sign – limbah inventarisasi gas rumah kaca kegiatan pengelolaan limbah provinsi sumatera utara...

Upload: helmut-todo-tua-simamora

Post on 02-Mar-2016

12 views

Category:

Documents


0 download

TRANSCRIPT

  • Meta data

    Quality Control Status

    Quality Control Status Diisi oleh: Disetujui oleh:Nama :NIP :Telp. :Email :Tanggal :

    Dibangun oleh:

    Supported by:

    Febrian Hadinata untuk SIGN Centre KLH dalam kegiatan JICA SP3 2013

    SIGN - LIMBAH

    INVENTARISASI GAS RUMAH KACA KEGIATAN PENGELOLAAN LIMBAH

    PROVINSI SUMATERA UTARA

    SIGN - LIMBAH

    INVENTARISASI GAS RUMAH KACA KEGIATAN PENGELOLAAN LIMBAH

    PROVINSI SUMATERA UTARA

    Versi 0.95Versi 0.95

    INPUT DATA AKTIFITAS KEGIATAN PENGELOLAAN LIMBAH

    UNTUK 2006 IPCC GL WORKSHEET

    Input DataInput Data

    OutputOutput

    VerifikasiVerifikasi

    Co-benefitCo-benefit

    Meta_Data_IDMeta_Data_ID

    CRFCRF

    SIGN CentreSIGN

    Centre

    Pengarah : Emma Rachmawaty, Hidayati...Tim Teknis (KLH) : Dida Migfar Ridha, Mulkan Gani, Wukir A. Rukmi, Prasetyadi Utomo, Gatot SetiawanTimTeknis Lapangan : ...., ...., Retno Gumilang Dewi, Ucok Siagian, Hiroyuki Ueda, Jun MarukawaTim Pendukung (SIGN Centre) : Nela Anjani, Asistia Krisanti, Ardi Chandra, Nurhasan, Saripudin, A. Ariyanto.Tim Pendukung Lapangan : Rias Parinderawati, Darsilawati, Affan I. Fauziawan, Ratna, Diean A

    Pengarah : Emma Rachmawaty, Hidayati...Tim Teknis (KLH) : Dida Migfar Ridha, Mulkan Gani, Wukir A. Rukmi, Prasetyadi Utomo, Gatot SetiawanTimTeknis Lapangan : ...., ...., Retno Gumilang Dewi, Ucok Siagian, Hiroyuki Ueda, Jun MarukawaTim Pendukung (SIGN Centre) : Nela Anjani, Asistia Krisanti, Ardi Chandra, Nurhasan, Saripudin, A. Ariyanto.Tim Pendukung Lapangan : Rias Parinderawati, Darsilawati, Affan I. Fauziawan, Ratna, Diean A

  • Meta data

    Quality Control StatusDiisi oleh:Disetujui oleh:Nama ....................................................

    Versi 0.95Versi 0.95

    SIGN CentreSIGN

    Centre

    Pengarah : Emma Rachmawaty, Hidayati...Tim Teknis (KLH) : Dida Migfar Ridha, Mulkan Gani, Wukir A. Rukmi, Prasetyadi Utomo, Gatot SetiawanTimTeknis Lapangan : ...., ...., Retno Gumilang Dewi, Ucok Siagian, Hiroyuki Ueda, Jun MarukawaTim Pendukung (SIGN Centre) : Nela Anjani, Asistia Krisanti, Ardi Chandra, Nurhasan, Saripudin, A. Ariyanto.Tim Pendukung Lapangan : Rias Parinderawati, Darsilawati, Affan I. Fauziawan, Ratna, Diean A

    Pengarah : Emma Rachmawaty, Hidayati...Tim Teknis (KLH) : Dida Migfar Ridha, Mulkan Gani, Wukir A. Rukmi, Prasetyadi Utomo, Gatot SetiawanTimTeknis Lapangan : ...., ...., Retno Gumilang Dewi, Ucok Siagian, Hiroyuki Ueda, Jun MarukawaTim Pendukung (SIGN Centre) : Nela Anjani, Asistia Krisanti, Ardi Chandra, Nurhasan, Saripudin, A. Ariyanto.Tim Pendukung Lapangan : Rias Parinderawati, Darsilawati, Affan I. Fauziawan, Ratna, Diean A

  • Manual SIGN-LIMBAH A. Sekilas Tentang SIGN - LIMBAH

    B. Introduction

    Input

    Output

    Verifikasi

    Co-benefit Menu ini memuat analisa keuntungan dari kegiatan terkait upaya penurunan emisi GRK.

    Meta Data

    CRF

    0

    Masukkan identitas pengisi dan penanggung jawab isi Inventarisasi GRK:

    1

    2

    C. Input DataUmum

    123

    Q1: Kependudukan

    1

    2

    3

    Catatan:

    Q2: Laju timbulan sampah domestik

    SIGN-LIMBAH merupakan sebuah file Ms. Excel yang merupakan rangkuman data yang terkait dengan emisi Gas Rumah Kaca (GRK) sektor pengelolaan limbah di Indonesia. SIGN-LIMBAH dibuat untuk memudahkan Kementerian Lingkungan Hidup dan Badan Lingkungan Hidup Daerah untuk mengumpulkan, menyimpan, mengontrol dan menghubungkan data eksisting dengan perhitungan emisi GRK sesuai panduan 2006 IPCC GL. SIGN-LIMBAH juga dibuat untuk membantu pelaporan kegiatan inventarisasi GRK, dengan kedalaman kajian sampai dengan kota/kabupaten. SIGN-LIMBAH terdiri dari 8 pertanyaan dan diisi oleh petugas inventarisasi GRK.

    Menu ini merupakan data input. Data input bisa didapatkan dari bank data SIGN-LIMBAH dan atau didapat dari kegiatan Inventarisasi GRK yang dilakukan. Input data terdiri dari 8 pertanyaan yang harus dijawab oleh petugas inventarisasi GRK.Menu ini merupakan hasil dari perhitungan emisi berdasarkan data aktifitas dan karakteristik limbah yang dimasukkan.Menu ini menggambarkan karakteristik data, baik rerata, simpangan baku, standar error pola distribusi, batas atas dan bawah kenormalan. Menu ini dibuat untuk keperluan Measurement, Reporting and Verification (MRV) dan analisis resiko. Pengelompokan data dibuat berdasarkan tahun inventarisasi dan atau provinsi/kabupaten/kota. Menu ini, direncanakan akan dibuat semester II tahun 2014 atau semester I tahun 2015.

    Menu ini memuat daftar pustaka dari data yang terdapat di SIGN-LIMBAH maupun yang diisikan oleh petugas Inventarisasi GRK.Menu ini memuat format pelaporan hasil perhitungan dari menu input data, sesuai dengan panduan 2006 IPCC GL.Save As-kan file SIGN LIMBAH menjadi SIGN LIMBAH_Nama Provinsi_Bulan Diisi_Tahun diisi, misalkan: SIGN LIMBAH_Sumsel_April_2014

    Masukkan nama, NIP, telp dan email petugas Inventarisasi GRK, serta tanggal pengisian Inventarisasi GRK, berturut - turut pada sel B22 s/d sel B26Masukkan nama, NIP, telp dan email Kepala Badan Lingkungan Hidup Daerah atau pejabat yang menyetujui laporan Inventarisasi GRK ini, serta tanggal persetujuan laporan Inventarisasi GRK, berturut - turut pada sel C22 s/d sel C26.

    Q0:Pilih nama provinsi/kabupaten/kota di sel C2 Pilih tahun Inventarisasi GRK di sel C3Pilih tahun pelaporan di sel C4

    SIGN-LIMBAH menyediakan dan dapat menampilkan database kependudukan, dari tahun 2000 s/d 2013, yang dapat digunakan oleh petugas Inventarisasi GRK. Pilih "Tolong dibantu" pada sel B7. Sumber data SIGN-LIMBAH dapat dilihat jika di-klik angka pada Meta_Data_ID (sel C31, D31 dan F31). Database SIGN-LIMBAH dapat diganti secara manual jika petugas Inventarisasi GRK memiliki data. Isi Meta_Data_ID jika anda mengganti data. Pengisian/penggantian data dilakukan dengan:

    Masukkan data jumlah penduduk, tahun 2000 s/d 2013, di sel C10 s.d C.23. Masukkan Meta_Data_ID di sel C31. Masukkan data pertumbuhan penduduk, tahun 2000 s/d 2013, di sel D11 s.d D23. Masukkan Meta_Data_ID di sel D31. Masukkan data proporsi penduduk tinggal di pedesaan dan perkotaan, pada tahun 2000 s.d 2013, berturut - turut di sel E10 s.d E30 dan F10 s.d F30. Ganti Meta_Data_ID di sel E31.Anda tidak harus melakukan penggantian data di setiap tahun. Jika anda hanya memiliki data populasi dan pertumbuhan tahun 2013, gantilah pada sel yang tersedia. Begitun juga jika anda memiliki data pada tahun yang berbeda. Bantuan anda sangat diharapkan untuk mengembangkan database SIGN-LIMBAH.

  • 12

    3

    Q3: Distribusi Pengelolaan Sampah Domestik

    1

    2

    Q4: Komposisi & Kand. Bahan Kering Sampah Domestik

    1

    2

    Tempat Pengelolaan Akhir (TPA)

    1

    2

    3

    Catatan

    Q6: Rerata volume sampah domestik masuk ke TPA1

    2

    3

    4 Lakukan prosedur yang sama untuk TPA kedua sampai dengan TPA terakhir.

    5

    Q7: Sarana Pembuangan Air Limbah Domestik

    1

    2 Jika anda memiliki data, klik "Tidak perlu, saya memiliki data". Isikan:

    Pengelolaan Limbah Cair Industri

    1

    234

    Pilih unit satuan laju timbulan sampah domestik pada sel E35.Jika anda tidak memiliki data, gunakan data SIGN-LIMBAH dengan men-klik "Tolong dibantu" pada kolom B34. Meta_data_ID dapat dilihat jika men-klik angka pada sel D36. Data ini dapat diganti secara manual.Jika anda memiliki data, klik "Tidak perlu, saya memiliki data". Masukkan laju timbulan sampah domestik pada sel D35 dan, serta isikan Meta_Data_ID pada sel D36.

    Jika anda tidak memiliki data, gunakan data SIGN-LIMBAH dengan men-klik "Tidak, tolong dibantu" pada kolom B39. Meta_data_ID dapat dilihat jika men-klik angka pada sel D48. Data ini dapat diganti secara manual.Jika anda memiliki data, klik "Ya, saya memiliki data". Masukkan data distribusi pengelolaan sampah domestik pada sel D40 s.d D47, serta isikan Meta_Data_ID pada sel D48.

    Jika tidak memiliki data, gunakan data SIGN-LIMBAH dengan men-klik "Ya, data terbaru akan segera dikumpulkan" pada kolom B51. Meta_data_ID dapat dilihat jika men-klik angka pada sel C65. Data ini dapat diganti secara manual.Jika anda memiliki data, klik "Ya, saya memiliki data". Masukkan data komposisi sampah domestik pada sel C53 s.d C64, isikan Meta_Data_ID pada sel C65. Kemudian, masukkan data kandungan bahan kering sampah domestik pada sel D53 s.d D64, serta isikan Meta_Data_ID pada sel D65.

    Q5:Masukkan jumlah TPA yang diinventaris pada sel K6. TPA yang diInventarisasi GRK termasuk TPA yang telah ditutup. Jika anda ingin dibantu menampilkan daftar TPA, klik "Ya, tolong dibantu" pada kolom Q6. Silahkan cek, ubah dan atau tambahkan nama TPA. Masukkan tahun mulai dan berhenti beroperasi, sistem operasional, tinggi timbunan sampah, kondisi muka air tanah, jenis lapisan daily cover, frekuensi daily cover dan kondisi operasional di TPA pertama, berturut - turut di sel K8 s.d R8.Masukkan data yang sama untuk TPA kedua, pada sel K9 s.d R9. Teruskan sampai dengan TPA terakhir.SIGN-LIMBAH mengasumsikan tipe TPA adalah un-managed deep jika deskripsi TPA (pada kolom M sampai dengan kolom R) tidak diberikan/kosong.

    Pilih unit satuan volume sampah masuk ke TPA pada sel W6.Jika anda tidak memiliki data historis, klik "Ya, " atau "Ya, tolong ditampilkan data olahan berbasis cakupan layanan (Tier I)" pada kolom AE6.Jika data historis tersedia, klik "Tidak perlu, saya memiliki data." Masukkan rerata volume sampah yang masuk ke TPA pertama, dari tahun 2000 s/d 2013, di sel X8 s.d AR8. Isikan Meta_Data_ID di sel AP8.

    Jika anda memiliki data methane recovery di TPA, klik tautan yang tersedia pada kotak berwarna merah.

    Jika anda tidak memiliki data ini, klik "Tolong dibantu, saya akan memakai data Riskesdas 2010". Meta_data_ID dapat dilihat jika men-klik angka pada sel AW16. Data ini dapat diganti secara manual.

    a. Persentase masyarakat pedesaan yang menggunakan septik tank, latrin, IPAL Aerob terpusat, membuang langsung ke sungai, menampung air limbah di pekarangan, langsung membuang di tanah tanpa penampungan, serta lainnya di sel AW9 s.d AW15.b. Input data yang sama untuk masyarakat perkotaan dengan pendapatan tinggi dan rendah, masing - masing pada sel AU9 S.D AU15 dan AV9 s.d AV15. Isi Meta_Data_ID pada sel AT16

    Q8Pilih time series data pada kolom (8.2). Inventarisasi GRK sektor limbah industri pada SIGN-LIMBAH v0.88 dimulai dari tahun 2009.Isikan nama perusahaan di kolom (8.3). Pilih sektor industri di kolom (8.4).Isikan total produksi pada kolom (8.5).Pilih unit satuan total produksi pada kolom (8.6).

  • 56

    7

    8

    12

    3

    Petunjuk Pengisian Meta_Data_ID1

    2345678

    Isikan volume limbah cair yang dihasilkan pada tahun tersebut, pada kolom (8.7).Isikan nilai CODinlet dan CODoutlet, dalam satuan kg COD/m3 limbah cair, berturut - turut ke dalam kolom (8.8) dan (8.9). Pilih tipe pengolahan limbah cair pada kolom (8.10).Isikan dan berikan nomor Meta_Data_ID pada kolom (8.14). Lihat tata cara pengisian Meta_Data_ID.

    Untuk keperluan pendataan (optional), boleh dikosongkan, meliputi:Isikan nilai Nitrogen di effluent, dalam satuan kg N/tahun, ke dalam kolom (8.11).Jumlah lumpur yang dipindahkan, dalam satuan kg COD/tahun, ke dalam kolom (8.12). Jika terdapat kegiatan methane recovery dan datanya tersedia, masukkan data recovered CH4 ke dalam kolom (8.13).

    Isikan Meta_Data_ID dengan sembarang angka yang anda isikan pada kolom (1). Angka ini harus sama dengan yang ada di lembar input, untuk setiap pertanyaan.Isikan sumber data pada kolom (2)Isikan judul dokumen dan halaman yang memuat informasi/data yang ditampilkan pada kolom (3).Isikan tahun terbit dokumen pada kolom (4).Isikan contact person sumber data yang dapat dihubungi pada kolom (5).Jika ada catatan terhadap informasi pada dokumen tersebut, isikan pada kolom (6).Masukkan periode pengumpulan data, di dokumen tersebut, pada kolom (7).Masukkan time series data pada dokumen sumber pada kolom (8).

  • Mohon perhatikan petunjuk "Isikan" dan "Pilih"Petunjuk Pengisian Meta_Data_ID ada di bawah

    Kelemahan SIGN Limbah 0.9x:SIGN Limbah 0.9x memiliki kelemahan yang sebaiknya dikoreksi secara manual, antara lain; (a) iklim ditentukan sebagai "moist and wet tropical". Jika iklim di provinsi anda dominan "wet tropical", silahkan ubah di sheet 4A_Parameter pada sel C32. (b) Komposisi dan kandungan bahan kering diasumsikan sama dari tahun 2000 - 2020, jika terdapat perbedaan komposisi dan kandungan bahan kering dari tahun ke tahun, silahkan ubah di sheet 4A_Activity pada kolom D sampai dengan kolom N, mulai dari baris 10 (tahun 1990) sampai dengan baris 40 (tahun 2020), sesuai dengan data komposisi yang dimiliki. Dengan prinsip yang sama, kandungan bahan kering dapat divariasikan per tahun, masukkan di sheet 4A_Dry_Matter_Content, pada kolom B dampai dengan kolom L.

  • Isikan judul dokumen dan halaman yang memuat informasi/data yang ditampilkan pada kolom (3).

  • Menuju Input

  • INPUT DATA INPUT DATAProv/Kab/Kota Sumatera Utara Prov/Kab/Kota :Tahun Inventori 2013 Tahun Inventori :Tahun Pelaporan 2014 Tahun Pelaporan :01. Kependudukan 05.

    Anda mau dibantu memunculkan data kependudukan?

    Tolong dibantu No.

    No. Tahun Penduduk Proporsi tinggal di- 1Jumlah (jiwa) Pertumbuhan (%) Pedesaan Perkotaan 2

    1 2000 11,543,697 54% 46% 32 2001 11,679,272 1.17% 54% 46% 43 2002 11,817,525 1.18% 54% 46% 54 2003 11,958,516 1.19% 54% 46% 65 2004 12,102,307 1.20% 54% 46% 76 2005 12,293,938 1.58% 54% 46% 87 2006 12,605,970 2.54% 54% 46% 98 2007 12,797,722 1.52% 54% 46% 109 2008 13,011,016 1.67% 54% 46% 11

    10 2009 13,213,252 1.55% 54% 46% 1211 2010 12,982,204 -1.75% 54% 46% 1312 2011 13,147,155 1.27% 54% 46% 1413 2012 13,315,491 1.28% 54% 46% 1514 2013 13,487,289 1.29% 54% 46% 1615 2014 1716 2015 1817 2016 1918 2017 2019 2018 2120 2019 2221 2020 23

    Meta_Data_ID 1 2 3 2402. Laju timbulan sampah domestik 25

    Anda mau dibantu utk menjustifikasi laju timbulan sampah? 26Tolong dibantu 27Laju timbulan sampah 0.205 ton/jiwa/tahun 28Meta_Data_ID 4 29

    03. Distribusi Pengelolaan Sampah Domestik 30Apakah anda memiliki data distribusi pengelolaan sampah? 31Tidak, tolong dibantu 32

    a. Terangkut ke TPA 33.5% 33b. Ditimbun dalam tanah 1.9% 34c. Dibuat kompos 1.0% 35d. Dibakar 39.6% 36e. Dibuang ke kali/parit/laut 6.7% 37f. Dibuang sembarangan 8.9% 38g. Daur ulang 0.0% 39h. Insinerasi 0.0% 40

    Q1:

    A1:

    Q2:A2:

    Q3:A3:

  • Meta_Data_ID 15 4104. Komposisi & Kand. Bahan Kering Sampah Domestik 42

    Anda mau memakai data yang tersedia? 43Ya, tolong dibantu 44

    No. Komponen Komposisi 45

    a. Sisa Makanan 62.9% 20.6% 46b. Kertas 13.2% 44.5% 47c. Nappies N/A 40.0% 48d. Taman N/A 83.9% 49e. kayu 4.8% 45.3% 50f. Tekstil 3.3% 41.7%g. Karet dan Kul 0.5% 91.1%h. Plastik 13.8% 48.9%i. Logam 0.3% 100.0%j. Kaca 1.0% 98.4%k. N/A N/Al. 0.3% 87.5%

    Meta_Data_ID 16 16

    Q4:A4:

    Kandungan Bahan Kering

    Lain2 organikLain2 anorganik

  • INPUT DATAProv/Kab/Kota : Sumatera UtaraTahun Inventori : 2013Tahun Pelaporan : 2014

    Tempat Pengelolaan Akhir (TPA) lokasi

    Nama TPA Sistem Operasional

    TPA di Nias

    TPA BangguaTPA di Tapanuli SelatanTPA Aek NabobarTPA Siarang-arangTPA Pintu BosiTPA PerlayuanTPA Sei RanggasTPA Girsang Sipangan BolonTPA SidiangkatTPA Simpang Nang BelawanTPA Tadukan RagaTPA Durian Tonggal TPA Kwala bingaiTPA Soto'oTPA HumbahasTPA SinderungTPA SukaramaiTPA Huta TinggiTPA Sibatu-batuTPA SipegeTPA BelidaanTPA Batang TerapTPA Air PutihTPA di Padang Lawas Utara

    TPA Nagargar

    TPA Mambang Muda

    TPA Asam JawaTPA di Nias UtaraTPA di Nias Barat

    TPA Parombunan

    TPA Datuk Bandar

    TPA Tanjung pinggirTPA Jalan Baja TPA Sei SegilingTPA Namo BintangTPA Terjun TPA MencirimTPA Batu BolaTPA di Gunung Sitoli

    Q5: Perlu bantuan menampilkan daftar TPA? Mulai beroperas

    iBerhenti

    beroperasiTinggi timbunan

    sampah

  • Meta_Data_ID 12

  • Ya, tolong dibantumuka air tanah (m.a.t)

    : Perlu bantuan menampilkan daftar TPA? A5:

    lap. daily cover Frekuensi daily coverKondisi Operasional (jika controlled atau sanitary

    landfill)

  • INPUT DATAProv/Kab/Kota : Sumatera UtaraTahun Inventori : 2013Tahun Pelaporan : 201406. Rerata volume sampah domestik masuk ke TPA06.1 Satuan volume samm3/hari Perlu bantuan database SIGN-Limbah v0.88?

    Tipe TPA No. Nama TPA 2000 2001 2002 2003

    1 Sumatera Utara 6,240 6,313 6,388 6,464

    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

    Q6:

  • 41 42 43 44

    45

    46 47 48 49 50

    Total 6,240 6,313 6,388 6,464

  • Perlu bantuan database SIGN-Limbah v0.88? Ya, tolong ditampilkan data olahan berbasis cakupan layanan (Tier I)

    2004 2005 2006 2007 2008 2009 2010 2011 2012

    6,542 6,645 6,814 6,917 7,033 7,142 7,017 7,106 7,197

    A6:

  • 6,542 6,645 6,814 6,917 7,033 7,142 7,017 7,106 7,197

  • Ya, tolong ditampilkan data olahan berbasis cakupan layanan (Tier I)

    2013 2014 2015 2016 2017 2018 2019 2020

    7,290

    Jika terdapat data metan recovery di TPA dan fasilitas biogas, klik disini

  • 7,290 0 0 0 0 0 0 0

  • INPUT DATAProv/Kab/Kota : Sumatera UtaraTahun Inventori : 2013Tahun Pelaporan : 2014

    07. Sarana Pembuangan Air Limbah DomestikAnda mau dibantu?

    Meta Data ID Tolong dibantu, saya akan memakai data Riskesdas 2

    Analisa SIGN-Limbah No. Pedesaan Perkotaan a. Tangki Septik 55.1% 55.1% b. Cubluk 21.6% 21.6% c. IPAL Terpusat (Aerob 3.5% 3.5% d. Ke sungai/ kali/selok 19.9% 19.9% e. Kolam/sawah N/A N/A f. Lubang (di tanah) N/A N/A g. Pantai/kebun N/A N/A h. Lainnya 0.0% 0.0% Meta_Data_ID 17

    Q7:

    A7:Data Pengolahan dan

    Pembuangan Air Limbah

  • Isikan data perusahaan yang berada di dalam wilayah provinsi anda !

    No Nama Perusahaan Sektor industri Total industri produkQuantity

    (8.1) (8.2) (8.3) (8.4) (8.5)12

    3

    4

    5678910111213141516171819202122232425262728

    29

    30313233

    34

    353637383940414243

    Q8:Time series data

  • 444546

    47

    48

    4950515253545556575859

    606162636465666768697071727374757677787980818283848586878889909192939495

  • 96979899

    100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151

  • 152153154155156157158159160161162163164165166167168169170171172173174175176177178179180

  • Total industri produk

    (8.6) (8.7) (8.8) (8.9) (8.10)

    Volume limbah cair CODinlet CODoutlet Tipe wastewater treatment (WWT)Unit

    satuan m3/tahun kgCOD/m3 kgCOD/m3

  • kg N/year(8.11) (8.12) (8.13) (8.14)

    Nitrogen di effluen

    Sludge removed

    Recovered CH4 Meta_Data_ID

    kg COD/tahun kg CH4/tahun

  • INPUT DATA - RECOVERY METANProv/Kab/Kota : Sumatera UtaraTahun Inventori : 2013Tahun Pelaporan : 201401. Recovery Landfill Gas (LFG)No. Nama TPA

    2000 2001 2002 2003 2004 2005 20061 TPA di Nias2 TPA Banggua3 TPA di Tapanuli Selatan4 TPA Aek Nabobar5 TPA Siarang-arang6 TPA Pintu Bosi7 TPA Perlayuan8 TPA Sei Ranggas9 TPA Girsang Sipangan Bolon

    10 TPA Sidiangkat11 TPA Simpang Nang Belawan12 TPA Tadukan Raga13 TPA Durian Tonggal 14 TPA Kwala bingai15 TPA Soto'o16 TPA Humbahas17 TPA Sinderung18 TPA Sukaramai19 TPA Huta Tinggi20 TPA Sibatu-batu21 TPA Sipege22 TPA Belidaan23 TPA Batang Terap24 TPA Air Putih25 TPA di Padang Lawas Utara26 TPA Nagargar27 TPA Mambang Muda28 TPA Asam Jawa29 TPA di Nias Utara30 TPA di Nias Barat31 TPA Parombunan 32 TPA Datuk Bandar33 TPA Tanjung pinggir34 TPA Jalan Baja 35 TPA Sei Segiling36 TPA Namo Bintang37 TPA Terjun 38 TPA Mencirim39 TPA Batu Bola40 TPA di Gunung Sitoli414243444546474849

    Gas Metana yang di-recovery per tahun (Gg CH4)

  • 50Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00

  • 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017Gas Metana yang di-recovery per tahun (Gg CH4)

    Menuju Input

  • 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

  • 01. Recovery Metan pada Fasilitas Komposting dan Anaerobic Digester pada BiogasNo. Nama Fasilitas

    2018 2019 2020 2000 2001 2002123456789

    10111213141516171819202122232425262728293031323334353637383940414243444546474849

    Gas Metana yang di-recovery per tahun (Gg CH4)

    Menuju Input

  • 500.00 0.00 0.00 Total 0.00 0.00 0.00

  • Recovery Metan pada Fasilitas Komposting dan Anaerobic Digester pada Biogas

    2003 2004 2005 2006 2007 2008 2009 2010 2011 2012Gas Metana yang di-recovery per tahun (Gg CH4)

  • 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

  • 2013 2014 2015 2016 2017 2018 2019 2020Gas Metana yang di-recovery per tahun (Gg CH4)

    Menuju Input

  • 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

  • HAL 1 DARI 6

    BADAN LINGKUNGAN HIDUPSumatera Utara

    Tahun Inventori : 2013Tahun Pelaporan : 2014

    Mengetahui,BLHD #REF! Sumatera Utara Medan Desember 2014Kepala Badan, Penanggung-jawab Inventori,

    LAPORAN HASL ESTIMASI EMISI GRK

    SEKTOR PENGELOLAAN LIMBAH

    LAPORAN HASL ESTIMASI EMISI GRK

    SEKTOR PENGELOLAAN LIMBAH

    LEMBAR PENGESAHAN

    CONTOH LOGO PROVINSI

  • Desember 2014

  • OUTPUT (1)

    10,500,000

    11,000,000

    11,500,000

    12,000,000

    12,500,000

    13,000,000

    13,500,000

    Jumlah Penduduk (jiwa)

    37%2%

    1%43%7%

    10%

    Distribusi Pengelolaan Sampah

    Terangkut ke TPA Ditimbun dalam tanahDibuat kompos Dibakar Dibuang ke kali/parit/laut

    Dibuang sembarangan

    Daur ulang Insinerasi

    0100200300400500600700800900

    1,000

    Volume Sampah ke TPA ( x 1.000 ton)

  • 0100200300400500600700800900

    1,000

    Volume Sampah ke TPA ( x 1.000 ton)

  • OUTPUT (2) HAL 2 DARI 6Prov/Kab/Kota Sumatera Utara

    Tahun Inventori 2013

    Tahun Pelaporan 2014

    4A Solid Waste Disposal

    TahunData Aktifitas Total Data Aktifitas TotalGg Sampah Gg SampahGg CO2eqGg CO2eq

    2000 790 396 396 23.71 1.99 2.20 4.202001 800 405 405 23.99 2.01 2.23 4.252002 809 415 415 24.27 2.04 2.26 4.302003 819 424 424 24.56 2.06 2.28 4.352004 829 434 434 24.86 2.09 2.31 4.402005 842 443 443 25.25 2.12 2.35 4.472006 863 452 452 25.89 2.17 2.41 4.582007 876 462 462 26.28 2.21 2.44 4.652008 891 473 473 26.72 2.24 2.49 4.732009 905 483 483 27.14 2.28 2.52 4.80

    2010 889 493 493 26.66 2.24 2.48 4.722011 900 499 499 27.00 2.27 2.51 4.782012 912 505 505 27.35 2.30 2.54 4.842013 923 512 512 27.70 2.33 2.58 4.902014 inventori mendatang 520 520 inventori mendatang N/A N/A N/A2015 inventori mendatang 405 405 inventori mendatang N/A N/A N/A2016 inventori mendatang 323 323 inventori mendatang N/A N/A N/A2017 inventori mendatang 262 262 inventori mendatang N/A N/A N/A2018 inventori mendatang 216 216 inventori mendatang N/A N/A N/A2019 inventori mendatang 181 181 inventori mendatang N/A N/A N/A2020 inventori mendatang 155 155 inventori mendatang N/A N/A N/A

    Deskripsi status emisi pada tahun inventori:a. Dari 923,343 ton sampah yg ditimbun di TPA thn 2013 , diestimasikan

    menghasilkan emisi GRK sebesar 512 ton CO2-e.

    b. Dari 27,701 ton sampah yg dikomposkan pd thn 2013 , diestimasikanmenghasilkan emisi GRK sebesar 5 ton CO2-e.

    4B Peng. Limbah Padat secara BiologisCH4 CH4 N2O

    Gg CO2eq Gg CO2eq Gg CO2eq

  • OUTPUT (3) HAL 3 DARI 6Prov/Kab/Kota :Sumatera Utara

    Tahun Inventori 2013

    Tahun Pelaporan 2014

    4C2 Open Burning 4D1 Peng. Limbah Cair DomestikData Aktifitas Total Total

    Gg Sampah Gg CO2eqGg CO2eqGg CO2eqGg CO2eq kg BOD

    2000 939 105 128 14 247 ### 1,001 110 1,1102001 950 106 130 14 250 ### 1,012 111 1,1232002 961 108 131 14 253 ### 1,024 112 1,1372003 972 109 133 14 256 ### 1,036 114 1,1502004 984 110 134 14 259 ### 1,049 115 1,1642005 1,000 112 136 14 263 ### 1,066 117 1,1832006 1,025 115 140 15 270 ### 1,093 120 1,2132007 1,041 117 142 15 274 ### 1,109 122 1,2312008 1,058 119 144 15 278 ### 1,128 124 1,2522009 1,074 120 147 16 283 ### 1,145 126 1,271

    2010 1,056 118 144 15 278 ### 1,125 124 1,2492011 1,069 120 146 15 281 ### 1,140 125 1,2652012 1,083 121 148 16 285 ### 1,154 127 1,2812013 1,097 123 150 16 288 ### 1,169 128 1,2972014 inventori mendatang N/A N/A N/A N/A inventori mendatang N/A N/A N/A2015 inventori mendatang N/A N/A N/A N/A inventori mendatang N/A N/A N/A2016 inventori mendatang N/A N/A N/A N/A inventori mendatang N/A N/A N/A2017 inventori mendatang N/A N/A N/A N/A inventori mendatang N/A N/A N/A2018 inventori mendatang N/A N/A N/A N/A inventori mendatang N/A N/A N/A2019 inventori mendatang N/A N/A N/A N/A inventori mendatang N/A N/A N/A2020 inventori mendatang N/A N/A N/A N/A inventori mendatang N/A N/A N/A

    Deskripsi status emisi pada tahun inventori:a. Dari ### ton sampah yg dibakar pd tahu### 2013 , diestimasikan

    menghasilkan emisi GRK sebesar 288 ton CO2-e.

    b. Dari ### kg BOD total organically degradable material dalam air limbah domestikpada tahun 2013 , menghasilkan emisi GRK : 1,297 ton CO2-e.

    Tahun

    CO2 CH4 N2O Data Aktifitas CH4 N2OGg CO2eqGg CO2eqGg CO2eq

  • OUTPUT (4) HAL 4 DARI 64D2 Peng. Limbah Cair Industri

    Alcohol refining Beer & Malt Coffee Dairy Products Fish Processing Meat & Poultry

    2009 0 0 0 0 0 0 02010 0 0 0 0 0 0 02011 0 0 0 0 0 0 02012 0 0 0 0 0 0 0

    2013 0 0 0 0 0 0 02014 0 0 0 0 0 0 02015 0 0 0 0 0 0 02016 0 0 0 0 0 0 02017 0 0 0 0 0 0 02018 0 0 0 0 0 0 02019 0 0 0 0 0 0 02020 0 0 0 0 0 0 0

    Plastics & Resins Sugar Refining Vegetable Oils

    2009 0 0 0 0 0 0 02010 0 0 0 0 0 0 02011 0 0 0 0 0 0 02012 0 0 0 0 0 0 02013 0 0 0 0 0 0 02014 0 0 0 0 0 0 02015 0 0 0 0 0 0 02016 0 0 0 0 0 0 02017 0 0 0 0 0 0 02018 0 0 0 0 0 0 02019 0 0 0 0 0 0 02020 0 0 0 0 0 0 0

    kg BOD total organically degradable material dalam air limbah domestik Rubber Factory Tekstil Farmasi2009 0 0 0 0 02010 0 0 0 0 02011 0 0 0 0 02012 0 0 0 0 02013 0 0 0 0 02014 0 0 0 0 02015 0 0 0 0 02016 0 0 0 0 02017 0 0 0 0 02018 0 0 0 0 02019 0 0 0 0 0

    Tahun

    Emisi GRK per Sektor Industri (Gg CO2eq)Organic

    Chemicals

    Gg CO2eq

    Tahun

    Lanjutan Emisi GRK per Sektor Industri (Gg CO2eq). Pulp & Paper (combined)

    Soap & Detergents

    Starch Production

    Vegetable, Fruits & Juices

    Tahun

    Lanjutan Emisi GRK per Sektor Industri (Gg CO2-e)Makanan dan

    Minuman

  • 2020 0 0 0 0 0

  • HAL 4 DARI 6 OUTPUT (5)4D2 Peng. Limbah Cair Industri Apakah anda perlu bantuan untuk menampilkan profil emisi GRK ?

    Tolong ditampilkan

    0000

    00000000

    000000000000

    TOTAL00000000000

    Q9:A9:

    Petroleum Refineries

    eq). Wine & Vinegar

    2-e)

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900Profil Emisi GRK untuk Limbah Padat Domestik

    Open BurningKompostingTPA

    Emisi GRK (Gg CO2eq)

    0

    200

    400

    600

    800

    1,000

    1,200

    1,400Profil Emisi GRK untuk Limbah Cair Domestik

    Emisi GRK (Gg CO2eq)

  • 0

  • HAL 5 DARI 6OUTPUT (6)Apakah anda perlu bantuan untuk menampilkan profil emisi GRK ?

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900Profil Emisi GRK untuk Limbah Padat Domestik

    Open BurningKompostingTPA

    Emisi GRK (Gg CO2eq)

    0

    200

    400

    600

    800

    1,000

    1,200

    1,400Profil Emisi GRK untuk Limbah Cair Domestik

    Emisi GRK (Gg CO2eq)

    0

    0

    0

    0

    0

    1

    1

    1

    1

    1

    1Profil Emisi GRK untuk Limbah Cair IndustriFarmasi

    TekstilMakanan dan MinumanRubber Factory Wine & VinegarVegetable, Fruits & JuicesVegetable OilsSugar RefiningStarch ProductionSoap & DetergentsPulp & Paper (combined)Plastics & ResinsPetroleum RefineriesOrganic ChemicalsMeat & PoultryFish ProcessingDairy ProductsCoffeeBeer & MaltAlcohol refining

    Emisi GRK (Gg CO2eq)

  • HAL 6 DARI 6 Justifikasi untuk grafik hasil estimasi

    Tahun

    TPA Komposting Open Burning

    2000 396 4 2472001 405 4 2502002 415 4 253

    2003 424 4 256

    2004 434 4 2592005 443 4 2632006 452 5 2702007 462 5 2742008 473 5 2782009 483 5 2832010 493 5 2782011 499 5 2812012 505 5 2852013 512 5 288

    2014 520 N/A N/A

    2015 405 N/A N/A2016 323 N/A N/A2017 262 N/A N/A2018 216 N/A N/A2019 181 N/A N/A2020 155 N/A N/A

    Emisi per kategori (ton eCO2): Limbah Domestik

    0

    0

    0

    0

    0

    1

    1

    1

    1

    1

    1Profil Emisi GRK untuk Limbah Cair IndustriFarmasi

    TekstilMakanan dan MinumanRubber Factory Wine & VinegarVegetable, Fruits & JuicesVegetable OilsSugar RefiningStarch ProductionSoap & DetergentsPulp & Paper (combined)Plastics & ResinsPetroleum RefineriesOrganic ChemicalsMeat & PoultryFish ProcessingDairy ProductsCoffeeBeer & MaltAlcohol refining

    Emisi GRK (Gg CO2eq)

  • L.Cair Domestik Tahun Alcohol refining Beer & Malt Coffee Dairy Products

    1,110 2009 0 0 0 01,123 2010 0 0 0 01,137 2011 0 0 0 01,150 2012 0 0 0 01,164 2013 0 0 0 01,183 2014 0 0 0 01,213 2015 0 0 0 01,231 2016 0 0 0 01,252 2017 0 0 0 01,271 2018 0 0 0 01,249 2019 0 0 0 01,265 2020 0 0 0 01,2811,297

    N/A

    N/AN/AN/AN/AN/AN/A

    Emisi per kategori (ton eCO2): Limbah Domestik

  • Fish Processing Meat & Poultry Sugar Refining

    0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

    Organic Chemicals

    Petroleum Refineries

    Plastics & Resins

    Pulp & Paper (combined)

    Soap & Detergents

    Starch Production

  • Vegetable Oils Wine & Vinegar Rubber Factory Tekstil Farmasi

    0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

    Vegetable, Fruits & Juices

    Makanan dan Minuman

    Total Emisi (Gg CO2eq)

  • Lembar Verifikasi

    To be developed...

  • To be developed...

  • Co-benefits Calculator for Waste Projects

    To be developed...

  • To be developed...

  • Meta Data

    01. Daftar Literatur

    Sumber Data Judul dokumen

    (1) (2) (3) (4)1 Badan Pusat Statistik Sumatera Utara Jumlah penduduk 2010 dari Portal BPS Sumut N/A2 Badan Pusat Statistik Sumatera Utara Jumlah penduduk 2010 dari Portal BPS Sumut N/A3 Badan Pusat Statistik Republik IndonesPersentase Penduduk Daerah Perkotaan menurut Provinsi, 2010- 2014

    4 Kementrian Lingkungan Hidup Kumpulan data SIGN-Center untuk kegiatan pengelolaan limbah N/A

    5 Riset Kesehatan Dasar, Riskesdas 2010, hal 390. 2011

    7 Kementrian Lingkungan Hidup 2011

    9 2006

    10 Kementrian Lingkungan Hidup 2011

    11 2006

    12 2013

    13 Riset Kesehatan Dasar, Riskesdas 2010, hal 382. 2011

    14 BLH Provinsi Sumatera Utara Laporan Inventarisasi GRK Provinsi Sumatera Utara 2011

    Sumber

    Data_ID

    Tahun terbit/diun

    duh

    Balitbang Kesehatan Kementrian Kesehatan RI

    Pedoman Penyelenggaraan Inventarisasi GRK Nasional, Buku II, Volume 4, "Metodologi Penghitungan Tingkat Emisi GRK sektor Pengelolaan Limbah, hal. 29

    IPCC National Greenhouse Gas Inventories Programme

    2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 5, Waste, Chapter 2, hal 2.12Pedoman Penyelenggaraan Inventarisasi GRK Nasional, Buku II, Volume 4, "Metodologi Penghitungan Tingkat Emisi GRK sektor Pengelolaan Limbah, hal. 32

    IPCC National Greenhouse Gas Inventories Programme

    2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 5, Waste, Chapter 2, hal 2.14

    Asdep Pengelolaan Sampah, Kementrian Lingkungan Hidup

    Rekapitulasi Data Kuesioner Sistem Manajemen dalam rangka Program Adipura Tahun 2013

    Balitbang Kesehatan Kementrian Kesehatan RI

  • 15 Bappeda Provinsi Sumatera Utara RAD-GRK provinsi Sumatera Utara 2012

    16 Survey KLH-BLH Sumut-JICA SP3 2011 FY 201217 Badan Pusat Statistik Sumatera Utara Survei Sosial Ekonomi Nasional (Susenas) 2010 2011

    Keterbatasan Seruni:

  • 1. Timbulan sampah masih sama dari tahun ke tahun.2. Distribusi Pengelolaan Sampah masih sama dari 1990 s.d 2013.3. Hitungan insinerasi belum dilakukan.5. Analisa distribusi tipe TPA antara 1990 s.d 1999 = 2000.6. Lain - lain organik belum terhitung.7. Komposisi dan dry matter content masih mengacu pada data satu tahun.

  • Contact Person Catatan

    (5) (6)Telp: 061-8452343Telp: 061-8452343Telp: (021) 3841195 Proyeksi BPS dari 2010 sampai dengan 2035

    Telp. (021) 8514932

    Telp. (021) 8514932

    Fax: (81 46) 855 3808

    Telp. (021) 8514932

    Fax: (81 46) 855 3808

    BLH Provinsi Sumatera Utara Data Susenas Sanitasi Provinsi Sumatera Utara, 2010

    sumut.bps.go.idsumut.bps.go.idhttp://www.bps.go.id

    Wukir A. Rukmi, Febrian Hadinata, Nela Anjani

    Olahan data inventarisasi GRK di berbagai daerah dan atau berdasarkan rerata asumsi timbulan sampah pada tiap Kabupaten/Kota dalam wilayah suatu Provinsi, sesuai Pedoman Penyelenggaraan Inventarisasi GRK Nasional, Buku II, Volume 4, "Metodologi Penghitungan Tingkat Emisi GRK sektor Pengelolaan Limbah, hal. 20

    Wukir A. Rukmi, Febrian Hadinata, Nela Anjani

    http://www.ipcc-nggip.iges.or.jpWukir A. Rukmi, Febrian Hadinata, Nela Anjanihttp://www.ipcc-nggip.iges.or.jp

    Sebagian data telah dikoreksi sesuai hasil verifikasi. Beberapa data menggunakan data 2012 karena data tahun 2013 belum tersedia.Data hanya melingkupi black water, perlu perbaikan data aktifitas dan atau perbaikan pada faktor emisi lokal.

    Menuju Input

  • JICA SP1 Sumatera Utara

    JICA SP3 Sumatera UtaraTelp: 061-8452343

    Distribusi pengelolaan sampah masih menggunakan asumsi/expert judgement pada RAD-GRK

  • (7) (8)20102010

    N/A 2010 - 2035

    2011 - 2013 1990 - 2013

    2010 2010

    2012 2011

    N/A N/A

    2012 2011

    N/A N/A

    Jan - Des 2013 2013

    2010 2010

    2013 2010 - 2012

    Periode Pengumpul

    anTime

    Series

  • 2012 2010

    2011 20112010

  • Page 97 of 276

    2006 IPCC Guidelines for National Greenhouse Gas Inventories

    This spreadsheet implements the Tier 1 method for estimating emissions of methane from solid waste disposal sites. For details of the method see the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Chapter 3

    IPCC 2006

  • Parameters City Sumatera UtaraProvince 0

    Country Indonesia

    RegionPlease enter parameters in the yellow cells. If no national data are available, copy the IPCC default value.Help on parameter selection can be found in the 2006 IPCC guidelines

    IPCC default value Country-specific parametersValue Reference and remarks

    Starting year 1950 1990dry basis dry basis

    DOC (Degradable organic carbon) (weight fraction) Range DefaultFood waste 0.20-0.50 0.38 0.38Paper/cardboard 0.40-0.50 0.44 0.44Garden and Park waste 0.45-0.55 0.49 0.49Textiles 0.25-0.50 0.3 0.30Rubber and Leather 0.47 0.47 0.47Wood 0.46-0.54 0.5 0.50Nappies 0.44-0.80 0.6 0.60Plastics 0 0 0.00Metal 0 0 0.00Glass 0 0 0.00Other 0 0 0.00

    Sewage sludge N.A 0 0.00Industrial waste N.A 0 0.00

    DOCf (fraction of DOC dissimilated) 0.5 0.5

    Range DefaultFood waste 0.170.7 0.4 0.4Paper/cardboard 0.060.085 0.07 0.07Garden and Park waste 0.150.2 0.17 0.17Textiles 0.060.085 0.07 0.07Rubber and Leather 0.030.05 0.035 0.035Wood 0.030.05 0.035 0.035Nappies 0.150.2 0.17 0.17Plastics 0 0 0Metal 0 0 0Glass 0 0 0Other 0 0 0

    Sewage sludge 0.170.7 0.4 0.4Industrial waste 0.150.2 0.17 0.17

    Delay time (months) 6 6

    0.5 0.5

    1.33 1.33

    0 0

    Parameters for carbon storage% paper in industrial waste 0% 0%% wood in industrial waste 0% 0%

    dry basis

    Methane generation rate constant (k)(years-1)

    Fraction of methane (F) in developed gas

    Conversion factor, C to CH4

    Oxidation factor (OX)

    For Harwested Wood Products calculations for Bulk waste option only:

  • Calculated values for MCFMethane Correction Factor (MCF)This worksheet calculates a weighted average MCF from the estimated distribution of site typesEnter either IPCC default values or national values into the yellow MCF cells in row 13Then enter the approximate distribution of waste disposals (by mass) between site types in the columns below.

    Totals on each row must add up to 100% (see "distribution check" values)

    MSW MSW

    Managed

    MCF MCF MCF MCF MCFIPCC default 0.4 0.8 1 0.5 0.6

    0.4 0.8 1 0.5 0.6

    Distribution of Waste by Waste Management Type

    Total (100%)Year % % % % % wt. fraction

    1990 0% 100% 0% 0% 100% 0.801991 0% 100% 0% 0% 100% 0.801992 0% 100% 0% 0% 100% 0.801993 0% 100% 0% 0% 100% 0.801994 0% 100% 0% 0% 100% 0.801995 0% 100% 0% 0% 100% 0.801996 0% 100% 0% 0% 100% 0.801997 0% 100% 0% 0% 100% 0.801998 0% 100% 0% 0% 100% 0.801999 0% 100% 0% 0% 100% 0.802000 0% 100% 0% 0% 100% 0.802001 0% 100% 0% 0% 100% 0.802002 0% 100% 0% 0% 100% 0.802003 0% 100% 0% 0% 100% 0.802004 0% 100% 0% 0% 100% 0.802005 0% 100% 0% 0% 100% 0.802006 0% 100% 0% 0% 100% 0.802007 0% 100% 0% 0% 100% 0.802008 0% 100% 0% 0% 100% 0.802009 0% 100% 0% 0% 100% 0.802010 0% 100% 0% 0% 100% 0.802011 0% 100% 0% 0% 100% 0.802012 0% 100% 0% 0% 100% 0.802013 0% 100% 0% 0% 100% 0.802014 0% 100% 0% 0% 100% 0.802015 0% 100% 0% 0% 100% 0.802016 0% 100% 0% 0% 100% 0.802017 0% 100% 0% 0% 100% 0.802018 0% 100% 0% 0% 100% 0.802019 0% 100% 0% 0% 100% 0.802020 0% 100% 0% 0% 100% 0.80

    Un-managed, shallow

    Un-managed, deep

    Managed, semi-aerobic

    Uncate-gorised

    Distri-bution Check

    Weighted average MCF

    for MSWCountry-specific

    value

    "Fixed" Country-specifc value

  • MSW activity data Help and default regional values are given in the 2006 IPCC Guidelines.

    0%Composition of waste going to solid waste disposal sites

    Year Kertas Nappies Taman kayu TekstilAll Other, inert waste

    TotalPlastik Logam Kaca

    Gg % % % % % % % % % % % (=100%)1990 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    1991 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    1992 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    1993 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    1994 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    1995 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    1996 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    1997 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    1998 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    1999 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2000 790 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2001 800 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2002 809 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2003 819 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2004 829 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2005 842 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2006 863 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2007 876 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2008 891 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2009 905 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2010 889 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2011 900 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2012 912 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2013 923 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2014 0 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2015 0 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2016 0 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2017 0 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2018 0 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2019 0 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    2020 0 63% 13% 0% 0% 5% 3% 1% 14% 0% 1% 0% 100%

    Terangkut ke TPA

    Sisa Makanan

    Karet dan Kulit

    Lain2 anorganik

  • Kandungan Bahan Kering/Dry Matter Content

    YearKertas Nappies Taman kayu Tekstil Plastik Logam Kaca Sludge

    % % % % % % % % % % % % % %1990 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%1991 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%1992 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%1993 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%1994 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%1995 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%1996 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%1997 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%1998 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%1999 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2000 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2001 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2002 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2003 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2004 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2005 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2006 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2007 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2008 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2009 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2010 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2011 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2012 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2013 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2014 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2015 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2016 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2017 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2018 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2019 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%2020 21% 45% 40% 84% 45% 42% 91% 49% 100% 98% 0%

    Fill in dry matter content of each waste composition (in %)

    Sisa Makanan

    Karet dan Kulit

    Lain2 anorganik

    Bulk MSW

    Industrial

  • Amount deposited data CityCountries with good inventory data: Province 0Enter those data onto this sheet. Country Indonesia

    Amounts deposited in SWDS

    Kertas Taman kayu TekstilAll Other, inert waste

    SludgeYear Plastik Logam Kaca

    Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg1990 497 104 0 0 38 26 4 109 3 8 2 790 0

    1991 497 104 0 0 38 26 4 109 3 8 2 790 0

    1992 497 104 0 0 38 26 4 109 3 8 2 790 0

    1993 497 104 0 0 38 26 4 109 3 8 2 790 0

    1994 497 104 0 0 38 26 4 109 3 8 2 790 0

    1995 497 104 0 0 38 26 4 109 3 8 2 790 0

    1996 497 104 0 0 38 26 4 109 3 8 2 790 0

    1997 497 104 0 0 38 26 4 109 3 8 2 790 0

    1998 497 104 0 0 38 26 4 109 3 8 2 790 0

    1999 497 104 0 0 38 26 4 109 3 8 2 790 0

    2000 497 104 0 0 38 26 4 109 3 8 2 790 0

    2001 503 106 0 0 38 26 4 110 3 8 2 800 0

    2002 509 107 0 0 38 26 4 111 3 8 2 809 0

    2003 515 108 0 0 39 27 4 113 3 8 2 819 0

    2004 521 110 0 0 39 27 4 114 3 8 2 829 0

    2005 529 111 0 0 40 27 5 116 3 8 2 842 0

    2006 543 114 0 0 41 28 5 119 3 8 3 863 0

    2007 551 116 0 0 42 29 5 120 3 8 3 876 0

    2008 560 118 0 0 42 29 5 122 3 8 3 891 0

    2009 569 120 0 0 43 29 5 124 3 9 3 905 0

    2010 559 117 0 0 42 29 5 122 3 8 3 889 0

    2011 566 119 0 0 43 29 5 124 3 9 3 900 0

    2012 573 121 0 0 43 30 5 125 3 9 3 912 0

    2013 581 122 0 0 44 30 5 127 3 9 3 923 0

    2014 0 0 0 0 0 0 0 0 0 0 0 0 0

    2015 0 0 0 0 0 0 0 0 0 0 0 0 0

    2016 0 0 0 0 0 0 0 0 0 0 0 0 0

    2017 0 0 0 0 0 0 0 0 0 0 0 0 0

    2018 0 0 0 0 0 0 0 0 0 0 0 0 0

    2019 0 0 0 0 0 0 0 0 0 0 0 0 0

    2020 0 0 0 0 0 0 0 0 0 0 0 0 0

    Sisa Makanan

    Nappies

    Karet dan Kulit

    Bulk MSW

    Industrial

    Lain2 anorga

    nik

  • Methane Recovery and methane oxidised in top layer (OX)

    Enter the total amount of methane recovered from all SWDS.

    References / remarks References/remarksIPCC default 0 0

    Year Gg Fraction1990 0.00 0.001991 0.00 0.001992 0.00 0.001993 0.00 0.001994 0.00 0.001995 0.00 0.001996 0.00 0.001997 0.00 0.001998 0.00 0.001999 0.00 0.002000 0.0 0.00 0.002001 0.0 0.00 0.002002 0.0 0.00 0.002003 0.0 0.00 0.002004 0.0 0.00 0.002005 0.0 0.00 0.002006 0.0 0.00 0.002007 0.0 0.00 0.002008 0.0 0.00 0.002009 0.0 0.00 0.002010 0.0 0.00 0.002011 0.0 0.00 0.002012 0.0 0.00 0.002013 0.0 0.00 0.002014 0.0 0.00 0.002015 0.0 0.00 0.002016 0.0 0.00 0.002017 0.0 0.00 0.002018 0.0 0.00 0.002019 0.0 0.00 0.002020 0.0 0.00 0.00

    Amount of Methane

    Recovered from SWDS

    Fraction recovered methane

    Methane oxidised (OX)

  • ResultsCity Province CountrySumatera Utara 0 IndonesiaEnter starting year, industrial waste disposal data and methane recovery into the yellow cells. MSW activity data is entered on MSW sheet

    Methane generated

    Year Kertas Nappies Taman kayu Tekstil Sludge Industrial Total

    A B C D E F G H I K L

    Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg

    1990 0 0 0 0 0 0 0 0 0 0

    1991 3 0 1 0 0 0 0 0 5 0

    1992 6 1 2 0 0 0 0 0 8 0

    1993 7 1 3 0 0 0 0 0 11 0

    1994 8 1 3 0 0 0 0 0 13 0

    1995 9 2 4 0 0 0 0 0 15 0

    1996 9 2 4 0 0 0 0 0 16 0

    1997 10 2 5 0 0 0 0 0 17 0

    1998 10 2 5 0 0 0 0 0 18 0

    1999 10 3 5 0 0 0 0 0 18 0

    2000 10 3 5 0 0 0 0 0 19 0

    2001 10 3 6 0 0 0 0 0 19 0

    2002 10 3 6 0 0 0 0 0 20 0

    2003 10 3 6 0 0 1 0 0 20 0

    2004 11 3 6 0 0 1 0 0 21 0

    2005 11 4 6 0 0 1 0 0 21 0

    2006 11 4 6 0 0 1 0 0 22 0

    2007 11 4 7 0 0 1 0 0 22 0

    2008 11 4 7 0 0 1 0 0 23 0

    2009 11 4 7 0 0 1 0 0 23 0

    2010 12 4 7 0 0 1 0 0 23 0

    2011 12 4 7 0 0 1 0 0 24 0

    2012 12 5 7 0 0 1 0 0 24 0

    2013 12 5 7 0 0 1 0 0 24 0

    2014 12 5 7 0 0 1 0 0 25 0

    2015 8 4 6 0 0 1 0 0 19 0

    2016 5 4 5 0 0 1 0 0 15 0

    2017 4 4 4 0 0 1 0 0 12 0

    2018 2 4 4 0 0 1 0 0 10 0

    2019 2 3 3 0 0 1 0 0 9 0

    2020 1 3 3 0 0 0 0 0 7 0

    Sisa Makanan

    Bulk MSW

    Methane recovery

    Dry Basis

  • Methane emission

    M = (K-L)*(1-OX)

    Gg

    0.00004.89658.471911.125713.130814.674415.885516.853617.641418.293118.840419.306119.764520.213520.652721.082421.522322.018122.501622.984023.459823.745824.060424.394724.743219.306715.366112.465910.29548.64187.3588

    Dry Basis

  • Harwested Wood ProductsThis sheet gives information on the methane emission from HWP, and HWP C long-term stored in SWDS

    Long-term stored C Long term stored C accumulated CH4 generated CH4 emittedYear Garden C Paper C Wood C Garden C Paper C Wood C Garden Paper Wood Garden Paper Wood

    Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg

    1990 0 0 0 0 0 0 0 0 0 0 0 0

    1991 0 0 0 0 0 0 0 0 0 0 0 0

    1992 0 0 0 0 0 0 0 1 0 0 1 0

    1993 0 0 0 0 0 0 0 1 0 0 1 0

    1994 0 0 0 0 0 0 0 1 0 0 1 0

    1995 0 0 0 0 0 0 0 2 0 0 2 0

    1996 0 0 0 0 0 0 0 2 0 0 2 0

    1997 0 0 0 0 0 0 0 2 0 0 2 0

    1998 0 0 0 0 0 0 0 2 0 0 2 0

    1999 0 0 0 0 0 0 0 3 0 0 3 0

    2000 0 0 0 0 0 0 0 3 0 0 3 0

    2001 0 0 0 0 0 0 0 3 0 0 3 0

    2002 0 0 0 0 0 0 0 3 0 0 3 0

    2003 0 0 0 0 0 0 0 3 0 0 3 0

    2004 0 0 0 0 0 0 0 3 0 0 3 0

    2005 0 0 0 0 0 0 0 4 0 0 4 0

    2006 0 0 0 0 0 0 0 4 0 0 4 0

    2007 0 0 0 0 0 0 0 4 0 0 4 0

    2008 0 0 0 0 0 0 0 4 0 0 4 0

    2009 0 0 0 0 0 0 0 4 0 0 4 0

    2010 0 0 0 0 0 0 0 4 0 0 4 0

    2011 0 0 0 0 0 0 0 4 0 0 4 0

    2012 0 0 0 0 0 0 0 5 0 0 5 0

    2013 0 0 0 0 0 0 0 5 0 0 5 0

    2014 0 0 0 0 0 0 0 5 0 0 5 0

    2015 0 0 0 0 0 0 0 4 0 0 4 0

    2016 0 0 0 0 0 0 0 4 0 0 4 0

    2017 0 0 0 0 0 0 0 4 0 0 4 0

    2018 0 0 0 0 0 0 0 4 0 0 4 0

    2019 0 0 0 0 0 0 0 3 0 0 3 0

    2020 0 0 0 0 0 0 0 3 0 0 3 0

  • City Sumatera UtaraProvin 0CountrIndonesia

    Long-term stored C in SWDSIn this sheet carbon long-term stored C in SWDS is calculated.DOC:MSW 0 Food waste 0.15 Nappies 0.24Paper 0.4 Garden 0.2 Sludge 0.05Wood 0.43 Textiles 0.24 Industry 0.15

    Year MSW Food Paper Wood Textiles SludgeGg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg

    1990 0 0 0 0 01991 0 0 0 0 01992 0 0 0 0 01993 0 0 0 0 01994 0 0 0 0 01995 0 0 0 0 01996 0 0 0 0 01997 0 0 0 0 01998 0 0 0 0 01999 0 0 0 0 02000 0 0 0 0 02001 0 0 0 0 02002 0 0 0 0 02003 0 0 0 0 02004 0 0 0 0 02005 0 0 0 0 02006 0 0 0 0 02007 0 0 0 0 02008 0 0 0 0 02009 0 0 0 0 02010 0 0 0 0 02011 0 0 0 0 02012 0 0 0 0 02013 0 0 0 0 02014 0 0 0 0 02015 0 0 0 0 02016 0 0 0 0 02017 0 0 0 0 02018 0 0 0 0 02019 0 0 0 0 0

    2020 0 0 0 0 0

    Garden

    Nappies

    C, Industry

    Paper, industry subtotal

    Wood, industry subtotal

    Long-term stored C

    Long-term stored C

    accumulated

  • IPCC Spreadsheet for Estimating Methane emissions from Solid Waste Disposal Sites

    Bulk waste and waste composition options.

    Theory and equations

    The basic equation for the first order decay model is:

    (1) DDOCm = DDOCm(0) * e^-kt

    where DDOCm(0) is the mass of decomposable degradable organic carbon (DOC) at the start of the reaction, when t=0 and e^-kt=1, k is the reaction constant and t is the time in years. DDOCm is the mass of DDOC at any time.

    From equation (I) it is easy to see that at the end of year 1 (going from point 0 to point 1 on the time axis) the mass of DDOC left not decomposed in the SWDS is:

    (2) DDOCm(1) = DDOCm(0) * e^-k

    and the mass of DDOC decomposed into CH4 and CO2 will be:

    (3) DDOCmdecomp(1) = DDOCm(0) * (1 - e^-k)

    In a first order reaction, the amount of product (here decomposed DDOCm) is always proportional to the amount of reactant (here DDOCm). This means that it does not matter when the DDOCm was deposited. This also means that when the amount of DDOCm accumulated in the SWDS, plus last year's deposit, is known, CH4 production can be calculated as if every year is year number one in the time series. Then all calculations can be done by equations (2) and (3) in a simple spreadsheet.

    The default assumption is that CH4 generation from all the waste deposited each year begins on the 1st of January in the year after deposition. This is the same as an average six month delay until substantial CH4 generation begins (the time it takes for anaerobic conditions to become well established). However, the worksheet includes the possibility of an earlier start to the reaction, in the year of deposition of the waste. This requires separate calculations for the deposition year. For longer delay times than 6 months, DDOCmd in the columns F and G cells in the CH4 calculating sheets, have to be readdressed one cell down, and the number 13 in exp2 has to be changed to 25 (7 to 18 months delay time).

    The equations used in these spreadsheets are: (As the mathematics of every waste fraction/category is the same, indexing for fraction/category is omitted for equations 4-9.)

    To calculate mass of decomposable DOC (DDOCm) from amount of waste material (W):

    (4) DDOCmd(T), = W(T) DOC * DOCf MCF

    The amount of deposited DDOCm remaining not decomposed at the end of deposition year T:

    (5) DDOCmrem(T) = DDOCmd(T) e^(-k ((13-M)/12)

    The amount of deposited DDOCm decomposed during deposition year T:

    (6) DDOCmdec(T) = DDOCmd(T) (1 e^(-k ((13-M)/12)))

    The amount of DDOCm accumulated in the SWDS at the end of year T

    (7) DDOCma(T) = DDOCmrem(T) + ( DDOCma(T-1) e^-k)

    The total amount of DDOCm decomposed in year T

    (8) DDOCmdecomp(T) = DDOCmdec(T) + (DDOCma(T-1) (1 - e^-k))

    The amount of CH4 generated from DOC decomposed

    (9) CH4 generated(T) = DDOCmdecomp(T) F 16/12

    The amount of CH4 emitted

    (10) CH4 emitted in year T = (xCH4 generated (x,T) R(T)) (1- OX(T))

    Where: T = the year of inventory x = material fraction/waste category W(T) = amount deposited in year T MCF = Methane Correction Factor DOC = Degradable organic carbon (under aerobic conditions) DOCf = Fraction of DOC decomposing under anaerobic conditions DDOC = Decomposable Degradable Organic Carbon (under anaerobic conditions) DDOCmd(T) = mass of DDOC deposited year T DDOCmrem(T) = mass of DDOC deposited in inventory year T, remaining not decomposed at the end of year. DDOCmdec(T) = mass of DDOC deposited in inventory year T, decomposed during the year. DDOCma(T) = total mass of DDOC left not decomposed at end of year T. DDOCma(T-1) = total mass of DDOC left not decomposed at end of year T-1. DDOCmdecomp(T) = total mass of DDOC decomposed in year T. CH4 generated(T) = CH4 generated in year T F = Fraction of CH4 by volume in generated landfill gas 16/12 = Molecular weight ratio CH4/C R(T) = Recovered CH4 in year T OX(T) = Oxidation factor in year T (fraction) k = rate of reaction constant M = Month of reaction start (= delay time + 7)

  • Theory and equations

    The basic equation for the first order decay model is:

    (1) DDOCm = DDOCm(0) * e^-kt

    where DDOCm(0) is the mass of decomposable degradable organic carbon (DOC) at the start of the reaction, when t=0 and e^-kt=1, k is the reaction constant and t is the time in years. DDOCm is the mass of DDOC at any time.

    From equation (I) it is easy to see that at the end of year 1 (going from point 0 to point 1 on the time axis) the mass of DDOC left not decomposed in the SWDS is:

    (2) DDOCm(1) = DDOCm(0) * e^-k

    and the mass of DDOC decomposed into CH4 and CO2 will be:

    (3) DDOCmdecomp(1) = DDOCm(0) * (1 - e^-k)

    In a first order reaction, the amount of product (here decomposed DDOCm) is always proportional to the amount of reactant (here DDOCm). This means that it does not matter when the DDOCm was deposited. This also means that when the amount of DDOCm accumulated in the SWDS, plus last year's deposit, is known, CH4 production can be calculated as if every year is year number one in the time series. Then all calculations can be done by equations (2) and (3) in a simple spreadsheet.

    The default assumption is that CH4 generation from all the waste deposited each year begins on the 1st of January in the year after deposition. This is the same as an average six month delay until substantial CH4 generation begins (the time it takes for anaerobic conditions to become well established). However, the worksheet includes the possibility of an earlier start to the reaction, in the year of deposition of the waste. This requires separate calculations for the deposition year. For longer delay times than 6 months, DDOCmd in the columns F and G cells in the CH4 calculating sheets, have to be readdressed one cell down, and the number 13 in exp2 has to be changed to 25 (7 to 18 months delay time).

    The equations used in these spreadsheets are: (As the mathematics of every waste fraction/category is the same, indexing for fraction/category is omitted for equations 4-9.)

    To calculate mass of decomposable DOC (DDOCm) from amount of waste material (W):

    (4) DDOCmd(T), = W(T) DOC * DOCf MCF

    The amount of deposited DDOCm remaining not decomposed at the end of deposition year T:

    (5) DDOCmrem(T) = DDOCmd(T) e^(-k ((13-M)/12)

    The amount of deposited DDOCm decomposed during deposition year T:

    (6) DDOCmdec(T) = DDOCmd(T) (1 e^(-k ((13-M)/12)))

    The amount of DDOCm accumulated in the SWDS at the end of year T

    (7) DDOCma(T) = DDOCmrem(T) + ( DDOCma(T-1) e^-k)

    The total amount of DDOCm decomposed in year T

    (8) DDOCmdecomp(T) = DDOCmdec(T) + (DDOCma(T-1) (1 - e^-k))

    The amount of CH4 generated from DOC decomposed

    (9) CH4 generated(T) = DDOCmdecomp(T) F 16/12

    The amount of CH4 emitted

    (10) CH4 emitted in year T = (xCH4 generated (x,T) R(T)) (1- OX(T))

    Where: T = the year of inventory x = material fraction/waste category W(T) = amount deposited in year T MCF = Methane Correction Factor DOC = Degradable organic carbon (under aerobic conditions) DOCf = Fraction of DOC decomposing under anaerobic conditions DDOC = Decomposable Degradable Organic Carbon (under anaerobic conditions) DDOCmd(T) = mass of DDOC deposited year T DDOCmrem(T) = mass of DDOC deposited in inventory year T, remaining not decomposed at the end of year. DDOCmdec(T) = mass of DDOC deposited in inventory year T, decomposed during the year. DDOCma(T) = total mass of DDOC left not decomposed at end of year T. DDOCma(T-1) = total mass of DDOC left not decomposed at end of year T-1. DDOCmdecomp(T) = total mass of DDOC decomposed in year T. CH4 generated(T) = CH4 generated in year T F = Fraction of CH4 by volume in generated landfill gas 16/12 = Molecular weight ratio CH4/C R(T) = Recovered CH4 in year T OX(T) = Oxidation factor in year T (fraction) k = rate of reaction constant M = Month of reaction start (= delay time + 7)

  • Temperate TropicalDry Wet Dry

    Type of WasteDefault Value

    Range Range0.04 0.030.05 0.06 0.050.07 0.045

    0.02 0.010.03 0.03 0.020.04 0.025

    0.05 0.040.06 0.1 0.060.1 0.065

    0.06 0.050.08 0.185 0.10.2 0.085

    0.05 0.040.06 0.09 0.080.1 0.065

    IPCC Climate Zone Definitions

    MAT MAP MAP/PET Selected:1 Dry temperate 0 - 20C 1

    3Dry tropical

    > 20C 20C >1000 mm

    MAT Mean annual temperature; MAP Mean annual precipitation; PET Potential evapotranspiration.

    Relationship between half-life and decay rate

    Half-life = ln(2)/k where k is the decay rate constant.

    Conversion boxes for comparison

    Half-life (years)35 0.020

    IPCC DEFAULT METHANE GENERATION RATE CONSTANTS (1/yr)(Derived from k values obtained in experimental measurements, calculated by models, or used in GHG inventories and other studies)

    Default Value

    Default Value

    Slowly degrading waste

    Paper/textile wasteWood/ straw/ rubber waste

    Moderately degrading waste

    Garden and park waste

    Rapidly degrading waste

    Food waste/ sewage sludge

    Bulk MSW or Industrial Waste

    Mixed composition

    Moist and wet tropical

    The average annual MAT, MAP and PET during the time series selected to estimate the emission and indicated by the nearest representative meteorological station. The information available is not adequate to subdivide temperate into cold (

  • Half life (years)0.05 13.863

    Decay rate constant (y-1)

  • Dry basisTropical

    Dry Moist and Wet Food waste 0.38

    Range RangePaper/cardboard 0.44

    0.040.06 0.07 0.060.085 0.49

    0.020.04 0.035 0.030.05 Textiles 0.3

    0.050.08 0.17 0.150.2 0.47

    0.070.1 0.4 0.170.7 Wood & straw 0.5

    0.050.08 0.17 0.150.2 Nappies 0.6

    Inert materials and other: [DOC = 0]PlasticsMetalGlassOther

    Sewage sludgeBulk MSW waste

    Industrial waste

    Select2: 11 2

    IPCC DEFAULT DOC VALUES

    Default Value

    Default Value

    Garden and Park waste

    Rubber and Leather

  • Dry basis Wet basis Default DOC 0.44 0.3Range Range Select3 3

    0.20-0.50 0.15 0.08-0.20 Percent Waste Composition Data0.40-0.50 0.4 0.36-0.45

    Textiles0.45-0.55 0.2 0.18-0.22 1 Asia: Eastern 18.8 3.5

    0.25-0.50 0.24 0.20-0.40 2 Asia: South-central 11.3 2.5

    0.47 0.39 0.39 3 Asia- Southeast 12.9 2.7

    0.46-0.54 0.43 0.39-0.46 4 18.0 2.9

    0.44-0.80 0.24 0.18-0.32 5 Africa: Eastern 7.7 1.7

    Inert materials and other: [DOC = 0] 6 Africa: Middle 16.8 2.57 Africa: Northern 16.5 2.58 Africa: Southern 25.09 Africa: Western 9.8 1.0

    10 Europe: Eastern 21.8 4.7N.A 0.05 0.04-0.05 11 Europe: Northern 30.6 2.0N.A 0.18 0.12-0.28 12 Europe: Southern 17.0

    N.A 0.15 0-0.54 13 Europe: Western 27.5

    14 30.0

    Waste by composition15 6.0

    Bulk waste data only 16 America: North 23.2 3.917 America: Central 13.7 2.618 America: South 17.1 2.619 Caribbean 17.0 5.1

    17.9 2.917.7% 2.8%

    DEFAULT DOC VALUES IPCC REGIONAL DEFAULT VALUES FOR WASTE COMPOSITION, WASTE GENERATION, AND FRACTION DISPOSED

    Default Value

    Paper/ card board

    Asia- Western & Middle East

    Oceania: Austrailia & New ZealandOceania: Other Oceania

  • 0.38 0.5 0.49 0.6 0.05 0.47 0

    Percent Waste Composition Data

    Wood26.2 3.5 1.0 47.0 0.55 0.55

    40.3 7.9 0.8 37.2 0.21 0.74

    43.5 9.9 0.9 30.1 0.27 0.59

    41.1 9.8 0.6 27.6 0.42 0.68

    53.9 7.0 1.1 28.6 0.29 0.69

    43.4 6.5 30.8 0.29 0.6951.1 2.0 27.9 0.29 0.6923.0 15.0 37.0 0.29 0.6940.4 4.4 44.4 0.29 0.6930.1 7.5 1.4 34.5 0.38 0.9023.8 10.0 33.6 0.64 0.4736.9 10.6 35.5 0.52 0.85

    24.2 11.0 37.3 0.56 0.47

    36.0 24.0 10.0 0.69 0.85

    67.5 2.5 24.0 0.69 0.85

    33.9 6.2 1.4 31.4 0.65 0.5843.8 13.5 1.8 24.6 0.21 0.5044.9 4.7 0.7 30.0 0.26 0.5446.9 2.4 1.9 26.7 0.49 0.83

    39.5 8.3 1.2 31.5 101.339.0% 8.2% 0.0% 0.0% 0.0% 1.1% 31.1%

    Averages 0.42 0.68

    REGIONAL DEFAULT VALUES FOR WASTE COMPOSITION, WASTE GENERATION, AND FRACTION DISPOSED

    MSW Generation

    Rate (tonnes/cap/y

    r)

    Fraction MSW

    disposed to SWDS

    Food waste

    Garden / park

    Nappies / Diapers

    Sewage sludge

    Rubber / leather

    All other, inerts

  • 0.21

    0.25

    0.28

    0.30

    0.28

    0.280.280.270.220.270.280.27

    0.27

    0.39

    0.30

    0.280.310.280.29

    0.28

    Regional Average DOC (wt fraction)

  • Methane calculation from: Food waste

    DOC DOC 0.38DOCf DOCf 0.500Methane generation rate constant k 0.400

    h = ln(2)/k 1.7exp1 exp(-k) 0.67Process start in deposition year. Month M M 13.00exp2 exp(-k*((13-M)/12)) 1.00Fraction to CH4 F 0.500

    Year MCF

    W dm MCF B = D * exp2 C = D * (1- exp2)

    Gg fraction fraction Gg Gg Gg Gg Gg Gg

    1990 497 0.21 0.80 16 16 0 16 0 0

    1991 497 0.21 0.80 16 16 0 26 5 3

    1992 497 0.21 0.80 16 16 0 33 9 6

    1993 497 0.21 0.80 16 16 0 38 11 7

    1994 497 0.21 0.80 16 16 0 41 12 8

    1995 497 0.21 0.80 16 16 0 43 13 9

    1996 497 0.21 0.80 16 16 0 44 14 9

    1997 497 0.21 0.80 16 16 0 45 15 10

    1998 497 0.21 0.80 16 16 0 46 15 10

    1999 497 0.21 0.80 16 16 0 46 15 10

    2000 497 0.21 0.80 16 16 0 47 15 10

    2001 503 0.21 0.80 16 16 0 47 15 10

    2002 509 0.21 0.80 16 16 0 47 16 10

    2003 515 0.21 0.80 16 16 0 48 16 10

    2004 521 0.21 0.80 16 16 0 48 16 11

    2005 529 0.21 0.80 17 17 0 49 16 11

    2006 543 0.21 0.80 17 17 0 50 16 11

    2007 551 0.21 0.80 17 17 0 51 16 11

    2008 560 0.21 0.80 18 18 0 52 17 11

    2009 569 0.21 0.80 18 18 0 52 17 11

    2010 559 0.21 0.80 18 18 0 53 17 12

    2011 566 0.21 0.80 18 18 0 53 17 12

    2012 573 0.21 0.80 18 18 0 54 17 12

    2013 581 0.21 0.80 18 18 0 54 18 12

    2014 0 0.21 0.80 0 0 0 36 18 12

    2015 0 0.21 0.80 0 0 0 24 12 8

    2016 0 0.21 0.80 0 0 0 16 8 5

    2017 0 0.21 0.80 0 0 0 11 5 4

    2018 0 0.21 0.80 0 0 0 7 4 2

    2019 0 0.21 0.80 0 0 0 5 2 2

    National values

    Half-life time (t1/2, years):

    Amount deposited

    Dry matter content

    Decomposable DOC (DDOCm)

    deposited

    DDOCm not reacted.

    Deposition year

    DDOCm decomposed.

    Deposition year

    DDOCm accumulated in

    SWDS end of year

    DDOCm decomposed

    CH4 generated

    D = W * dm * DOC * DOCf * MCF

    H = B + (Hlast year * exp1)

    E = C + Hlast year * (1 - exp1)

    Q = E * 16/12 * F

    Dry Basis

  • 2020 0 0.21 0.80 0 0 0 3 2 1

  • Wet Basis

  • Methane calculation from: Paper / card board

    DOC DOC 0.44DOCf DOCf 0.500Methane generation rate constant k 0.070

    h = ln(2)/k 9.9exp1 exp(-k) 0.93Process start in deposition year. Month M M 13.00exp2 exp(-k*((13-M)/12)) 1.00Fraction to CH4 F 0.500

    Year MCF

    W dm MCF B = D * exp2 C = D * (1- exp2)

    Gg fraction fraction Gg Gg Gg Gg Gg Gg

    1990 104 0.45 0.80 8 8 0 8 0 01991 104 0.45 0.80 8 8 0 16 1 01992 104 0.45 0.80 8 8 0 23 1 11993 104 0.45 0.80 8 8 0 30 2 11994 104 0.45 0.80 8 8 0 36 2 11995 104 0.45 0.80 8 8 0 42 2 21996 104 0.45 0.80 8 8 0 47 3 21997 104 0.45 0.80 8 8 0 52 3 21998 104 0.45 0.80 8 8 0 57 4 21999 104 0.45 0.80 8 8 0 61 4 32000 104 0.45 0.80 8 8 0 65 4 32001 106 0.45 0.80 8 8 0 69 4 32002 107 0.45 0.80 8 8 0 73 5 32003 108 0.45 0.80 8 8 0 76 5 32004 110 0.45 0.80 9 9 0 80 5 32005 111 0.45 0.80 9 9 0 83 5 42006 114 0.45 0.80 9 9 0 86 6 42007 116 0.45 0.80 9 9 0 89 6 42008 118 0.45 0.80 9 9 0 93 6 42009 120 0.45 0.80 9 9 0 96 6 42010 117 0.45 0.80 9 9 0 98 6 42011 119 0.45 0.80 9 9 0 101 7 42012 121 0.45 0.80 9 9 0 104 7 52013 122 0.45 0.80 10 10 0 106 7 52014 0 0.45 0.80 0 0 0 99 7 52015 0 0.45 0.80 0 0 0 92 7 42016 0 0.45 0.80 0 0 0 86 6 42017 0 0.45 0.80 0 0 0 80 6 42018 0 0.45 0.80 0 0 0 75 5 42019 0 0.45 0.80 0 0 0 70 5 3

    National values

    Half-life time (t1/2, years):

    Amount deposited

    Dry matter content

    Decomposable DOC (DDOCm) deposited

    DDOCm not reacted.

    Deposition year

    DDOCm decomposed.

    Deposition year

    DDOCm accumulated in

    SWDS end of year

    DDOCm decomposed

    CH4 generated

    D = W * dm * DOC * DOCf * MCF

    H = B + (Hlast year * exp1)

    E = C + Hlast year * (1 - exp1)

    Q = E * 16/12 * F

    Dry Basis

  • 2020 0 0.45 0.80 0 0 0 65 5 3

  • Wet Basis

  • Methane calculation from: Nappies

    DOC DOC 0.6DOCf DOCf 0.500Methane generation rate constant k 0.170

    h = ln(2)/k 4.1exp1 exp(-k) 0.84Process start in deposition year. MonthM 13.00exp2 exp(-k*((13-M)/12)) 1.00Fraction to CH4 F 0.500

    Year MCF

    W dm MCF B = D * exp2 C = D * (1- exp2) Q = E * 16/12 * F

    Gg fraction fraction Gg Gg Gg Gg Gg Gg

    1990 104 0.40 0.80 10 10 0 10 0 01991 104 0.40 0.80 10 10 0 18 2 11992 104 0.40 0.80 10 10 0 26 3 21993 104 0.40 0.80 10 10 0 32 4 31994 104 0.40 0.80 10 10 0 37 5 31995 104 0.40 0.80 10 10 0 41 6 41996 104 0.40 0.80 10 10 0 45 6 41997 104 0.40 0.80 10 10 0 48 7 51998 104 0.40 0.80 10 10 0 50 7 51999 104 0.40 0.80 10 10 0 52 8 52000 104 0.40 0.80 10 10 0 54 8 52001 106 0.40 0.80 10 10 0 56 8 62002 107 0.40 0.80 10 10 0 57 9 62003 108 0.40 0.80 10 10 0 59 9 62004 110 0.40 0.80 11 11 0 60 9 62005 111 0.40 0.80 11 11 0 61 9 62006 114 0.40 0.80 11 11 0 63 10 62007 116 0.40 0.80 11 11 0 64 10 72008 118 0.40 0.80 11 11 0 65 10 72009 120 0.40 0.80 11 11 0 67 10 72010 117 0.40 0.80 11 11 0 68 10 72011 119 0.40 0.80 11 11 0 68 11 72012 121 0.40 0.80 12 12 0 69 11 72013 122 0.40 0.80 12 12 0 70 11 72014 0 0.40 0.80 0 0 0 59 11 72015 0 0.40 0.80 0 0 0 50 9 62016 0 0.40 0.80 0 0 0 42 8 52017 0 0.40 0.80 0 0 0 36 7 42018 0 0.40 0.80 0 0 0 30 6 42019 0 0.40 0.80 0 0 0 25 5 32020 0 0.40 0.80 0 0 0 21 4 3

    National values

    Half-life time (t1/2, years):

    Amount deposited

    Dry matter content

    Decomposable DOC (DDOCm)

    deposited

    DDOCm not reacted.

    Deposition year

    DDOCm decomposed.

    Deposition year

    DDOCm accumulated in

    SWDS end of year

    DDOCm decomposed

    CH4 generated

    D = W * dm * DOC * DOCf * MCF

    H = B + (Hlast year * exp1)

    E = C + Hlast year * (1 - exp1)

    Dry Basis

  • Wet Basis

  • Methane calculation from: Garden / park waste

    DOC DOC 0.49DOCf DOCf 0.500Methane generation rate constant k 0.170

    h = ln(2)/k 4.1exp1 exp(-k) 0.84Process start in deposition year. Month M M 13.00exp2 exp(-k*((13- 1.00Fraction to CH4 F 0.500

    Year MCF

    W dm MCF B = D * exp2 C = D * (1- exp2)Q = E*16/12*F

    Gg fraction fraction Gg Gg Gg Gg Gg Gg

    1990 0 0.84 0.80 0 0 0 0 0 01991 0 0.84 0.80 0 0 0 0 0 01992 0 0.84 0.80 0 0 0 0 0 01993 0 0.84 0.80 0 0 0 0 0 01994 0 0.84 0.80 0 0 0 0 0 01995 0 0.84 0.80 0 0 0 0 0 01996 0 0.84 0.80 0 0 0 0 0 01997 0 0.84 0.80 0 0 0 0 0 01998 0 0.84 0.80 0 0 0 0 0 01999 0 0.84 0.80 0 0 0 0 0 02000 0 0.84 0.80 0 0 0 0 0 02001 0 0.84 0.80 0 0 0 0 0 02002 0 0.84 0.80 0 0 0 0 0 02003 0 0.84 0.80 0 0 0 0 0 02004 0 0.84 0.80 0 0 0 0 0 02005 0 0.84 0.80 0 0 0 0 0 02006 0 0.84 0.80 0 0 0 0 0 02007 0 0.84 0.80 0 0 0 0 0 02008 0 0.84 0.80 0 0 0 0 0 02009 0 0.84 0.80 0 0 0 0 0 02010 0 0.84 0.80 0 0 0 0 0 02011 0 0.84 0.80 0 0 0 0 0 02012 0 0.84 0.80 0 0 0 0 0 02013 0 0.84 0.80 0 0 0 0 0 02014 0 0.84 0.80 0 0 0 0 0 02015 0 0.84 0.80 0 0 0 0 0 02016 0 0.84 0.80 0 0 0 0 0 02017 0 0.84 0.80 0 0 0 0 0 02018 0 0.84 0.80 0 0 0 0 0 02019 0 0.84 0.80 0 0 0 0 0 02020 0 0.84 0.80 0 0 0 0 0 0

    National values

    Half-life time (t1/2, years):

    Amount deposited

    Dry matter content

    Decomposable DOC (DDOCm) deposited

    DDOCm not reacted.

    Deposition year

    DDOCm decomposed.

    Deposition year

    DDOCm accumulated in

    SWDS end of yearDDOCm

    decomposedCH4

    generated

    D=W*dm*DOC* DOCf*MCF

    H = B + (Hlast year * exp1)

    E = C + Hlast year * (1 - exp1)

    Dry Basis

  • Wet Basis

  • Methane calculation from: Wood

    DOC DOC 0.5DOCf DOCf 0.500Methane generation rate constant k 0.035

    h = ln(2)/k 19.8exp1 exp(-k) 0.97Process start in deposition year. Month M M 13.00exp2 exp(-k*((13- 1.00Fraction to CH4 F 0.500

    Year MCF

    W dm MCF B = D * exp2

    Gg fraction fraction Gg Gg Gg Gg Gg Gg

    1990 0 0.45 0.80 0 0 0 0 0 01991 0 0.45 0.80 0 0 0 0 0 01992 0 0.45 0.80 0 0 0 0 0 01993 0 0.45 0.80 0 0 0 0 0 01994 0 0.45 0.80 0 0 0 0 0 01995 0 0.45 0.80 0 0 0 0 0 01996 0 0.45 0.80 0 0 0 0 0 01997 0 0.45 0.80 0 0 0 0 0 01998 0 0.45 0.80 0 0 0 0 0 01999 0 0.45 0.80 0 0 0 0 0 02000 0 0.45 0.80 0 0 0 0 0 02001 0 0.45 0.80 0 0 0 0 0 02002 0 0.45 0.80 0 0 0 0 0 02003 0 0.45 0.80 0 0 0 0 0 02004 0 0.45 0.80 0 0 0 0 0 02005 0 0.45 0.80 0 0 0 0 0 02006 0 0.45 0.80 0 0 0 0 0 02007 0 0.45 0.80 0 0 0 0 0 02008 0 0.45 0.80 0 0 0 0 0 02009 0 0.45 0.80 0 0 0 0 0 02010 0 0.45 0.80 0 0 0 0 0 02011 0 0.45 0.80 0 0 0 0 0 02012 0 0.45 0.80 0 0 0 0 0 02013 0 0.45 0.80 0 0 0 0 0 02014 0 0.45 0.80 0 0 0 0 0 02015 0 0.45 0.80 0 0 0 0 0 02016 0 0.45 0.80 0 0 0 0 0 02017 0 0.45 0.80 0 0 0 0 0 0

    National values

    Half-life time (t1/2, years):

    Amount deposited

    Dry matter content

    Decomposable DOC (DDOCm) deposited

    DDOCm not reacted.

    Deposition year

    DDOCm decomposed.

    Deposition yearDDOCm accumulated in SWDS end of year

    DDOCm decomposed

    CH4 generated

    D = W * dm * DOC * DOCf * MCF

    C = D * (1- exp2)

    H = B + (Hlast year * exp1)

    E = C + Hlast year * (1 - exp1)

    Q = E * 16/12 * F

    Dry Basis

  • 2018 0 0.45 0.80 0 0 0 0 0 02019 0 0.45 0.80 0 0 0 0 0 02020 0 0.45 0.80 0 0 0 0 0 0

  • Wet Basis

  • Methane calculation from: Textiles

    DOC DOC 0.3DOCf DOCf 0.500Methane generation rate constant k 0.070

    h = ln(2)/k 9.9exp1 exp(-k) 0.93Process start in deposition year. Month MM 13.00exp2 exp(-k*((13-M)/12)) 1.00Fraction to CH4 F 0.500

    Year MCF

    W dm MCF B = D * exp2 C = D * (1- exp2)

    Gg fraction fraction Gg Gg Gg Gg Gg Gg

    1990 26 0.42 0.80 1 1 0 1 0 0

    1991 26 0.42 0.80 1 1 0 2 0 01992 26 0.42 0.80 1 1 0 4 0 01993 26 0.42 0.80 1 1 0 5 0 01994 26 0.42 0.80 1 1 0 6 0 01995 26 0.42 0.80 1 1 0 7 0 01996 26 0.42 0.80 1 1 0 7 0 01997 26 0.42 0.80 1 1 0 8 0 01998 26 0.42 0.80 1 1 0 9 1 01999 26 0.42 0.80 1 1 0 10 1 02000 26 0.42 0.80 1 1 0 10 1 02001 26 0.42 0.80 1 1 0 11 1 02002 26 0.42 0.80 1 1 0 11 1 02003 27 0.42 0.80 1 1 0 12 1 12004 27 0.42 0.80 1 1 0 13 1 12005 27 0.42 0.80 1 1 0 13 1 12006 28 0.42 0.80 1 1 0 14 1 12007 29 0.42 0.80 1 1 0 14 1 12008 29 0.42 0.80 1 1 0 15 1 12009 29 0.42 0.80 1 1 0 15 1 12010 29 0.42 0.80 1 1 0 16 1 12011 29 0.42 0.80 1 1 0 16 1 12012 30 0.42 0.80 1 1 0 16 1 12013 30 0.42 0.80 2 2 0 17 1 12014 0 0.42 0.80 0 0 0 16 1 12015 0 0.42 0.80 0 0 0 15 1 12016 0 0.42 0.80 0 0 0 14 1 12017 0 0.42 0.80 0 0 0 13 1 12018 0 0.42 0.80 0 0 0 12 1 12019 0 0.42 0.80 0 0 0 11 1 1

    National values

    Half-life time (t1/2, years):

    Amount deposited

    Dry matter content

    Decomposable DOC (DDOCm)

    deposited

    DDOCm not reacted.

    Deposition year

    DDOCm decomposed.

    Deposition year

    DDOCm accumulated in

    SWDS end of year

    DDOCm decomposed

    CH4 generated

    D = W * dm * DOC * DOCf * MCF

    H = B + (Hlast year * exp1)

    E = C + Hlast year * (1 - exp1)

    Q = E * 16/12 * F

    Dry Basis

  • 2020 0 0.42 0.80 0 0 0 10 1 0

  • Wet Basis

  • Methane calculation from: Sludge

    DOC DOC 0DOCf DOCf 0.500Methane generation rate constant k 0.400

    h = ln(2)/k 1.7exp1 exp(-k) 0.67Process start in deposition year. MontM 13.00exp2 exp(-k*((13-M)/12)) 1.00Fraction to CH4 F 0.500

    Year MCF

    W dm MCF

    Gg fraction Gg Gg Gg Gg Gg Gg

    1990 0 0.00 0.80 0 0 0 0 0 01991 0 0.00 0.80 0 0 0 0 0 01992 0 0.00 0.80 0 0 0 0 0 01993 0 0.00 0.80 0 0 0 0 0 01994 0 0.00 0.80 0 0 0 0 0 01995 0 0.00 0.80 0 0 0 0 0 01996 0 0.00 0.80 0 0 0 0 0 01997 0 0.00 0.80 0 0 0 0 0 01998 0 0.00 0.80 0 0 0 0 0 01999 0 0.00 0.80 0 0 0 0 0 02000 0 0.00 0.80 0 0 0 0 0 02001 0 0.00 0.80 0 0 0 0 0 02002 0 0.00 0.80 0 0 0 0 0 02003 0 0.00 0.80 0 0 0 0 0 02004 0 0.00 0.80 0 0 0 0 0 02005 0 0.00 0.80 0 0 0 0 0 02006 0 0.00 0.80 0 0 0 0 0 02007 0 0.00 0.80 0 0 0 0 0 02008 0 0.00 0.80 0 0 0 0 0 02009 0 0.00 0.80 0 0 0 0 0 02010 0 0.00 0.80 0 0 0 0 0 02011 0 0.00 0.80 0 0 0 0 0 02012 0 0.00 0.80 0 0 0 0 0 02013 0 0.00 0.80 0 0 0 0 0 02014 0 0.00 0.80 0 0 0 0 0 02015 0 0.00 0.80 0 0 0 0 0 02016 0 0.00 0.80 0 0 0 0 0 0

    National values

    Half-life time (t1/2, years):

    Amount deposite

    d

    Dry matter content

    Decomposable DOC

    (DDOCm) deposited

    DDOCm not reacted.

    Deposition year

    DDOCm decompose

    d. Deposition

    year

    DDOCm accumulated in SWDS end

    of year

    DDOCm decompose

    d

    CH4 generate

    d

    D = W * dm * DOC *

    DOCf * MCFB = D *

    exp2C = D *

    (1- exp2)H = B + (Hlast

    year * exp1)

    E = C + Hlast year * (1 -

    exp1)Q = E *

    16/12 * Ffracti

    on

    Dry Basis

  • 2017 0 0.00 0.80 0 0 0 0 0 02018 0 0.00 0.80 0 0 0 0 0 02019 0 0.00 0.80 0 0 0 0 0 0

    2020 0 0.00 0.80 0 0 0 0 0 0

  • Wet Basis

  • Methane calculation from: Bulk MSWThis sheet applies only to the bulk waste option and can be deleted when the waste composition option has been chosen

    DOC DOC 0DOCf DOCf 0.500Methane generation rate constant k 0.000

    h = ln(2)/k #DIV/0!exp1 exp(-k) 1.00Process start in deposition year. Month M M 13.00exp2 exp(-k*((13-M)/12)) 1.00Fraction to CH4 F 0.500

    Year MCF

    W dm MCF B = D * exp2

    Gg fraction fraction Gg Gg Gg Gg Gg Gg

    1990 790 0.00 0.80 0 0 0 0 0 01991 790 0.00 0.80 0 0 0 0 0 01992 790 0.00 0.80 0 0 0 0 0 01993 790 0.00 0.80 0 0 0 0 0 01994 790 0.00 0.80 0 0 0 0 0 01995 790 0.00 0.80 0 0 0 0 0 01996 790 0.00 0.80 0 0 0 0 0 01997 790 0.00 0.80 0 0 0 0 0 01998 790 0.00 0.80 0 0 0 0 0 01999 790 0.00 0.80 0 0 0 0 0 02000 790 0.00 0.80 0 0 0 0 0 02001 800 0.00 0.80 0 0 0 0 0 02002 809 0.00 0.80 0 0 0 0 0 02003 819 0.00 0.80 0 0 0 0 0 02004 829 0.00 0.80 0 0 0 0 0 02005 842 0.00 0.80 0 0 0 0 0 02006 863 0.00 0.80 0 0 0 0 0 02007 876 0.00 0.80 0 0 0 0 0 02008 891 0.00 0.80 0 0 0 0 0 02009 905 0.00 0.80 0 0 0 0 0 02010 889 0.00 0.80 0 0 0 0 0 02011 900 0.00 0.80 0 0 0 0 0 02012 912 0.00 0.80 0 0 0 0 0 02013 923 0.00 0.80 0 0 0 0 0 02014 0 0.00 0.80 0 0 0 0 0 02015 0 0.00 0.80 0 0 0 0 0 02016 0 0.00 0.80 0 0 0 0 0 02017 0 0.00 0.80 0 0 0 0 0 0

    National values

    Half-life time (t1/2, years):

    Amount deposited

    Dry matter content

    Decomposable DOC (DDOCm) deposited

    DDOCm not reacted.

    Deposition year

    DDOCm decomposed.

    Deposition year

    DDOCm accumulated in SWDS end of

    year

    DDOCm decomposed

    CH4 generated

    D = W * dm * DOC * DOCf * MCF

    C = D * (1- exp2)

    H = B + (Hlast year * exp1)

    E = C + Hlast year * (1 - exp1)

    Q = E * 16/12 * F

    Dry Basis

  • 2018 0 0.00 0.80 0 0 0 0 0 02019 0 0.00 0.80 0 0 0 0 0 0

    2020 0 0.00 0.80 0 0 0 0 0 0

  • Wet Basis

  • Methane calculation from: Sludge

    DOC DOC 0

    DOCf DOCf 0.500Methane generation rate constant k 0.170

    h = ln(2)/k 4.1exp1 exp(-k) 0.84Process start in deposition year. Month M M 13.00

    exp2 exp(-k*((13-M)/12)) 1.00

    Fraction to CH4 F 0.500

    Year MCF

    W dm MCF B = D * exp2 C = D * (1- exp2)

    Gg fraction fraction Gg Gg Gg Gg Gg Gg

    1990 0 0.00 0.80 0 0 0 0 0 01991 0 0.00 0.80 0 0 0 0 0 01992 0 0.00 0.80 0 0 0 0 0 01993 0 0.00 0.80 0 0 0 0 0 01994 0 0.00 0.80 0 0 0 0 0 01995 0 0.00 0.80 0 0 0 0 0 01996 0 0.00 0.80 0 0 0 0 0 01997 0 0.00 0.80 0 0 0 0 0 01998 0 0.00 0.80 0 0 0 0 0 01999 0 0.00 0.80 0 0 0 0 0 02000 0 0.00 0.80 0 0 0 0 0 02001 0 0.00 0.80 0 0 0 0 0 02002 0 0.00 0.80 0 0 0 0 0 02003 0 0.00 0.80 0 0 0 0 0 02004 0 0.00 0.80 0 0 0 0 0 02005 0 0.00 0.80 0 0 0 0 0 02006 0 0.00 0.80 0 0 0 0 0 02007 0 0.00 0.80 0 0 0 0 0 02008 0 0.00 0.80 0 0 0 0 0 02009 0 0.00 0.80 0 0 0 0 0 02010 0 0.00 0.80 0 0 0 0 0 02011 0 0.00 0.80 0 0 0 0 0 02012 0 0.00 0.80 0 0 0 0 0 02013 0 0.00 0.80 0 0 0 0 0 02014 0 0.00 0.80 0 0 0 0 0 02015 0 0.00 0.80 0 0 0 0 0 02016 0 0.00 0.80 0 0 0 0 0 02017 0 0.00 0.80 0 0 0 0 0 02018 0 0.00 0.80 0 0 0 0 0 0

    National values

    Half-life time (t1/2, years):

    Amount deposited

    Dry matter content

    Decomposable DOC (DDOCm)

    deposited

    DDOCm not reacted.

    Deposition year

    DDOCm decomposed.

    Deposition yearDDOCm accumulated in SWDS end of year

    DDOCm decomposed

    CH4 generated

    D = W * dm * DOC * DOCf * MCF

    H = B + (Hlast year * exp1)

    E = C + Hlast year * (1 - exp1)

    Q = E * 16/12 * F

    Dry Basis

  • 2019 0 0.00 0.80 0 0 0 0 0 0

    2020 0 0.00 0.80 0 0 0 0 0 0

  • Wet Basis

  • Sektor LimbahCategory Pengolahan Limbah Padat secara BiologiKode Kategori 4BLembar

    STEP 1 STEP 2 STEP 3A B C D E

    Tahun

    E = (C - D)Pengomposan - Limbah Padat Domestik

    2000 23.71 4 0.0948 0.00 0.09482001 23.99 4 0.0960 0.00 0.09602002 24.27 4 0.0971 0.00 0.09712003 24.56 4 0.0982 0.00 0.09822004 24.86 4 0.0994 0.00 0.09942005 25.25 4 0.1010 0.00 0.10102006 25.89 4 0.1036 0.00 0.10362007 26.28 4 0.1051 0.00 0.10512008 26.72 4 0.1069 0.00 0.10692009 27.14 4 0.1086 0.00 0.10862010 26.66 4 0.1067 0.00 0.10672011 27.00 4 0.1080 0.00 0.10802012 27.35 4 0.1094 0.00 0.10942013 27.70 4 0.1108 0.00 0.11082014 0.00 4 0.0000 0.00 0.00002015 0.00 4 0.0000 0.00 0.00002016 0.00 4 0.0000 0.00 0.00002017 0.00 4 0.0000 0.00 0.00002018 0.00 4 0.0000 0.00 0.00002019 0.00 4 0.0000 0.00 0.00002020 0.00 4 0.0000 0.00 0.0000

    1 of 1 Estimasi Emisi CH4 dari Pengolahan Limbah Padat secara Biologi

    Jumlah sampah yang diolah secara biologi dlm satu tahun (Gg)

    Faktor Emisi (g CH4/kg sampah terolah)

    Gas Metana yang dihasilkan per tahun

    (Gg CH4)

    Gas Metana yang di-recovery/di-flare per tahun

    Gas Metana yang dihasilkan per tahun

    (Gg CH4) (Gg CH4)

    C= (A x B) x10-3

  • Tahun

    Anaerobik Digester pada fasilitas Biogas2000 1 0.000 0 0.00002001 1 0.000 0 0.00002002 1 0.000 0 0.00002003 1 0.000 0 0.00002004 1 0.000 0 0.00002005 1 0.000 0 0.00002006 1 0.000 0 0.00002007 1 0.000 0 0.00002008 1 0.000 0 0.00002009 1 0.000 0 0.00002010 1 0.000 0 0.00002011 1 0.000 0 0.00002012 1 0.000 0 0.00002013 1 0.000 0 0.00002014 1 0.000 0 0.00002015 1 0.000 0 0.00002016 1 0.000 0 0.00002017 1 0.000 0 0.00002018 1 0.000 0 0.00002019 1 0.000 0 0.00002020 1 0.000 0 0.0000

    1 0.000 0 0.0000

    2 If anaerobic digestion involves recovery and energy use of the gas, the emissions should be reported in the Energy Sector.

    3 Information on whether the amount treated is given as wet or dry weight should be given.

    Jumlah sampah yang diolah secara biologi dlm satu tahun (Gg)

    Faktor Emisi (g CH4/kg sampah terolah)

    Gas Metana yang dihasilkan per tahun

    (Gg CH4)

    Gas Metana yang di-recovery/di-flare per tahun

    Gas Metana yang dihasilkan per tahun

    (Gg CH4) (Gg CH4)

    1 Information on the waste category should include information of the origin of the waste (MSW, Industrial, Sludge or Other) and type of waste (Food waste or Garden and Park Waste).

  • dari Pengolahan Limbah Padat secara Biologi

  • Sektor LimbahCategory Pengolahan Limbah Padat secara Biologi

    4BLembar

    STEP 1 STEP 2A B C

    TahunEmission Factor

    (Gg)A B

    Pengomposan - Limbah Padat Domestik2000 23.71 0.300 0.007112001 23.99 0.300 0.007202002 24.27 0.300 0.007282003 24.56 0.300 0.007372004 24.86 0.300 0.007462005 25.25 0.300 0.007582006 25.89 0.300 0.007772007 26.28 0.300 0.007892008 26.72 0.300 0.008022009 27.14 0.300 0.008142010 26.66 0.300 0.008002011 27.00 0.300 0.008102012 27.35 0.300 0.008202013 27.70 0.300 0.008312014 0.00 0.300 0.000002015 0.00 0.300 0.000002016 0.00 0.300 0.000002017 0.00 0.300 0.000002018 0.00 0.300 0.000002019 0.00 0.300 0.000002020 0.00 0.300 0.00000

    2 If anaerobic digestion involves recovery and energy use of the gas, the emissions should be reported in the Energy Sector.

    3 Information on whether the amount treated is given as wet or dry weight should be given.

    Kode Kategori

    1 of 1 Estimasi Emisi CH4 dari Pengolahan Limbah Padat secara Biologi

    Jumlah sampah yang diolah secara biologi dlm satu

    tahun

    Net Annual Nitrous Oxide Emissions(g N2O/kg waste

    treated) (Gg N2O) C = A x B x (10-3)

    1 Information on the waste category should include information of the origin of the waste (MSW, Industrial, Sludge or Other) and type of waste (Food waste or Garden and Park Waste).

  • 1 of 1 Estimasi Emisi CH4 dari Pengolahan Limbah Padat secara Biologi

  • Sektor LimbahKategori Insinerasi dan Pembakaran TerbukaKode Kategori 4C2Lembar 1 of 1 Estimasi Jumlah Sampah Dibakar Terbuka

    STEP 1A B C D E

    Tahun

    Populasi

    P(Capita) (fraction) (ton sampah/kapita/tahun) (fraction)

    2000 11,543,697 39.59% 0.205 100%

    2001 11,679,272 39.59% 0.205 100%

    2002 11,817,525 39.59% 0.205 100%

    2003 11,958,516 39.59% 0.205 100%

    2004 12,102,307 39.59% 0.205 100%

    2005 12,293,938 39.59% 0.205 100%

    2006 12,605,970 39.59% 0.205 100%

    2007 12,797,722 39.59% 0.205 100%

    2008 13,011,016 39.59% 0.205 100%

    2009 13,213,252 39.59% 0.205 100%

    2010 12,982,204 39.59% 0.205 100%

    2011 13,147,155 39.59% 0.205 100%

    2012 13,315,491 39.59% 0.205 100%

    2013 13,487,289 39.59% 0.205 100%

    2014 0 39.59% 0.205 100%

    2015 0 39.59% 0.205 100%

    2016 0 39.59% 0.205 100%

    2017 0 39.59% 0.205 100%

    2018 0 39.59% 0.205 100%

    2019 0 39.59% 0.205 100%

    2020 0 39.59% 0.205 100%

    Fraksi Populasi yang membakar

    sampah

    Timbulan Sampah per Kapita

    Fraksi jumlah sampah yang terbakar dari total sampah yang dibakar

    P frac MSWP Bfrac 1

    1 When all the amount of waste is burned Bfrac could be considered equal 1. When a substantial quantity of waste in open dumps is burned, a relatively large part of waste is left unburned. In this situation, Bfrac should be estimated using survey or research data available or expert judgement.

  • STEP 1F

    (Gg/tahun)

    938.70

    949.72

    960.96

    972.43

    984.12

    999.70

    1,025.08

    1,040.67

    1,058.02

    1,074.46

    1,055.67

    1,069.09

    1,082.77

    1,096.74

    0.00

    0.00

    0.00

    0.00

    0.00

    0.00

    0.00

    Jumlah total sampah yang

    dibakar terbuka

    MSWB

    could be considered equal 1. When a substantial quantity of waste in open dumps is burned, a relatively large part of waste is left should be estimated using survey or research data available or expert judgement.

  • Sektor LimbahKategori Insinerasi dan Pembakaran Terbuka

    4C2Lembar 1 of 1 Estimasi Emisi CO2 dari Sampah Dibakar Terbuka

    STEP 1 STEP 2F G H I J K L

    Jenis Sampah / Tahun (Wet Weight) dm CF FCF OF(Gg Waste) (fraction) (fraction) (fraction) (fraction) 44/12

    F = A.B.C.D L = F.G.H.I.J.K Sampah Domestik 2000 938.70

    Kertas 124.1 21% 0.46 0.01 0.58 3.67 0.25Tekstil 30.6 42% 0.50 0.20 0.58 3.67 2.72Nappies 0.0 40% 0.70 0.10 0.58 3.67 0.00Karet 5.1 91% 0.67 0.20 0.58 3.67 1.32Plastik 129.1 49% 0.75 1.00 0.58 3.67 100.73Lain - lain 2.7 88% 0.03 1.00 0.58 3.67 0.15

    Total 2000 105.16Sampah Domestik 2001 949.72

    Kertas 125.6 21% 0.46 0.01 0.58 3.67 0.25Tekstil 31.0 42% 0.50 0.20 0.58 3.67 2.75Nappies 0.0 40% 0.70 0.10 0.58 3.67 0.00Karet 5.1 91% 0.67 0.20 0.58 3.67 1.33Plastik 130.6 49% 0.75 1.00 0.58 3.67 101.91Lain - lain 2.8 88% 0.03 1.00 0.58 3.67 0.15

    Total 2001 106.40Sampah Domestik 2002 960.96

    Kertas 127.0 21% 0.46 0.01 0.58 3.67 0.26Tekstil 31.3 42% 0.50 0.20 0.58 3.67 2.78Nappies 0.0 40% 0.70 0.10 0.58 3.67 0.00Karet 5.2 91% 0.67 0.20 0.58 3.67 1.35Plastik 132.1 49% 0.75 1.00 0.58 3.67 103.12Lain - lain 2.8 88% 0.03 1.00 0.58 3.67 0.16

    Kode Kategori

    Total Amount of Waste open-burned

    Kandungan Bahan Kering

    Fraction of Carbon in Dry Matter 2

    Fraction of Fossil Carbon in Total Carbon 3

    Oxidation Factor

    Conversion Factor

    Fossil CO2 Emissions

    (Gg CO2)

    Per Komponen Sampah

    Per Komponen Sampah

    Per Komponen Sampah

  • Total 2002 107.66

    Jenis Sampah / Tahun (Wet Weight) dm CF FCF OF(Gg Waste) (fraction) (fraction) (fraction) (fraction) 44/12

    Sampah Domestik 2003 972.43Kertas 128.6 21% 0.46 0.01 0.58 3.67 0.26Tekstil 31.7 42% 0.50 0.20 0.58 3.67 2.81Nappies 0.0 40% 0.70 0.10 0.58 3.67 0.00Karet 5.3 91% 0.67 0.20 0.58 3.67 1.36Plastik 133.7 49% 0.75 1.00 0.58 3.67 104.35Lain - lain 2.8 88% 0.03 1.00 0.58 3.67 0.16

    Total 2003 108.94Sampah Domestik 2004 984.12

    Kertas 130.1 21% 0.46 0.01 0.58 3.67 0.26Tekstil 32.1 42% 0.50 0.20 0.58 3.67 2.85Nappies 0.0 40% 0.70 0.10 0.58 3.67 0.00Karet 5.3 91% 0.67 0.20 0.58 3.67 1.38Plastik 135.3 49% 0.75 1.00 0.58 3.67 105.61Lain - lain 2.9 88% 0.03 1.00 0.58 3.67 0.16

    Total 2004 110.25Sampah Domestik 2005 999.70

    Kertas 132.2 21% 0.46 0.01 0.58 3.67 0.27Tekstil 32.6 42% 0.50 0.20 0.58 3.67 2.89Nappies 0.0 40% 0.70 0.10 0.58 3.67 0.00Karet 5.4 91% 0.67 0.20 0.58 3.67 1.40Plastik 137