabilitas arti luas yang tergolong tinggi dengan tipe aksi aditif.

Menurut Nyquist (1991) apabila suatu karakter memiliki nilai duga heritabilitas

arti luas yang tinggi dengan tipe aksi gen aditif maka karakter tersebut memiliki

nilai heritabilitas arti sempit yang tinggi. Dengan demikian selain karakter hasil

per tanaman, karakter luas daun dapat dijadikan sebagai penciri adaptasi sekaligus

Page 153: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

128

sebagai kriteria seleksi dalam perbaikan adaptasi kedelai terhadap intensitas

cahaya rendah.

Hasil penelitian ini juga menunjukkan bahwa karakter fisiologi daun seperti

kandungan klorofil (klorofil a, b dan total) memiliki nilai koefesien korelasi

dengan hasil yang tinggi, nilai heritabilitas arti luas yang tinggi, dikendalikan oleh

dua gen mayor dengan tipe aksi gen duplikat dominan epistasis (isoepistasis).

Nilai duga heritabilitas arti luas yang tinggi pada karakter kandungan

klorofil a, klorofil b, klorofil total, dan rasio klorofil a/b mengindikasikan bahwa

pewarisan karakter tersebut ditentukan oleh ragam genetik yang besar dengan

sedikit pengaruh ragam lingkungan. Hasil penelitian ini sejalan dengan yang

dilaporkan Muhuria (2007). Dalam hal ini ragam genetik merupakan ragam

genetik total yang mencakup ragam dominan (σ2D), ragam aditif (σ2A), dan

ragam epistasis (σ2I) (Fehr 1987; Roy 2000). Kasus pada karakter fisiologi daun

ini menarik karena yang selama ini telah banyak dipublikasikan merupakan

karakter yang dianggap baik untuk dijadikan kriteria seleksi ternyata sebaliknya

tidak dapat digunakan sebagai kriteria seleksi karena pengaruh ragam epistasis.

Oleh karena itu untuk menghindari nilai bias dari heritabilitas arti luas harus

disertai dengan analisis tindak gennya.

Informasi genetik karakter fisiologi yang diperoleh pada penelitian ini

mencerminkan sekurang-kurangnya dua gen dominan yang meregulasi karakter

kandungan klorofil tersebut. Gen-gen mayor tersebut yang terlibat dalam

mekanisme toleransi perlu dilanjutkan pada level molekuler untuk melihat pola

ekspresi gen-gen tersebut. Selain untuk mempelajari mekanisme adaptasi dari

aspek molekuler, analisis ekspresi gen-gen fotosintetik atau non fotosintetik yang

terkait adaptasi kedelai terhadap intensitas cahaya rendah tersebut penting

dilakukan untuk mengetahui apakah gen-gen pengendali tersebut dapat dijadikan

sebagai marka adaptasi atau tidak.

Page 154: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

BAB VIII

KESIMPULAN DAN SARAN

Kesimpulan

1. Karakter morfo-fisiologi daun (luas daun, bobot daun spesifik, kandungan

klorofil) terkait erat dengan adaptasi kedelai terhadap intensitas cahaya

rendah.

2. Karakter luas daun dapat dijadikan sebagai kriteria seleksi dalam

pengembangan kedelai toleran naungan karena secara genetik karakter

tersebut dikendalikan oleh gen dengan aksi aditif, mempunyai nilai

heritabilitas arti luas yang tinggi, dan berkorelasi tinggi dengan hasil.

3. Sekuen lengkap cDNA JJ3 yang memiliki panjang 841 basa nukleotida

homolog dengan gen psaD fotosistem I (PSI) subunit.

4. JJ3, CAB-3, phyB, dan ATHB-2 terekspresi pada genotipe toleran maupun

genotipe peka naungan, sehingga gen-gen tersebut pada tingkat DNA genom

tidak dapat dijadikan sebagai marka untuk membedakan genotipe toleran dan

genotipe peka.

5. Peningkatan luas daun untuk penangkapan cahaya yang efisien merupakan

bentuk mekanisme avoidance yang diduga terkait dengan peningkatan

ekspresi gen-gen yang berhubungan dengan fitokrom-B (phyB).

6. Karakter kandungan klorofil tidak efektif dijadikan sebagai marka untuk

seleksi galur karena gen-gen yang mengendalikannya bersifat isoepistasis,

akan tetapi karakter tersebut dapat digunakan untuk skrining genotipe toleran

atau peka untuk calon tetua.

Saran 1. Kedelai Ceneng dapat digunakan sebagai tetua untuk memperoleh varietas

kedelai toleran intensitas cahaya rendah. Selain itu dapat dianjurkan sebagai

tanaman sela di bawah tegakan perkebunan atau hutan tanaman industri (HTI)

yang masih berumur 2-3 tahun, atau tumpangsari dengan tanaman pangan

semusim yang berpotensi menaungi.

Page 155: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

130

2. Dalam perbaikan adaptasi kedelai terhadap intensitas cahaya rendah, karakter

luas daun dapat dijadikan sebagai salah satu kriteria seleksi.

3. Seleksi menggunakan marka molekuler atau MAS sebaiknya dikembangkan

dari gen-gen yang terkait dengan penangkapan cahaya melalui teknik CAPS

(cleavage amplified polymorphic sequence) atau SCAR (sequence

characterized amplified region).

4. Diperlukan analisis kandungan gibberellin dan aspek molekulernya untuk

dapat lebih memahami mekanisme adaptasi kedelai terhadap intensitas cahaya

rendah

5. Diperlukan analisis molekuler gen-gen penting lain seperti CAO yang

mengubah klorofil a menjadi klorofil b yang berperan dalam mekanisme

adaptasi kedelai terhadap intensitas cahaya rendah.

6. Diperlukan pengamatan terhadap kemungkinan perubahan kualitas cahaya di

bawah paranet maupun di sekitar kanopi tanaman kedelai.

Page 156: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

DAFTAR PUSTAKA Abdallah F. 2000. A prediction of the size and evolutionary origin of the

proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–142. Allard RW. 1960. Principles of Plant Breeding. New York: John Wiley and Sons.

Inc. Allen JF, Forsberg J. 2001. Molecular recognition in thylakoid structure and

function. Trends Plant Sci 6:317–326. Allen JF. 1995. Thilakoid protein phosphorilation, state 1-state 2 transition and

photosytem stoichiomtry adjustment : redox control at multiple levels of gene expression. Plant Physiol 93:196-205.

Alves de Alvarenga A, Castro M de E, Junior E de CLJ, Magalhaes MM. 2003. Effects of different light levels on the initial growth and photosyntesis of Croton urucurana Baill. in Southeastern Brazil. R Arvore Vicosa-MG 27:53-57.

Anderson JM, Chow WS, Park YI. 1995. The grand design of photosynthesis acclimation of the photosynthetic apparatus to environmental cues. Photosynthesis Res 46:129-139.

Anderson JM. 1986. Photoregulation of composition, function and structure of thylakoid membranes. Annu Rev Plant Physiol 33:93-136.

Anderson JM. 2000. Strategies of photosynthetic adaptations and acclimation. Di dalam: Yunus M, Pathre U, Mohanty P, editor. Probing Photosynthesis. Mechanisms, Regulation and Adaptation. London: Taylor & Francis. hlm 284-291.

Andersson J, Mentworth M, Walters RG, Howards CA, Ruban AV, Horton P, Janson S. 2003. Absence of the Lhcb1 and Lhcb2 proteins of the light harvesting complex of photosystem II – effects on photosynthesis, grana stacking and fitness. Plant J 35:350-361.

Andersson J, Walters RG, Horton P, Janson S. 2001. Antisense inhibition the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation. Plant Cell 13:1193-1204.

Andersson J. 2003. Dissecting the photosytem II light-harvesting antenna (disertation). Sweden: Umea University.

Arnon DI. 1949. Cooper enzymes in isolated chloroplast, polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1-15.

Asadi B, Arsyad DM, Zahara H, Darmijati. 1997. Pemuliaan kedelai untuk toleran naungan. Buletin Agrobio 1:15-20.

Asadi B, Arsyad DM. 1995. ”Pangrango” a new soybean variety for intercropping with maize. Food Legume Coarse Grain. Network Newsletter 33:15-18.

Badan Penelitian dan Pengembangan Departemen Pertanian. 2005. Rencana Aksi Pemantapan Ketahanan Pangan 2005-2010. Lima Komoditas; Beras, Jagung, Kedelai, Gula, dan Daging Sapi. Jakarta: Balitbangtan Deptan.

Baharsyah JS, Suhardi D, Las I. 1993. Hubungan iklim dengan pertumbuhan kedelai. Di dalam: Somaatmadja S, Ismunadji M, Sumarno, Syam M, Manurung SO, Yuswadi, editor. Kedelai. Bogor: Badan Penelitian dan Pengembangan Pertanian, Pusat Penelitian dan Pengembangan Tanaman. hlm 87-102.

Page 157: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

132

Baharsyah JS. 1980. Pengaruh naungan pada berbagai tahap perkembangan dan populasi tanaman terhadap pertumbuhan, hasil dan komponen hasil kedelai (Glycine max (L.) Merr.). [disertasi], Bogor: Fakultas Pascasarjana, Institut Pertanian Bogor, Bogor.

Bailey S, Horton P, Walter RG. 2004. Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218:793-802.

Bailey S, Walter RG, Horton P. 2001. Acclimation of Arabidopsis thaliana to the light environment, the existense of separate low light and high light responses. Planta 213:794-801.

Ballare CL. 1999. Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci 4:97-102.

Behera RK, Choudhury NK. 2001. Photosynthetic characteristics of chloroplast of primary wheat leaves grown under different irradiance. Photosynthesis 39:11-15.

Ben-Shem A, Frolow F, Nelson N. 2003. The crystal structure of plant photosystem I. Nature 426:630–635.

Biswal B, Biswal UC. 1999. Photosynthesis under stress: stress signals and adaptive response of chloroplast. Di dalam: Pessarakli, editor. Hand Book of Plant and Crop Stress. New York: Marcel Dekker, Inc. hlm 315-336.

Biswal B. 1997a. Chloroplast metabolism during leaf greening and degreening. Di dalam: Pessarakli, editor. Hand Book of Photosinthesis. New York: Marcel Dekker, Inc. hlm 71-81.

Biswal B. 1997b. Chloroplast, pigments, and molecular responses of photosiynthesis under stress. Di dalam: Pessarakli, editor. Hand Book of Photosinthesis. New York: Marcel Dekker, Inc. hlm 877-885.

Bjorkman O. 1981. Responses of different quantum flux densities. Di dalam: Lange OL, Nobel PS, Osmond CB, Ziegler H, editor. Physiological Plant Ecology. I. Responses to the physical environment. Encycl Plant Physiol New Series. Vol 12A. Berlin:Springer-Verlag. hlm 57-107.

Bruggeman W, Danborn B. 1993. Longterm chilling of young tomato plants under low light. III. Leaf development as reflected by photosynthesis parameters. Plant Cell Physiol 73:507-510

Bultynck L, Lambers H. 2004. Effects of applied gibberellic acid and paclobutrazol on leaf expansion and biomass allocation in two Aegilops species with contrasting leaf elongation rates. Physiologia Plantarum 122:143–151.

Burns GW. 1976. The Science of Genetics: An Introduction to Heredity. Ed ke-3. New York: Macmillan Publ. Co. Inc.

Burton GW. 1951. Quantitative inheritance in pearl millet (Pennisetum glaucum). Agron J 43:409-417.

Carabelli M, Morelli G, Whitelam G, Ruberti I. 1996. Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proc Natl Acad Sci USA 93: 3530–3535.

Castle WE. 1921. An improved method of estimating the number of genetic factors concerned in case of blending inheritance. Sci 54:223.

Page 158: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

133

Chahal GS, Gosal SS. 2003. Principles and Procedures of Plant Breeding. Biotechnological and Conventional Approaches. New Delhi: Narosa Publishing House.

Chaturvedi GS, Ingram KT. 1989. Growth and yield of lowland rice in response to shade and drainage. Philippine J. Crop Sci 14:61-67.

Chaturvedi GS, Ram PC, Singh AK, Ram P, Ingram KT, Singh BB, Singh RK, Singh VP. 1994. Carbohydtrate status of rainfed lowland rices in relation to submergence, drought and shade tolerance. Di dalam: Lucknow VP, editor. Physiology of Stress Tolerance in Rice. India-IRRI Philippines. hlm 104-122.

Chowdury PK, Thangraj M, Jayapargasam. 1994. Biochemical changes in low-irradiance tolerant and susceptable rice cultivars. Biol Plantarum 36:237-242.

Chozin MA, Sopandie D, Sastrosumajo S, Sumarno. 1999. Physiology and Genetic of Uplanad Rice adaptation to shade. Final Report of Graduate Tem Research Grant, URGE Project. Directorate General of Higher Education, Ministry of Education and Culture.

Claverie J-M, Notredame C. 2003. Bioinformatics for Dummies. Indiana: Wiley Publishing, Inc.

Critchley C. 1997. The structure and function of photosystem II. Di dalam: Pessarakli, editor. Hand Book of Photosinthesis. New York: Marcel Dekker, Inc. hlm 231-240.

Crowder LV. 1993. Genetika Tumbuhan. Terjemahan Lilik K dan Soetarso. Cetakan ke 4. Yogyakarta: Gadjah Mada University Press.

Dale JW, von Schantz M. 2002. From Genes to Genomes. Concepts and Applications of DNA Technology. New York: John Wiley & Sons.

de la Torre WR, Burkey KO. 1999. Acclimation of barley to changes in light intensity: photosynthetic electron transport activity and components. Photosynthesis Res 24:117-125.

Degenhardt J, Tobin EM. 1996. A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants. Plant Cell 8: 31-41

Devlin PF, Yanovsky MJ, and Kay SA. 2003. A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol 133:1617-1629.

dos Santos. 2004. Basic bioinformatic applications for microbiologists. Braunschweig: GBF.

Dunford DG, Falkowski PG. 1997. Chloroplast redox regulation of nuclear gen transcription during photoacclimation. Photosynth Res 53:229-241.

Escoubas J-M, Lomas M, Laroche J, and Falkowski PG. 1995. Plant Biology Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci 92:10237-10241.

Escoubas J-M, Lomast M, Laroche J, Falkowski PG. 1995. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237-10241.

Evans JR, Poorter H. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755-767.

Page 159: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

134

Evans JR. 1987. The relationship between electron transport components and photosynthetic capacity in pea leaves grown at different irradiances. Aust J Plant Physiol 15:93-106.

Evans JR. 1988. Aclimation by the thylakoid membranes to growth irradiance and partitioning of nitrogen between soluble and thylakoid protein. Aust J Plant Physiol 15:93-106.

Fehr WR. 1987. Principle of Cultivar Development. Theory and Technique. Vol. 1. New York: MacMillan Pub. Co.

Fey V, Wagner R, Bräutigam K, Pfannschmidt T. 2005. Photosynthetic redox control of nuclear gene expression. J Exp Bot 56:1491-1498.

Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC. 2003. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 131:1340–1346.

Garczarek L, Hess WR, Holtzendorff J, van der Staay GWM, Partensky F. 2000. Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. PNAS Early Edition 1- 4

Grami B, Baker RJ, Stefansson BR. 1977. Genetics of protein and oil content in summer rape: heritability, number of effective factors, and correlations. Can J Plant Sci 57:937-943.

Grant RH. 1997. Partitioning of biologically active radiation in plant canopies. Int J Biometeorol 40:26-40.

Gyula N, Schafer E, Nagy F. 2003. Light perception and signalling in higher plants. Curr Opin Plant Biol 6:446-452.

Hachtel W. 1997. DNA and gene expression in photosynthetic plastids (chloroplasts). Di dalam: Pessarakli, editor. Hand Book of Photosinthesis. New York: Marcel Dekker, Inc. hlm 331-348.

Hale MG, Orchut DM. 1987. The Physiology of Plants Under Stress. New York: John Wiley and Sons.

Hall DO, Rao KK. 1987. Photosynthesis. Studies in Biology. Cambridge: University Press.

Hall TA. 1999. BieEdit: a user friendly biological sequence alignment editor and analysis pogram for Window 95/98/NT. Nucl Acids Symp Ser 41:95-98.

Halloran GM, Knight R, McWhirter KS, Sparrow DHB. 1979. Plant Breeding. Brisbane: Australian Vice-Chancellors Committee.

Handayani T. 2003. Pola pewarisan sifat toleran terhadap intensitas cahaya rendah pada kedelai (Glycine max L. Merr) dengan penciri spesifik karakter anatomi, morfologi dan molekuler [disertasi]. Bogor: Program Pascasarjana, Institut Pertanian Bogor.

Haris A. 1999. Karakteristik iklim mikro dan respon tanaman padi gogo pada pola tanam sela dengan tanaman karet [thesis]. Bogor: Program Pascasarjana, Institut Pertanian Bogor.

Heck DA, Miles D, Chitnis PR. 1999. Characterization of two photosynthetic mutants of maize. Plant Physiol 120:1129–1136.

Hidema J, Makino A, Kurita Y, Mae T, Ohjima K. 1992. Changes in the level of chlorophyll a/b protein of PSII in rice leaves agent under different irradiances from full expansion through senescense. Plant Cell Physiol 33: 1209-1214.

Page 160: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

135

Hiyama T. 1997. Fotosystem I: Structures and Functions. Di dalam: Pessarakli, editor. Hand Book of Photosinthesis. New York: Marcel Dekker, Inc. hlm 195-218.

Horton P, Ruban AV, Walters RG. 1996. Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655-684

Horton P. 2000. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot 51:475-485.

Howell SH. 1998. Molecular Genetics of Plant Development. Cambridge, UK: Cambridge University Press.

Hudson GS, Evan JR, Caemmerer SV, Arvidson YBC, Andrews TJ. 1992. Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transegenic tobacco plants. Plant Physiol 98:294-302.

Jansson S. 1999. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236-240.

Jarvis P, Soll J. 2001. Toc, Tic, and chloroplast protein import. Biochim Biophys Acta 1541:64–79.

Jiao DM, Tong HY, Zhang JX. 1993. Identification of photosynthetic characteristics adapted to wide range of light intensities in rice varieties. Chinese J Rice Sci 7:243-246.

Jones HG. 1992. Plant and Microclimate. A Quantitative Approach to Environmental Plant Physiol. 2nd edition. Cambridge University Press.

Jordan P. 2001. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917.

Joshi AK. 1997. Genetic factors affecting photosinthesis. Di dalam: Pessarakli, editor. Hand Book of Photosinthesis. New York: Marcel Dekker, Inc. hlm 751-762.

Jufri A. 2006. Mekanisme adaptasi kedelai terhadap cekaman intensitas cahaya rendah [disertasi]. Bogor: Sekolah Pascasarjana Institut Pertanian Bogor.

Juraimi AS, Drennan DSH, Anuar N. 2004. The effects of shading on the growth, development and partitioning of biomass in bermudagrass (Cynodon dactylon (L.) Pers). J Biol Sci 4:756-762.

Kahl G. 2001. The Dictionary of Gene Technology. Ed ke-2. New York: Wiley-VCH.

Kassam AH. 1978. Agro-climatic suitability assesment of rainfed crops in African by growing period zones. FAO

Kephart KD, Buxton DR, Taylor SE. 1992. Growth of C3 and C4 perenial grasses in reduced irradiance. Crop Sci 32:1033-1038.

Khumaida N, Sopandie D, Takano T. 2001. Adaptability of soybean to shade stress: Expression of photosynthetic genes in soybean genotypes. Di dalam: Proceeding of the 1st Seminar Toward Harmonization between Development and Environmental Conservation in Biological Production. Tokyo University, February 21-23, 2001.

Khumaida N. 2002. Studies on adaptability of soybean and upland rice to shade stress [dissertation]. Tokyo: The University of Tokyo.

Page 161: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

136

Kim Gyung-Tae, Yano S, Kozuka T, Tsukaya H. 2005. Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves. Photochem Photobiol Sci 4:170-174.

Klukas O, Schubert Wolf-Dieter, Jordan P, Krauß N, Fromme P, Witt HT, Saenger W. 1999. Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274: 7351-7360.

Krapp A, Chaves MM, David MM, Rodriguez ML, Pereira JS, Stitt M. 1994. Decreased ribulose-1,5-bisphosphate carboxylase/oxygenase in transgenic tobacco transformed with "antisense" rbcS. VIII. Impact on photosynthesis and growth in tobacco growing under extreme high irradiance and high temperature. Plant Cell Environ 17:945-953.

Kraub N, Saenger W. 2001. Photosystem I. Encyclopedia Of Life Sciences. Nature Publishing Group / www.els.net.

Kruip J, Chitnis PR, Lagoutte B, Ro¨gner M, Boekema EJ. 1997. Structural organization of the major subunits in cyanobacterial photosystem 1. Localization of subunits PsaC, -D, -E, -F, AND –J. J Biol Chem 272:17061–17069.

Kulandaevilu G, Lingakumar K. 2000. Molecular targets of UV-B radiation in the photosynthetic membranes. Di dalam: Yunus M, Pathre U, Mohanty P, editor. Probing Photosynthesis. Mechanisms, Regulation and Adaptation. London: Taylor & Francis. hlm 364-377.

Lagoutte B, Hanley J, Bottin H. 2001. Multiple functions for the C terminus of the PsaD subunit in the cyanobacterial photosystem I complex. Plant Physiol 126:307-316.

Larsson UK, Anderson JM. 1987. Variation in relative content of the pheripheral and inner light-harvesting chlorophyll a/b-protein complex (LHC-II) subpopulations during thylakoid light adaptation and development. Biochem Biophys Acta 894:69-75.

Lautt BS, Chozin MA, Sopandie D, Darusman LK. 2000. Perimbangan Pati-sukrosa dan aktivitas enzim sukrosa fosfat sintase pada padi gogo yang toleran dan peka terhadap naungan. Hayati 7:31-34.

Lautt BS. 2003. Fisiologi toleransi padi gogo terhadap naungan: tinjauan karakteristik fotosintesis dan respirasi [disertasi]. Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor.

Lawlor DW. 1987. Photosynthesis: Metabolism, Control and Physiology. Singapore: Longman Singapore Publisher Ltd.

Leong TY, Anderson JM. 1984. Adaptation of the thylakoid membranes of pea chloroplasts to light intensity II. Study on the distribution of chlorophyll-protein complexes. Photosynthesis Res 5:105-115.

Lestari T. 2005. Adaptasi kedelai terhadap intensitas cahaya rendah melalui pendekatan analisis isozim [thesis]. Bogor. Sekolah Pascasarjana Institut Pertanian Bogor.

Levitt J. 1980. Responses of Plants to Environmental Stress. Ed ke-2. New York: Academic Press.

Li S, Showalter AM. 1996. Cloning and developmental/stress-regulated expression of a gene encoding a tomato arabinogalactan protein. Plant Mol Biol 32:641–652.

Page 162: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

137

Li Y, Yan H, Zhou B, Kawabata S, Sakiyama R. 1999. Role of Chalcone Synthase and Dihydroflavonol Reductase in Light Dependent Accumulation of Anthocyanins in 'Toyonoka' Strawberry Fruits. www.paper.edu.cn

Lichtenthaler HK, Burkart S. 1999. Photosynthesis and high light stress. Bulg J Plant Physiol 25:3-16.

Lindahl M, Yang DH, Anderson B. 1995. Regulatory proteolysis of the major light harvesting chlorophyll a/b binding protein of photosynthesis II by a light induced membrane associated enzymatic system. Eur J Biochem 231:503-509.

Lodato P, Alcaíno J, Barahona S, Retamales P, Jiménez A, Cifuentes V. 2004. Study of the expression of carotenoid biosynthesis genes in wild-type and deregulated strains of Xanthophyllomyces dendrorhous (Ex. Phaffia rhodozyma). Biol Res 37:83-93.

Lu C, Koroleva OA, Farrar JF, Gallagher J, Pollock CJ, Tomos AD, 2002. Rubisco Small Subunit, Chlorophyll a/b-binding protein and sucrose:fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. cell type specificity and induction by light. Plant Physiol 130:1335-1348.

Luciński R, Jackowski G. 2006. The structure, functions and degradation of pigment-binding proteins of photosystem II. Acta Biochimica Polonica 53: 693-708

Lynn D. 2005. Introduction to Bioinfomatics. International Livestock Research Institute, Kenya. http://www.binf.org/ILRI2005/

Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW. 2001. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13: 2589-2607

Makino A, Mae T, Ohira K. 1984. Relation between nitrogen and riboluse-1,5-bisphosphate carboxylase in rice leaves from emergence through senescene. Plant Cell Physiol 25:249-437.

Makino A, Mae T, Ohira K. 1985. Photosynthesis and riboluse-1,5 bisphosphate carboxylase/oxygenase in rice leaves from emergence through senescence. Quantitative analysis by carboxylation/oxygenation and regeneration of ribulose-1,5 bisphosphate. Planta 166:414-420

Malkin R, Niyogi K. 2000. Photosynthesis. Di dalam Buchanan BB, Gruissem W, Jones RL, editor. Biochemistry & Molecular Biology of Plants. Rockville, Maryland: American Society of Plant Physiologists. hlm 568-628.

Masuda T, Tanaka A, Melis A. 2002. Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Proceed 2002 U.S. DOE Hydrogen Program Review

Maxwell KL, Joanne LM, Rachel ML, Howard G, Peter H. 1999. Chloroplast acclimation in leaves Guzmania monostachia in response to high light. Plant Physiol 121:89-95

McNellis TW, Deng X-W. 1995. Light control of seedling morphogenetic pattern. Plant Cell 7:1749-1761.

McWhirter KS. 1979. Breeding of Cross-Pollinated crops. Di dalam: Halloran GM, Knight R, McWhirter KS, Sparrow DHB, editor. Plant Breeding. Australian Vice-Chancellors Committee Brisbane. 255p

Page 163: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

138

Melis A. 1991. Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058: 87-106

Mohr H, Scoopfer. 1995. Plant Physiology. Translated by Gudrun and DW Lawlor. Springer.

Morelli G, Ruberti I. 2002. Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci, 7:399-404.

Mostowska A. 1997. Enviornmental factors affecting chloroplasts. Di dalam: Pessarakli, editor. Hand Book of Photosinthesis. Marcel Dekker, Inc. New York. hlm 407-424.

Mount DW. 2001. Bioinformatics: Sequence and Genome Analysis. New York: Cold Spring Harbor Laboratory Press.

Muhuria L. 2007. Mekanisme fisiologi dan pewarisan sifat toleransi kedelai (Glycine max L. Merrill) terhadap intensitas cahaya rendah [disertasi]. Bogor: Program Pascasarjana, Institut Pertanian Bogor.

Murata N, Loss DA. 1997. Membrane fluidity and temperature perception. Plant Physiol 115:875-879

Murchie EH, Hubbart S, Chen Y, Peng S, Horton P. 2002. Acclimation of rice photosynthesis to irradiance under field conditions. Plant Physiol 130:1999-2010

Murty KS, Dey SK, Swain P, Baig MJ. 1992. Low light adapted restorers of different maturity durations for hybrid rice breeding. Int Rice Res Newsletter 17:6-7.

Murty KS, Suhu G. 1987. Impact of low light stress on growth and yield of rice. Di dalam: Dey SK, Baig MJ, editor. Weather and Rice. Proceeding International workshop on impact of weather parameters on growth and yield of rice. IRRI. Los Banos. Phillippines. hlm 94-100.

Nagata N, Tanaka R, Satoh S, Tanaka A. 2005. Identification of vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233-240

Nasoetion AH, Barizi. 1973. Metode Statistika untuk penarikan kesimpulan. Departemen Statistika dan Komputasi. Fakultas Pertanian IPB.

Neidhardt J, Benemann JR, Zhang L, Melis A. 1998. Photosystem II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175-184.

Nelson N, Ben-Shem A. 2002. Photosystem I reaction center: past and future. Photosyth. Res. 73:193–206

Nelson N, Ben-Shem A. 2004. The complex architecture of oxygenic photosynthesis. Molecular Cell Biol, 5:1-12

Nicot N, Hausman J-F, Hoffmann L, Evers D. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot, 56:2907-2914.

Nilsen ET, Orcutt DM. 1996. The physiology of Plant Under Stress. Abiotic Factors. John Wiley & Sons. Inc, New York.

Niquist WE. 1991. Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences, 10:235-322.

Page 164: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

139

Obokata J, Mikami K, Hayashida N, Nakamura M, Sugiura M. 1993. Molecular Heterogeneity of Photosystem I (psaD, psaE, psaF, psaH, and psaL Are All Present in Isoforms in Nicotiana spp. Plant Physiol. 120: 1129–1136

Oh SK, Han KH, Ryu SB, Kang H. 2000. Molecular Cloning, Expression, and Functional Analysis of a cis-Prenyltransferase from Arabidopsis thaliana. J Biol Chem 275:18482–18488

Okada K, Yasunori I, Kazuhiko S, Tadahiko M, Sakae K. 1992. Effect of light on degradation of chlorophyll and proteins during senescence of detaches rice leaves. Plant Cell Physiol 33:1183-1191.

Ouellette AJA, Barry BA. 2002. Tandem mass spectrometric identification of spinach Photosystem II light-harvesting components. Photosynthesis Research 72: 159–173

Pandini F, Vello NA, de Almeida Lopes AC. 2002. Heterosis in soybeans for seed yield components and associated traits. Brazilian Archives Biology and Technology 45:401-412

Park Y-I, Chow WS, Anderson JM. 1996. Chloroplast movement in the shade plant Trandescantia albiflora helps protect photosystem II against light stress. Plant Physiol. 111:867-875

Pattanayaka, GK, Biswal AK, Reddy VS, Tripathy BC. 2005. Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem and Biophysic Res Commun 326: 466–471

Peters JL, Szell M, Kendrick RE. 1998. The expression of light-regulated genes in the high-pigment-1 mutant of tomato. Plant Physiol 117:797-807.

Petr FC, Fery KJ. 1966. Genotypic correlation, dominance, and heritability of quantitative characters in oats. Crop Sci 6:259-262

Pfannschmidt T, Allen JF, Oelmüller R. 2001. Principles of redox control in photosynthesis gene expression. Physiol Plant 112: 1-9

Pfannschmidt T. 2003. Chloroplast redox signals: how photosynthesis controls its own genes. TRENDS in Plant Sci, 8: 33-41

Poehlman JM, Sleper DA. 1995. Breeding Field Crops. 4th edition. Iowa State University Press. 494p.

Poespodarsono S. 1988. Dasar-dasar Pemuliaan Tanaman. Pusat Antar Universitas IPB. Bogor.

Portis AR. 1992. Regulation of ribulose1,5 bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol 43:415-437

Portis AR. 1995. The regulation of rubisco by rubisco activase. J Exp Bot 46:1285-1291.

Quail PH. 2002. Photosensory perception and signalling in plant cells: new paradigms? Current Opinion Cell Biol, 14:180-188.

Race HL. 1999. Why have organelles retained genomes? Trends Genet. 15:364–370

Richardson, AD, Duigan SP, Berlyn GP. 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 153:185–194.

Richter M, Ruhle W, Wild A. 1990. Studies on the mechanism of photosystem II photoinhibition. II. The involement of toxic oxygen species. Photosynth. Res. 24:237-243.

Page 165: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

140

Rochaix JD. 2001. Post-transcriptional control of chloroplast gene expression. From RNA to photosynthetic complex. Plant Physiol 125:142–144.

Roy D. 2000. Plant Breeding. Analysis and Exploitation of Variation. Narosa Publishing House. New Delhi. 701p

Salisbury FB, Ross CW. 1992. Plant Physiology. 4th edition. Wadsworth Pub. Co Salvucci ME, Ogren WL. 1996. The mechanism of rubisco activase: in sight from

studies of the properties and the structure of the enzyme. Photosynthetic Res 47:1-11

Sato-Nara K, Demura T, Fukuda H. Expression of photosynthesis-related genes and their regulation by light during somatic embryogenesis in Daucus carota. Planta. 219: 23–31

Scheller HV, Jensen PE, Haldrup A, Lunde C, Knoetzel J. 2001. Role of subunits in eukaryotic photosystem I. Biochim. Biophys. Acta, 1507:41–60.

Shapiro SS, Wilk MB. 1965. An analysis of variance test for normality (complete sample). Biometrika 52:591-611

Sinclair TRR, Torie. 1989. Leaf nitrogen, photosynthesis and crop radiation use efficiency. Crop Sci 29:90-98.

Sopandie D, Chozin MA, Khumaida N, Takano T. 2001. Differential shading tolerance of upland rice genotypes related to rubisco activity and its gene expression. Di dalam: Proceeding of the 1st Seminar Toward Harmonization between Development and Environmental Conservation in Biological Production. Tokyo University, February 21-23, 2001.

Sopandie D, Chozin MA, Sastrosumajo S, Juhaeti T, Sahardi. 2003b. Toleransi terhadap naungan pada padi gogo. Hayati 10:71-75.

Sopandie D, Chozin MA, Tjitrosemito S, Sahardi. 2003c. Keefektifan uji cepat ruang gelap untuk seleksi ketenggangan terhadap naungan pada padi gogo. Hayati 10:91-95.

Sopandie D, Trikoesoemaningtyas, Handayani T, Jufri A, Takano T. 2003a. Adaptability of soybean to shade stress: Identification of morphological responses. Di dalam: Proceeding of the 2nd Seminar Toward Harmonization between Development and Environmental Conservation in Biological Production. Tokyo University, Tokyo, February 15-16, 2003.

Sopandie D, Trikoesoemaningtyas, Khumaida N. 2005. Fisiologi, genetik, dan molekuler adaptasi kedelai terhadap intensitas cahaya rendah: Pengembangan varietas unggul kedelai sebagai tanaman sela. Laporan th II Penelitian Hibah Penelitian Tim Pascasarjana-HPTP Angkatan II Tahun 2004-2006. Dirjen Dikti Depdiknas.

Sopandie D, Trikoesoemaningtyas, Sulistyono E, Heryani N. 2002. Pengembangan kedelai sebagai tanaman sela: Fisiologi dan pemuliaan untuk toleransi terhadap naungan. Laporan Penelitian Hibah Bersaing, Direktorat Jenderal Pendidikan Tinggi.

Sopandie D. 2006. Perspektif Fisiologi dalam Pengembangan Tanaman Pangan Di Lahan Marjinal. Orasi Ilmiah Guru Besar Tetap Fisiologi Tanaman. Fakultas Pertanian Institut Pertanian Bogor, 16 September 2006.

Soverda N. 2002. Karakteristik fisiologi fotosintesis dan pewarisan sifat toleran naungan pada padi gogo [disertasi]. Bogor: Program Pascasarjana, Institut Pertanian Bogor.

Page 166: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

141

Staub JM, Deng XW. 1996. Light signal transduction in plants. Photochem Photobiol 64: 897-905

Steindler C, Matteucci A, Sessa G, Weimar T, Ohgishi M, Aoyama T, Morelli G, Ruberti1 I. 1999. Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene expression. Development 126:4235-4245

Stern DB. 1997, Transcription and translation in chloroplasts. Trends Plant Sci. 2:308–315

Sulistyono E, Sopandie D, Chozin MA, Suwarno. 1999. Adaptasi padi gogo terhadap naungan: Pendekatan Morfologi dan Fisiologi. Comm Ag 4:62-68

Surpin M, Larkin RM, Chory J. 2002. Signal transduction between the chloroplast and the nucleus. Plant Cell, s323-s338

Susek RE, Chory J. 1992. A tale of two genomes: Role of a chloroplast signal in coordinating nuclear and plastid genome expression. Aust J Plant Physiol 19:387-399

Taiz L, Zeiger E. 2002. Plant Physiology. Sinauer Associates, Inc., Pub. Sunderland, Massachusetts

Tanaka R, Koshino Y, Sawa S, Ishiguro S, Okada K, dan Tanaka A. 2001. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana. Plant J 26:365–373

Taylor WC. 1989. Regulatory interactions between nuclear and plastid genomes. Annu Rev Plant Physiol Plant Mol Biol 40:211-233

Thorne JH, Koller HR. 1974. Influence of assimilate demand on photosynthesis, diffusive resistance, translocation, and carbohydrate level of soybean leaves. Plant physiol 54:201-2-7

Ting CS, Rocap G, King J, Chisholm SW. 2002. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies.Trends Microbiol 10:134-142

Trebst A. 1995. Dinamics in photosystem II structure and function. P3-16. Di dalam: Schulze E-D, Caldwell MM, editor. Ecophysyiology of Photosynthesis. Springer.New York.

Trikoesoemaningtyas, Sopandie D, Takano T. 2003. Genetic and breeding of soybean for adaptation to shade stress. Di dalam: Proceeding of the 2nd Seminar Toward Harmonization between Development and Environmental Conservation in Biological Production. Tokyo University, Tokyo, February 15-16, 2003

Tyagi AK, Dhingra A, Raghuvanshi. 2000. Light-regulated expression of photosynthesis-related genes. Di dalam: Yunus M, Pathre U, Mohanty P. editor. Probing Photosynthesis. Mechanisms, regulation and adaptation. Taylor & Francis. London. hlm 324-341.

Tyas KN. 2006. Adaptasi kdelai terhadap intensitas cahaya rendah melalui efisiensi penangkapan cahaya. [Tesis]. Sekolah Pascasarjana IPB, Bogor.

Vandenbussche F, Pierik R, Millenaar FF, Voesenek LACJ, Van Der Straeten D. 2005. Reaching out of the shade. Current Opinion in Plant Biol, 8:462–468

Page 167: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

142

Vander Loo FE, Salvuchi ME. 1996. Activation of ribulose-1,5 bisphosphate carboxylase/oxygenase (rubisco) involves Rubisco activase. Biochem 35:8143-8148

Vijayalaksmi C, Radhakrishnann R, Nagarajam M, Rajendram C. 1991. Effect of solar radiation deficit on rice productivity. J Agron Crop Sci 167:184-187

Vogelmann TC, Martin G. 1993. The functional significance of palisade tissue: Penetration of directional versus diffuse light. Plant Cell Environ 16:65-72

Wallace DH, Baudoin JP, Beaver J, Coyne DP, Halseth DE, Masaya PN, Munger HM, Myers JR, Silbernagel M, Yourstone KS, Zobel RW. 1993. Improving efficiency of breeding for higher crop yield. Theo Appl Genet, 86:27-40.

Walter RG, Horton P. 1994. Acclimation of Arabidopsis thaliana to the light environment: Changes in composition of photosynthetic apparatus. Planta, 195:248-256

Walter RG, Horton P. 1995. Acclimation of Arabidopsis thaliana to the light environment: regulation of chloroplast composition. Planta, 197:475-481

Walter RG, Rogers JJM, Shephard F, Horton P. 1999. Acclimation of Arabidopsis thaliana to the light environment: the role of photoreseptors. Planta, 209:517-527

Warner JN. 1952. A method for estimating heritability. Agron.J. 44:427-430 Watanabe N, Fuji C, Shirota M, Furuta Y. 1993. Changes in chlorophyll,

thyllakoid proteins and photosynthetic adaptation to sun and shade environments in diploid and tetraploid Oryza eicingeri Peter. Plant Physio. Biochem 31:469-474

Weaver LM, Amasino RM 2001. Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol. 127:876-886

Webb MR, Melis A. 1995. Chloroplast response in Dunaliella salina to irradiance stress: effect on thylakoid membrane protein assembly and function. Plant Physiol 107: 885-893.

Webber AN, Lee H, Bingham SE. 1997. Structure and function of fotosystem I: a molecular approach. Di dalam: Pessarakli, editor. Hand Book of Photosinthesis. Marcel Dekker, Inc. New York. hlm 219-230.

Welsh JR. 1991. Dasar-dasar Genetika dan Pemuliaan Tanaman. Terjemahan Mogea JP. Penerbit Erlangga Jakarta. 224h

Weston E, Thorogood K, Vinti G, Lopez-Juez E. 2000. Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants. Planta, 211:807-815

Whitelegge JP. 1997. Covalent modification of photosystem II reaction center polypeptides. P241-256. Di dalam: Pessarakli, editor. Hand Book of Photosinthesis. Marcel Dekker, Inc. New York

Xia Z, Broadhurst RW, Laue ED, Bryant DA, Golbeck JH, Bendall DS, 1998. Structure and properties in solution of PsaD, an extrinsic polypeptide of photosystem I. Europ J Biochem. 255: 309-316

Yeo AR. 1994. Physiology Criteria in Screening and Breeeding. Di dalam: Yeo AR, Howers TJ, editor. Soil Mineral Stresses: Approach to Crop Improvement. Springer-Verlag. Berlin.

Yusuf M. 2001. Genetika I Struktur & Ekspresi Gen. CV. Sagung Seto, Jakarta. 300h

Page 168: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

143

Ziemienowicz A, Gabrys H. 2003. From light to genes: phytochromes shuttle into and out of the nucleus. The ELS gazette. E-magazene of the European Life Scientist Organization, issue 13:1-5

Zou JW, Sun MX, Yang HY. 2002. Single-Embryo RT-PCR Assay to Study Gene Expression Dynamics During Embryogenesis in Arabidopsis thaliana. Plant Mol Biol Reporter 20: 19–26

Page 169: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

144

Lampiran 1

Analisis Kandungan klorofil (mg/g berat basah sampel).

Analisis kandungan klorofil a, b, dan klorofil total dilakukan menggunakan

metode yang digunakan Richardson et al. (2002) yang merupakan perbaikan

metode yang digunakan Arnon (1949) sebagai berikut:

- Disiapkan tiga disk sampel daun segar atau 100 mg berat basah, kemudian

dimasukkan ke dalam tabung reaksi yang berisi 4.5 ml dimethyl sulfoxide

(DMSO).

- Sampel tersebut kemudian diinkubasi pada suhu 65oC selama 45 menit, dihindari

penguapan untuk mencegah berkurangnya volume ekstrak.

- Setelah dingin, larutan ekstrak diukur menggunakan spektrofotometer pada

panjang gelombang 645 nm dan 663 nm.

- Kandungan klorofil a, klorofil b dan klorofil total dihitung menggunakan rumus

Arnon (1949) kemudian dikonversikan menjadi kandungan klorofil daun (mg

klorofil/g berat basah sampel), sebagai berikut.

BeratVolumeAAAKlorofil )64569.26637.12( −

=

BeratVolumeAABKlorofil )66368.46459.22( −

=

BeratVolumeAATotalKlorofil )66302.86452.20( +

=

dimana: volume = volume larutan ekstrak DMSO yang digunakan, dan berat = berat basah sampel daun (gram).

Page 170: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

145

Lampiran 2

Penampilan warna daun beberapa genotipe kedelai pada berbagai intensitas cahaya rendah

Genotipe kedelai Intensitas cahaya rendah

Ceneng Godek Pangrango Slamet

Cahaya penuh (L0)

5 hari naungan (L1)

5 hari gelap total (L2)

3 hari naungan + 5 hari cahaya

(L3)

3 hari naungan + 3 hari cahaya +

5 hari gelap total (L4)

Page 171: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

146

Lampiran 3 Diskripsi varietas Pangrango Nomor galur : B8306-4-4 Asal : Persilangan varietas local Lampung x Davros (1983) Warna hipokotil : Ungu Warna bunga : Ungu Warna biji : Kuning Warna hilum biji : Coklat Warna kulit polong masak : Coklat Warna bulu : Coklat Tipe tumbuh : Diterminate Tinggi tanaman : ± 65 cm Jumlah cabang : 3-4 batang Umur mulai berbunga : ± 40 hari Umur polong masak : ± 88 hari Bentuk biji : Bulat – agak bulat Bobot 100 biji : ± 10 gram Ukuran biji : Sedang Kandungan lemak : ± 18% Kandungan protein : ± 39% Hasil pada tumpangsari dengan jagung tertinggi : ± 2.0 ton/ha rata-rata : ± 1.4 ton/ha Ketahanan terhadap penyakit : Tahan karat daun Pemulia : Asadi, Darman M. Arsyad, Sumarno, Hafni Zahara, dan Nurwita Dewi Tahun di lepas : 1995

Page 172: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

147

Lampiran 4 Diskripsi varietas Slamet Nomor asal : T33 (UNSOED) Asal : Hasil persilangan Dempo x Wilis Warna hipokotil : Ungu Warna epikotil : Ungu Warna daun : Hijau Warna biji : Kuning Warna kulit polong masak : Coklat Warna bulu : Coklat Tipe tumbuh : Diterminate Tinggi tanaman : ± 65 cm Umur mulai berbunga : ± 37 hari setelah tanam Umur polong masak : ± 87 hari setelah tanam Kerabahan : Tahan Bobot 100 biji : ± 12.5 gram Kandungan lemak : ± 15% Kandungan protein : ± 34% Rata-rata hasil : ± 2.26 ton/ha Ketahanan terhadap penyakit : Agak tahan terhadap penyakit karat daun Keterangan : Sesuai untuk tanah masam Pemulia : Sunarto, Noor Farid, dan Suwarto Tahun di lepas : 1995

Page 173: Analisis Genetik dan Molekuler Adaptasi Kedelai terhadap ... · Perguruan Tinggi manapun. ... amino ke 77 sampai ke 210 yang homolog dengan protein PsaD PSI subunit, ... sehingga

148

Lampiran 5 Sekuen lengkap gen JJ3 di database publik di GenBank LOCUS EF628505 800 bp mRNA linear PLN 29-MAY-2007 DEFINITION Glycine max photosystem I subunit PsaD (psaD) mRNA, complete cds; chloroplast. ACCESSION EF628505 VERSION EF628505 KEYWORDS . SOURCE chloroplast Glycine max (soybean) ORGANISM Glycine max Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicotyledons; rosids; eurosids I; Fabales; Fabaceae; Papilionoideae; Phaseoleae; Glycine. REFERENCE 1 (bases 1 to 800) AUTHORS Khumaida,N., Sopandie,D. and Takano,T. TITLE Shade tolerance-related gene on soybean (Glycine max): homolog to psaD gene of PSI subunit JOURNAL Unpublished REFERENCE 2 (bases 1 to 800) AUTHORS Khumaida,N., Sopandie,D. and Takano,T. TITLE Direct Submission JOURNAL Submitted (21-MAY-2007) Agronomy and Horticulture, Faculty Of Agriculture, Bogor Agricultural University (IPB), Jl.

Meranti, Kampus IPB Darmaga, Bogor, West Java 16680, Indonesia

FEATURES Location/Qualifiers source 1..800 /organism="Glycine max" /organelle="plastid:chloroplast" /mol_type="mRNA" /db_xref="taxon:3847" gene 1..800 /gene="psaD" /note="gmpsaD" CDS 27..659 /gene="psaD" /note="PS-1 subunit; transport electron PSI; PsaD protein" /codon_start=1 /transl_table=11 /product="photosystem I subunit PsaD" /translation="MAMATQASLLTPPLSGLKASDRASVPWKQNSSLSF

SSPKPLKFSRTIRAAAADETTEAPAKVEAAPVGFTPPELDPNTPSPIF GGSTGGLLRKAQVEEFYVITWDSPKEQIFEMPTGGAAIMREGPNLLKL ARKEQCLALGTRLRSKYKIKYQFYRVFPNGEVQYLHPKDGVYPEKVNA GRQGVGQNFRSIGKNVSPIEVKFTGKQPYDL"

ORIGIN 1 gaacacttgt attatctcaa gcaaccatgg caatggcaac ccaagcctct ctcttaaccc 61 cacccctctc cggtctcaaa gccagcgacc gcgcctccgt gccatggaag caaaactcca 121 gcctctcctt ctccagcccg aagcccctca agttctccag aacaatcaga gcagcagccg 181 ccgacgagac cacagaggca ccagcaaaag tagaggctgc accggtcggg ttcaccccac 241 cagaacttga cccaaacacc ccttccccga tcttcggggg cagcaccggc gggctcctgc 301 gcaaggcaca ggtggaggag ttttatgtca ttacgtggga ctcacccaaa gaacagatct 361 ttgaaatgcc cactggcggc gccgctatca tgagggaggg tcctaacctt ctcaagttgg 421 ccaggaagga gcagtgcttg gctcttggga ctaggctcag gtccaagtac aagatcaagt 481 accagttcta cagggtcttc cctaatgggg aggttcagta tttgcaccct aaggatggtg 541 tttaccctga gaaggtcaac gccggacgcc aaggggtggg tcaaaacttc aggtctattg 601 gtaagaatgt tagtcctatt gaggtcaagt tcactggcaa gcagccctat gatttgtgag 661 cacacaactc tatcttcatc atcatcatcc cccgtgcttc ctttatatgc tatatattct 721 catgtgatat catgtaccta ttgtcaattt tattatgcca caaatattgc taaaaaaaaa 781 aaaaaaaaaa aaaaaaaaaa //