04trk s2 - konversi reaktor non-ideal

Upload: rachmad-yogaswara

Post on 09-Jan-2016

48 views

Category:

Documents


8 download

DESCRIPTION

This is lecture's note of Chemical Reaction Engineering Course

TRANSCRIPT

  • 3/4/2014

    1

    Konversi dalam Reaktor Non-Ideal

    T.Kimia ITS2

    Contoh-2 : Konversi dg menggunakan data RTD

    =

    Af

    0 A

    AA0

    X

    r

    Xd CP

    A

    AfA0M

    r

    X C

    =

    E.dtCCA

    CC

    element0 AoAo

    A

    =

    XA = 93 %

    Reaktor Plug Flow : XA = 99 %

    Reaktor Mixed Flow : XA = 82 %

    Non ideal, pola alirnya seperti contoh-1 (Levenspiel)

    Suatu reaktor (space time = 15 menit) digunakan untuk reaksi dekomposisi dengan laju sbb : -rA = kCA dan k = 0,307 min-1

    Tentukan konversi reaksinya jika reaktornya bersifat :a. plug flowb. mixed flowc. tidak ideal, pola alirnya seperti contoh-1

    Penyelesaian :

  • 3/4/2014

    2

    T.Kimia ITS3

    KONVERSI DALAM REAKTOR ALIR NON-IDEAL (model zero parameter)

    dtECCA

    CC

    elementAoAo

    A.

    =

    0( ) dtEXX

    elementA .

    =

    0

    Reaksi orde 1 :kt

    elementAo

    eCCA

    =

    Reaksi orde 2 :tkCC

    CAAoelementAo +

    =

    11

    Reaksi orde n : ( ) nnAoelementAo

    ktCnCCA

    +=

    11111 /)(

    T.Kimia ITS4

    Contoh-2 :Konversi dg menggunakan data RTD

    Waktu t, min 0 5 10 15 20 25 30 35C, g/m3 0 3 5 5 4 2 1 0E=C/area, min-1 0 0,03 0,05 0,05 0,04 0,02 0,01 0e-ktE.t 0 0,0323 0,0116 0,0025 0,0004 0,0001 0,00 0

    0,0469tEeCC kt

    A0

    A== XA = 93 %

    E.dteCC

    0

    kt

    Ao

    A

    =

    tE.eCC kt

    Ao

    A =

    E.dtCCA

    CC

    element0 AoAo

    A

    =

  • 3/4/2014

    3

    Model Dispersi

    Adanya dispersi dalam suatu reaktor akan mempengaruhi konversi yang terjadi

    Reaksi Kimia & Dispersi

    A Produkn

    AA kCr =

  • 3/4/2014

    4

    Reaksi Orde 1

    Untuk deviasi kecil :

    Reaksi Orde 1

  • 3/4/2014

    5

    Reaksi Orde 2

  • 3/4/2014

    6

    Model Tangki Seri

    Reaksi Kimia & Tangki Seri

    Reaksi Orde 1 : A Produk pada satu tangki :

    NNtkN

    iA

    A

    )(1)tk(1CC

    +=

    +=

    110

    tk1tk1CC

    iA

    A

    +=

    +=

    110

    Untuk N tangki :

  • 3/4/2014

    7

    Reaksi Orde 1

    Reaksi Orde 2

  • 3/4/2014

    8

    Example 14.1 : MODIFICATIONS TO A WINERY

    A small diameter pipe 32 m long runs from the fermentation room of a winery to the bottle filling cellar. Sometimes red wine is pumped through the pipe, sometimes white, and whenever the switch is made from one to the other a small amount of "house blend" rose is produced (8 bottles). Because of some construction in the winery the pipeline length will have to be increased to 50 m. For the same flow rate of wine, how many bottles of rose may we now expect to get each time we switch the flow?

    Solutioon :

    Figure E14.1 sketches the problem. Let the number of bottles, the spread, be related to .

  • 3/4/2014

    9

    Example 14.2 : A FABLE ON RIVER POLLUTION

    Last spring our office received complaints of a large fish kill along the Ohio River, indicating that someone had discharged highly toxic material into the river. Our water monitoring stations at Cincinnati and Portsmouth, Ohio (119 miles apart), report that a large slug of phenol is moving down the river, and we strongly suspect that this is the cause of the pollution. The slug took about 10.5 hours to pass the Portsmouth monitoring station, and its concentration peaked at 8:00 A.M. Monday. About 26 hours later the slug peaked at Cincinnati, taking 14 hours to pass this monitoring station. Phenol is used at a number of locations on the Ohio River, and their distance upriver from Cincinnati are as follows:

    Ashland , KY-150 miles upstream Marietta, OH-303

    Huntington, WV-168 Wheeling, WV-385

    Pomeroy, OH-222 Steubenville, OH-425

    Parkersburg, WV-290 Pittsburgh, PA-500

    What can you say about the probable pollution source?

  • 3/4/2014

    10

    SOLUTION

    Let us first sketch what is known, as shown in Fig. E14.2. To start, assume that a perfect pulse is injected. Then according to any reasonable flow model, either dispersion or tanks-in-series, we have