4. siklus karbon dll

46
Ekologi Industri Siklus Materi

Upload: rhya-darmayanti-haedar

Post on 08-Nov-2015

86 views

Category:

Documents


0 download

DESCRIPTION

siklus karbon+ekologi

TRANSCRIPT

  • Ekologi IndustriSiklus Materi

  • Siklus Materi (matter)Mahasiswa mengetahui prinsip dasar siklus air, karbon, nitrogen dan phosforMengetahui sumber dan sink. Mengetahui aliran secara umumMengetahui dampak aktivitas manusia terhadap proses dalam siklusTujuan Pembelajaran:

  • Bagaimana proses materi berpindah pada sebuah ekosistem?Berbeda dgn aliran energi hanya pada satu alur, siklus materi terjadi pada dan antara ekosistem

    Nutrients berpindah antara organisme dan lingkungan melalui siklus biogeochemical

    Biogeochemical Cycles:Bio lifeGeo EarthChemo chemical

    Siklus Air (hidrologi)

    Siklus nutrisi:Siklus karbonSiklus NitrogenSiklus Fosfor

  • Siklus materi dlm ekosistem dapat dilakukan oleh organisme, dimana materi tsb dibutuhkan untuk pertumbuhan atau untuk energiSiklus Nutrient Siklus elemen ekosistem juga dikendalikan oleh faktor fisik.

  • Nutrient dibutuhkan tanaman utk pertumbuhanDiperoleh dlm btk gas, Oxygen (O2), Carbon (CO2), dan dari akar - Air (H2O).Dapat diperoleh dalam air dan karbon dioksidaDiperoleh melalui tanah

    Nutrien Makro: Nitrogen (N), Phosphorous (P), Potassium/kalium (K), Calcium (Ca), Magnesium (Mg), Sulfur (S)

    Nutrien Mikro: Boron (B), Copper (Cu), Iron (Fe), Manganese (Mn), Molybdenum (Mo), Zinc (Zn)

  • 1. Proses assimilasi adalah perubahan bentuk yang menyertakan unsur-unsur ke dalam organisma

    2. Proses dissimilasi adalah perubahan bentuk dgn melepaskan unsur-unsur ke dalam bentuk yang lainSiklus Unsur pd Ekosistem

  • Mengapa nutrisi penting ?95% tubuh terdiri dari

    OXYGEN

    CARBON

    HYDROGEN

    NITROGENSetiap kehidupan butuh nutrisi untuk untuk membangun jaringan dan melakukan fungsi

  • 1. Siklus Air (Hidrologi) EvaporationTranspirationPrecipitationRunoffGroundwater

  • Siklus Hidrologi

  • Siklus Hidrologi97% air yang ada di bumi berada di laut22% hujan yang sampai di bumi, dan selebihnya hilang sbg evaporasi dan transpirasiProses evaporasi, transpirasi, dan presipitasi terjadi pada ekosistem78% hujan jatuh di lautan, yang akan hilang melalui evaporasi

  • 2. Siklus KarbonFotosintesisRespirasiDekomposisiFossil fuels

  • 2. Siklus Karbon2. Pertukaran karbon dioksida antara atmosfer dan lautan3. Sedimentasi karbonat1. Proses Assimilasi dan dissimilasi, teruma fotosintesis dan respirasi.

  • Siklus Karbon

  • Siklus Karbon4 proses perpindahan karbon dalam suatu siklus:BiologiGeokimiaGabungan biokimia Aktivitas manusiaCO2 CO2

  • Siklus KarbonKarbon yang tersimpan pd organisme, bahan organik tanah dan sedimen = 2,650 Pg Asimilasi fotosintesis sekitar 223 Pg setiap thn (tanah + laut). Vegetasi = 500 PgTanah = 1500 PgAtmosfer = 730 Pg

  • Terrestrial Carbon ProcessesGross Primary Production (GPP): Total CO2 yg terkonversi mjd karbohidrat selama fotosintesis, yaitu assimilasi karbon melalui fotosintesis. GPP sekitar 120 Gt C/yr.

    Net Primary Production (NPP): Pertumbuhan tanaman tahunan mrp perbedaan antara fotosintesa dan respirasi autotrofik (Ra), Global terrestrial NPP diperkirakan 60 Gt C/yr,

  • Terrestrial Carbon ProcessesNet Ecosystem Production (NEP): adl selisih antara NPP dan respirasi heterotrophik (Rh), yg mrp jumlah karbon yg hilang atau yang terbentuk dalam ekosistem tanpa terjadi perubahan, panen dan kebakaran. Global NEP sekitar 10 Gt C/yr.

    Net Biome Production (NBP): adalah akumulasi karbon pd terrestrial biosphere ketika karbon hilang bukan melalui proses respirasi, tetapi akibat kebakaran, panen/penebangan, erosi atau perpindahan karbon melalui air (terlarut) ke laut. NBP diperkirakan 0.2 +/- 0.7 Gt C/yr pd tahun 1980an dan 1.4 +/- 0.7 Gt C/yr pd 1990-an.

  • Proses karbonSkema gambaran siklus karbon. Panah menunjukkan adanya fluk; box menunjukkan tampungan. Ukuran box mnunjukkan perbedaan distribusi karbon dalam ekosistem. CWD, bekas hutan terbakar; Rh, respirasi heterotrofik dari organisme tanah; PS, fotosintesis. Sumber: Schulze et al. (2000), Managing forests after Kyoto, Science, 289:2058-2059.

  • Modified from D. T. Krohne, General Ecology15%/yearCO2 & CH4

  • Siklus Karbon: LithosphereHujan Calcium carbonat berasal dari karbon dioksida yg terlarut dlm air bersama dgn kalsiumCO2 + H2O => H2CO3

    H2CO3 => HCO3- + H+ => 2CO3- + 2H+

    Ca2+ +CO32- => CaCO3Precipitation is slow,

  • Konsentrasi CO2 di Atmosfir6/12Tiga alasan dilakukan observasi ttg konsentrasi CO2 di atmosfir hubungannya dgn aktifitas manusia:Peningkatan konsentrasi CO2 di atmosfir hubungannya dgn meningkatan bahan bakar fossil

    (2) Gradien inter-hemispheric di atmosfir, konsentrasi CO2 berkembang secara paralel dgn emisi CO2. Setap wilayah berbeda tergantung pada aktivitas manusia.

    (3) Bahan bakar fossil rendah Carbon-13 (an isotope). Ratio carbon-13 thd carbon-12 dalam atmosfir akan menurun

  • Histori konsentrasi CO2 di Atmosfer7/12Gambar menunjukkan konsentrasi CO2 akan terjadi konsentrasi lebih 300ppmv pada 400,000 tahun kemudian.

  • 2003 John Wiley and Sons PublishersGlobal flux dr carbon, 1850-1990.

  • Konsentrasi CO2 di AtmofirPengukuran secara langsung dan akurat thd konsentrasi CO2 di atmosfirSejak thn 1957 di kutub selatan dan thn 1958 di Mauna Loa, Hawaii.

  • 2003 John Wiley and Sons PublishersFig 4.15 Idealized diagram illustrating photosynthesis for a green plant (tree) and generalized reaction.

  • 3. Nitrogen Cycle

  • 2003 John Wiley and Sons PublishersSiklus Nitrogen secara Global

  • Siklus NitrogenAtmospheric nitrogenRunoffFertilizersDecompositionSynthesis of amino acids

  • Siklus Nitrogen 1. Ammonifikasi adalah konversi asam amino menjadi NH32. Nitrification adalah oxidasi ammonium:

    ammonium (NH4+) mjd nitrite (NO2-)nitrite (NO2-) mjd nitrate (NO3-)Mrp sumber energi utk beberapa mikroba, dan sumber N untk tanaman dan mikroba

  • Siklus NitrogenDenitrification terjadi ketika oxygen tdk tersedia dan nitrate bertindak sbg penerima elektron3. Denitrification mereduksi NO3- mjd nitric oxide (NO), ke nitrous oxide (N2O), dan terakhir molekul nitrogen (N2)

    NO3- => NO => N2O => N2

  • Siklus NitrogenNO, N2O, N2 mrp gas yg hilang dr ekosistem ke atmosferNO3- and NH4+ digunakanm oleh tanaman dan mikroba utk produksi protein

  • Siklus NitrogenNitrogen fixation adalah tranformasi kimia dari N2 ke NH3Fixasasi Nitrogen dibutuhkan energi yang banyakSumber nitrogen N2 terjauh utk organisme adalah atmosfer. Fiksasi Nitrogen dilakukan oleh mikroba, sering bersimbiosis dgn tanaman

  • Fixasi NitrogenNodules on plant roots

  • SIKLUS NITROGENNitrogen-termasuk nutrient pd biosfer dlm bentuk:Ammonia (NH3)Nitrate (NO3-)Nitrite (NO2-)Organisme butuh nitrogen utk membuat asam amino utk DIBUAT PROTEIN!!!N2 in AtmosphereNH3

    N03- &

    N02-

  • Modified from D. T. Krohne, General Ecology50% fertilizer(Bacteria)

  • 2003 John Wiley and Sons PublishersIssu kritis Bgmn aktifitas manusia mempengaruhi Siklus Nitrogen?

    Me+ asam nitrit dlm tanah: Pencucian magnesium and potassium Me+ taraf aluminum Merusak akar tanaman Merubah komunitas mikriba Mematikan ikan Eutrophication badan air Nitrat mencemari air minum Efek global pd tanaman CO2

    Efek peningkatan penggunaan pupuk Nitrogen:

  • Nitrogen Deposition

  • Siklus Nitrogen

  • 4. SIKLUS FOSFORFOSFOR MRP MOLEKUL PENTING THD KELANGSUNGAN KEHIDUPANAN (ex. DNA & RNA)

  • Phosphorus Loading

  • Siklus Fosfor Fosfat (PO43-) tidak dpt diperoleh melalui reaksi oxidasi reduksiSistem aquatik (danau), P terbatasTanah trofik, P terbatas Bukan dalam bentuk Gas P dpt terikat dgn kuat dlm mineral tanah

  • Silkus Fosfor

  • Mikorisasymbiosis antara fungi and akar tanaman

    ecto -- outsideendo -- inside

    Meningkatkan luas permukaan akar

    fungi dapat melarutkan P ke dalam tanah

  • D. T. Krohne, General Ecology D. T. Krohne, General EcologyModified from D. T. Krohne, General EcologyGaseousphase

  • 2003 John Wiley and Sons PublishersFig 4.20 The global phosphorus cycle.

  • *Plants require certain elements for growth Basic elements that are used in photosynthesis and respiration (Carbon, Oxygen) or are extracted directly from the atmosphere via breakdown of water (Hydrogen) There are the macro-nutrients needed in significant amounts There are micro-needed in trace amounts Note a variety of other elements can be found in plants, but none are actually required for growth

    Nama keren pupuk hayati adalah biofertilizer. Ada yang juga menyebutnya pupuk bio. Apapun namanya pupuk hayati bisa diartikan sebagai pupuk yang hidup. Sebenarnya nama pupuk kurang cocok, karena pupuk hayati tidak mengandung hara. Pupuk hayati tidak mengandung N, P, dan K. Kandungan pupuk hayati adalah mikrooganisme yang memiliki peranan positif bagi tanaman. Kelompok mikroba yang sering digunakan adalah mikroba-mikroba yang menambat N dari udara, mikroba yang malarutkan hara (terutama P dan K), mikroba-mikroba yang merangsang pertumbuhan tanaman.Kelompok mikroba penambat N sudah dikenal dan digunakan sejak lama. Mikroba penambat N ada yang bersimbiosis dengan tanaman dan ada juga yang bebas (tidak bersimbiosis). Contoh mikroba yang bersimbiosis dengan tanaman antara lain adalah Rhizobiumsp Sedangkan contoh mikroba penambat N yang tidak bersimbiosis adalah Azosprillium sp dan Azotobacter sp.Mikroba pelarut P dilaporkan oleh orang Rusia bernamaPikovskayapadatahun1948 yaitu Bacillusmegatheriumvar.phosphaticum,dan mulai digunakan sebagai inokulum pertanian sejak tahun 1950-an Beberapa mikroba yang diketahui dapat melarutkan P dari sumber-sumber yang sukar larut ditemukan baik dari kelompok kapang/fungi seperti Penicillium sp dan Aspergillus sp, atau dari kelompok bakteri seperti Bacillus sp dan Pseudomonas sp.*Carbon CycleCarbon, in the form of carbon dioxide, comprises about 0.03 percent of the atmosphere. Worldwide circulation of carbon atoms is called the carbon cycle. Since carbon becomes incorporated into molecules used by living organisms during photosynthesis, parts of the carbon cycle closely parallel the flow of energy through the earths living systems. Carbon is found in the atmosphere, the oceans, soil, fossil deposits and living organisms. Photosynthetic organisms create carbon-containing molecules (known as organic compounds), which are passed to other organisms as depicted in food webs. Each year, about 75 billion metric tons of carbon are trapped in carbon-containing compounds through photosynthesis. Carbon is returned to the environment through respiration (breakdown of sugar or other organic compounds), combustion (burning of organic materials, including fossil fuels), and erosion.

    References:Campbell, N.E., & Reece, J.B. (2002). Biology,(6th ed.). San Francisco: Benjamin Cummings.

    Image Reference:Baylor College of Medicine, Center For Educational Outreach. (2004). Martha Young, Senior Graphic Designer.

    pg = pycogram = 10 pangkat -12 gram**1 Gt C = 1015 g C) and carbon flows (in Gt C yr -1 ) ***3.2 - Isotopes Let's take a look at the carbon atom in detail. There are two types of carbon atoms that are found in nature. We call them carbon-12 and carbon-13. Using symbols, carbon-12 and carbon-13 can be written as follows: carbon-12carbon-13 The symbol describes carbon-12 as follows: "C" indicates the atom is Carbon Z = 6 indicates carbon-12 has 6 protons A = 12 indicates that the mass number is 12 number of neutron = 12 - 6 = 6 neutrons The symbol describes carbon-13 as follows: "C" indicates the atom is Carbon Z = 6 indicates carbon-13 has 6 protons A = 13 indicates that the mass number is 13 number of neutron = 13 - 6 = 7 neutrons Points to note:carbon-12 and carbon-13 are atoms that have the same atomic number but different mass numbers. Carbon-12 and carbon-13 are called isotopes. carbon-12 has 6 neutrons and carbon-13 has 7 neutrons. Isotopes of the same element (i.e. such as carbon-12 and carbon-13) have similar chemical properties.

    **Fig 4.17 Global flux of carbon, 1850-1990. Modified after Woods Hole, The Missing Carbon Sink, 2000, http://www.whrc.org/science/carbon/carbon.htm, accessed July 5, 2000.**Fig 4.15 Idealized diagram illustrating photosynthesis for a green plant (tree) and generalized reaction.*Nitrogen CycleA major component of the atmosphere, nitrogen is essential for all living things. However, most organisms are unable to use the gaseous forms of nitrogen present in the atmosphere. In order for nitrogen to be usable by most organisms, it must be fixed, in other words, combined with oxygen, hydrogen or carbon to form other molecules. Nitrogen fixation can happen during rainstorms, which yields nitrate and ammonium ions. Nitrogen also can be fixed biologically by free-living and symbiotic bacteria. Leguminous plants, for example, host nitrogen-fixing bacteria in root nodules allowing them to capture nitrogen and incorporate it into proteins and other molecules.

    Unlike other organisms, nitrogen fixing bacteria are able to convert atmospheric nitrogen to ammonia, which then can serve as raw material for the incorporation of nitrogen into other molecules. The other four important steps in the nitrogen cycle are: (1) assimilation (reduction of nitrate ions [NO2-] inside plants to ammonium ions [NH4+], which are used to manufacture proteins and other molecules; this conversion requires energy); (2) ammonification (release of excess nitrogen in the form of ammonia [NH3] and ammonium ions [NH4+] by soil-dwelling bacteria and some fungi during the decomposition of complex organic compounds such as proteins, and nucleic acids); (3) nitrification (the oxidation of ammonium ions or ammonia by free-living, soil dwelling bacteria to nitrates [NO2-]; and (4) denitrification (the conversion of nitrate to gaseous nitrogen [N2 ] by free-living bacteria in soil; this conversion yields energy and occurs in conditions with low levels of oxygen).

    References:Campbell, N.E., & Reece, J.B. (2002). Biology,(6th ed.). San Francisco: Benjamin Cummings.

    Image Reference:Baylor College of Medicine, Center For Educational Outreach. (2004). Martha Young, Senior Graphic Designer.

    *Fig 4.19 The global nitrogen cycle. Numbers in boxes indicate amounts stored, and numbers with arrows indicate annual flux, in 1012 gN2. Note that the industrial fixation of nitrogen is nearly equal to the global biological fixation (Source: Data from R. Soderlund and T. Rosswall, in The Handbook of Environmental Chemistry, Vo. 1, Pt. B, ed. O. Hutzinger[New York: Springer-Verlag, 1982].)*Critical Thinking Issue How are Human Activities Affecting the Nitrogen Cycle?On a global basis, this is more than that supplied by natural biological nitrogen fixation on land (110 Tg N per year) or in the ocean (140 Tg N per year) 1Tg = 1million metric tonnes***Fig 4.20 The global phosphorus cycle. Phosphorus is recycled to soil and land biota through geologic processes that uplift the land an erode rocks, by birds that produce guano, and by human beings. Although Earths crust contains a very large amount of phosphorus, only a small fraction of it can be mined by conventional techniques. Therefore, phosphorus is an expensive resource to produce. Values of the amount of phosphorus stored or in flux are compiled from various sources. Estimates are approximate to the order of magnitude. (Source: Based primarily on C. C. Delwiche and G. E. Likens, Biological Response to Fossil Fuel Combustion Products, in global Chemical Cycles and Their Alterations by Man, ed. W. Stumm, [Berlin: Abakon Verlagsgesellschaft, 1977], pp. 73-88; and U. Pierrou, The Global Phosphorus Cycle, in Nitrogen, Phosphorus and SulfurGlobal Cycles, eds. B. H. Svensson and R. Soderlund [Stockholm: Ecological Bulletin, 1976, pp. 75-88.)