penyusun batubara

17
PENYUSUN BATUBARA Konsep bahwa batubara berasal dari sisa tumbuhan diperkuat dengan ditemukannya cetakan tumbuhan di dalam lapisan batubara. Dalam penyusunannya batubara diperkaya dengan berbagai macam polimer organik yang berasal dari antara lain karbohidrat, lignin, dll. Namun komposisi dari polimer-polimer ini bervariasi tergantung pada spesies dari tumbuhan penyusunnya. Lignin Lignin merupakan suatu unsur yang memegang peranan penting dalam merubah susunan sisa tumbuhan menjadi batubara. Sementara ini susunan molekul umum dari lignin belum diketahui dengan pasti, namun susunannya dapat diketahui dari lignin yang terdapat pada berbagai macam jenis tanaman. Sebagai contoh lignin yang terdapat pada rumput mempunyai susunan p-koumaril alkohol yang kompleks. Pada umumnya lignin merupakan polimer dari satu atau beberapa jenis alkohol. Hingga saat ini, sangat sedikit bukti kuat yang mendukung teori bahwa lignin merupakan unsur organik utama yang menyusun batubara. Karbohidrat Gula atau monosakarida merupakan alkohol polihirik yang mengandung antara lima sampai delapan atom karbon. Pada umumnya gula muncul sebagai kombinasi antara gugus karbonil dengan hidroksil yang membentuk siklus hemiketal. Bentuk lainnya mucul sebagai disakarida, trisakarida, ataupun polisakarida. Jenis polisakarida inilah yang umumnya menyusun batubara, karena dalam tumbuhan jenis inilah yang paling banyak mengandung

Upload: yohanes-den

Post on 15-Feb-2015

229 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: PENYUSUN BATUBARA

PENYUSUN BATUBARA

Konsep bahwa batubara berasal dari sisa tumbuhan diperkuat dengan ditemukannya cetakan tumbuhan di dalam lapisan batubara. Dalam penyusunannya batubara diperkaya dengan berbagai macam polimer organik yang berasal dari antara lain karbohidrat, lignin, dll. Namun komposisi dari polimer-polimer ini bervariasi tergantung pada spesies dari tumbuhan penyusunnya.

Lignin

Lignin merupakan suatu unsur yang memegang peranan penting dalam merubah susunan sisa tumbuhan menjadi batubara. Sementara ini susunan molekul umum dari lignin belum diketahui dengan pasti, namun susunannya dapat diketahui dari lignin yang terdapat pada berbagai macam jenis tanaman. Sebagai contoh lignin yang terdapat pada rumput mempunyai susunan p-koumaril alkohol yang kompleks. Pada umumnya lignin merupakan polimer dari satu atau beberapa jenis alkohol.

Hingga saat ini, sangat sedikit bukti kuat yang mendukung teori bahwa lignin merupakan unsur organik utama yang menyusun batubara.

Karbohidrat

Gula atau monosakarida merupakan alkohol polihirik yang mengandung antara lima sampai delapan atom karbon. Pada umumnya gula muncul sebagai kombinasi antara gugus karbonil dengan hidroksil yang membentuk siklus hemiketal. Bentuk lainnya mucul sebagai disakarida, trisakarida, ataupun polisakarida. Jenis polisakarida inilah yang umumnya menyusun batubara, karena dalam tumbuhan jenis inilah yang paling banyak mengandung  polisakarida (khususnya selulosa) yang kemudian terurai dan membentuk batubara.

Protein

Protein merupakan bahan organik yang mengandung nitrogen yang selalu hadir sebagai protoplasma dalam sel mahluk hidup. Struktur dari protein pada umumnya adalah rantai asam amino yang dihubungkan oleh rantai amida. Protein pada tumbuhan umunya muncul sebagai steroid, lilin.

Material Organik Lain

Resin

Page 2: PENYUSUN BATUBARA

Resin merupakan material yang muncul apabila tumbuhan mengalami luka pada batangnya.

Tanin

Tanin umumnya banyak ditemukan pada tumbuhan, khususnya pada bagian batangnya.

Alkaloida

Alkaloida merupakan komponen organik penting terakhir yang menyusun batubara. Alkaloida sendiri terdiri dari molekul nitrogen dasar yang muncul dalam bentuk rantai.

Porphirin

Porphirin merupakan komponen nitrogen yang berdasar atas sistem pyrrole. Porphirin biasanya terdiri atas suatu struktur siklik yang terdiri atas empat cincin pyrolle yang tergabung dengan jembatan methin. Kandungan unsur porphirin dalam batubara ini telah diajukan sebagai marker yang sangat penting untuk mendeterminasi perkembangan dari proses coalifikasi.

Hidrokarbon

Unsur ini terdiri atas bisiklik alkali, hidrokarbon terpentin, dan pigmen kartenoid. Sebagai tambahan, munculnya turunan picene yang mirip dengan sistem aromatik polinuklir dalam ekstrak batubara dijadikan tanda inklusi material sterane-type dalam pembentukan batubara. Ini menandakan bahwa struktur rangka tetap utuh selama proses pematangan, dan tidak adanya perubahan serta penambahan struktur rangka yang baru.

Konstituen Tumbuhan yang Inorganik (Mineral)

Selain material organik yang telah dibahas diatas, juga ditemukan adanya material inorganik yang menyusun batubara. Secara umum mineral ini dapat dibagi menjadi dua jenis, yaitu unsur mineral inheren dan unsur mineral eksternal. Unsur mineral inheren adalah material inorganik yang berasal dari tumbuhan yang menyusun bahan organik yang terdapat dalam lapisan batubara. Sedangkan unsur mineral eksternal merupakan unsur yang dibawa dari luar kedalam lapisan batubara, pada umumya jenis inilah yang menyusun bagian inorganik dalam sebuah lapisan batubara.

PROSES PEMBENTUKAN BATUBARA

Page 3: PENYUSUN BATUBARA

Pembentukan batubara pada umumnya dijelaskan dengan asumsi bahwa material tanaman terkumpul dalam suatu periode waktu yang lama, mengalami peluruhan sebagian kemudian hasilnya teralterasi oleh berbagai macam proses kimia dan fisika. Selain itu juga, dinyatakan bahwa proses pembentukan batubara harus ditandai dengan terbentuknya peat.

HETEROATOM DALAM BATUBARA

Heteroatom dalam batubara  bisa berasal dari dalam (sisa-sisa tumbuhan) dan berasal dari luar yang masuk selama terjadinya proses pematangan.

Nitrogen pada batubara pada umumnya ditemukan dengan kisaran 0,5 – 1,5 % w/w yang kemungkinan berasal dari cairan yang terbentuk selama proses pembentukan batubara.

Oksigen pada batubara dengan kandungan 20 – 30 % w/w terdapat pada lignit atau 1,5 – 2,5 % w/w untuk antrasit, berasal dari bermacam-macam material penyusun tumbuhan yang terakumulasi ataupun berasal dari inklusi oksigen yang terjadi pada saat kontak lapisan source dengan oksigen di udara terbuka atau air pada saat terjadinya sedimentasi.

Variasi kandungan sulfur pada batubara berkisar antara 0,5 – 5 % w/w yang muncul dalam bentuk sulfur organik dan sulfur inorganik yang umumnya muncul dalam bentuk pirit. Sumber sulfur dalam batubara berasal dari berbagai sumber. Pada batubara dengan kandungan sulfur rendah, sulfurnya berasal material tumbuhan penyusun batubara. Sedangkan untuk batubara dengan kandungan sulfur menengah-tinggi, sulfurnya berasal dari air laut.

Sumber Daya dan   Cadangan

Sumber daya batubara (Coal Resources) adalah bagian dari endapan batubara yang diharapkan dapat dimanfaatkan. Sumber daya batu bara ini dibagi dalam kelas-kelas sumber daya berdasarkan tingkat keyakinan geologi yang ditentukan secara kualitatif oleh kondisi geologi/tingkat kompleksitas dan secara kuantitatif oleh jarak titik informasi. Sumberdaya ini dapat meningkat menjadi cadangan apabila setelah dilakukan kajian kelayakan dinyatakan layak.

Cadangan batubara (Coal Reserves) adalah bagian dari sumber daya batubara yang telah diketahui dimensi, sebaran kuantitas, dan kualitasnya, yang pada saat pengkajian kelayakan dinyatakan layak untuk ditambang.

Page 4: PENYUSUN BATUBARA

Klasifikasi sumber daya dan cadangan batubara didasarkan pada tingkat keyakinan geologi dan kajian kelayakan. Pengelompokan tersebut mengandung dua aspek, yaitu aspek geologi dan aspek ekonomi.

Kelas Sumber Daya

1. Sumber Daya Batubara Hipotetik (Hypothetical Coal Resource)

Sumber daya batu bara hipotetik adalah batu bara di daerah penyelidikan atau bagian dari daerah penyelidikan, yang dihitung berdasarkan data yang memenuhi syarat-syarat yang ditetapkan untuk tahap penyelidikan survei tinjau.

Sejumlah kelas sumber daya yang belum ditemukan yang sama dengan cadangan batubara yg diharapkan mungkin ada di daerah atau wilayah batubara yang sama dibawah kondisi geologi atau perluasan dari sumberdaya batubara tereka. Pada umumnya, sumberdaya berada pada daerah dimana titik-titik sampling dan pengukuran serat bukti untuk ketebalan dan keberadaan batubara diambil dari distant outcrops, pertambangan, lubang-lubang galian, serta sumur-sumur. Jika eksplorasi menyatakan bahwa kebenaran dari hipotesis sumberdaya dan mengungkapkan informasi yg cukup tentang kualitasnya, jumlah serta rank, maka mereka akan di klasifikasikan kembali sebagai sumber daya teridentifikasi (identified resources).

2. Sumber Daya Batubara Tereka (inferred Coal Resource)

Sumber daya batu bara tereka adalah jumlah batu bara di daerah penyelidikan atau bagian dari daerah penyelidikan, yang dihitung berdasarkan data yang memenuhi syarat-syarat yang ditetapkan untuk tahap penyelidikan prospeksi.

Titik pengamatan mempunyai jarak yang cukup jauh sehingga penilaian dari sumber daya tidak dapat diandalkan. Daerah sumber daya ini ditentukan dari proyeksi ketebalan dan tanah penutup, rank, dan kualitas data dari titik pengukuran dan sampling berdasarkan bukti geologi dalam daerah antara 1,2 km – 4,8 km. termasuk antrasit dan bituminus dengan ketebalan 35 cm atau lebih, sub bituminus dengan ketebalan 75 cm atau lebih, lignit dengan ketebalan 150 cm atau lebih.

3. Sumber Daya Batubara Tertunjuk (Indicated Coal Resource)

Sumber daya batu bara tertunjuk adalah jumlah batu bara di daerah penyelidikan atau bagian dari daerah penyelidikan, yang dihitung berdasarkan data yang memenuhi syarat-syarat yang ditetapkan untuk tahap eksplorasi pendahuluan.

Page 5: PENYUSUN BATUBARA

Densitas dan kualitas titik pengamatan cukup untuk melakukan penafsiran secara relistik dari ketebalan, kualitas, kedalaman, dan jumlah insitu batubara dan dengan alasan sumber daya yang ditafsir tidak akan mempunyai variasi yang cukup besar jika eksplorasi yang lebih detail dilakukan. Daerah sumber daya ini ditentukan dari proyeksi ketebalan dan tanah penutup, rank, dan kualitas data dari titik pengukuran dan sampling berdasarkan bukti gteologi dalam daerah antara 0,4 km – 1,2 km. termasuk antrasit dan bituminus dengan ketebalan 35 cm atau lebih, sib bituminus dengan ketebalan 75 cm atau lebih, lignit dengan ketebalan 150 cm.

4. Sumber Daya Batubara Terukur (Measured Coal Resourced)

Sumber daya batu bara terukur adalah jumlah batu bara di daerah peyelidikan atau bagian dari daerah penyelidikan, yang dihitung berdasarkan data yang memenuhi syarat–syarat yang ditetapkan untuk tahap eksplorasi rinci.

Densitas dan kualitas titik pengamatan cukup untuk diandalkan untuk melakukan penafsiran ketebalan batubara, kualitas, kedalaman, dan jumlah batubara insitu. Daerah sumber daya ini ditentukan dari proyeksi ketebalan dan tanah penutup, rank, dan kualitas data dari titik pengukuran dan sampling berdasarkan bukti geologi dalam radius 0,4 km. Termasuk antrasit dan bituminus dengan ketebalan 35 cm atau lebih, sub bituminus dengan ketebalan 75 cm atau lebih, lignit dengan ketebalan 150 cm.

Penghitungan Sumber Daya

Ada beberapa metode yang dapat digunakan untuk menghitung sumberdaya batubara di daerah penelitian. Pemakaian metode disesuaikan dengan kualitas data, jenis data yang diperoleh, dan kondisi lapangan serta metode penambangan (misalnya sudut penambangan). Karena data yang digunakan dalam penghitungan hanya berupa data singkapan, maka metode yang digunakan untuk penghitungan sumber daya daerah penelitian adalah metode Circular (USGS) (Gambar).

Page 6: PENYUSUN BATUBARA

Aturan Penghitungan Sumberdaya Batubara dengan Metode Circular (USGS) (Wood et al., 1983)

Penghitungan sumber daya batubara menurut USGS dapat dihitung dengan rumus

Tonnase batubara = A x B x C, dimana

A = bobot ketebalan rata-rata batubara dalam inci, feet, cm atau meter

B = berat batubara per stuan volume yang sesuai atau metric ton.

C = area batubara dalam acre atau hektar

Page 7: PENYUSUN BATUBARA

Kemiringan lapisan batubara juga memberikan pengaruh dalam perhitungan sumber daya batubara. Bila lapisan batubara memiliki kemiringan yang berbeda-beda, maka perhitungan dilakukan secara terpisah.

1.      Kemiringan 00 – 100

Perhitungan Tonase dilakukan langsung dengan menggunakan rumus Tonnase = ketebalan batubara x berat jenis batubara x area batubara

2.      Kemiringan 100 – 300

Untuk kemiringan 100 – 300, tonase batubara harus dibagi dengan nilai cosinus kemiringan lapisan batubara.

3.      Kemiringan > 300

Untuk kemiringan > 300, tonase batubara dikali dengan nilai cosinus kemiringan lapisan batubara.

Kualitas   Batubara

Kualitas batubara adalah sifat fisika dan kimia dari batubara yang mempengaruhi potensi kegunaannya. Kualitas batubara ditentukan oleh maseral dan mineral matter penyusunnya, serta oleh derajatcoalification (rank).

Umumnya, untuk menentukan kualitas batubara dilakukan analisa kimia pada batubara yang diantaranya berupa analisis proksimat dan analisis ultimat. Analisis proksimat dilakukan untuk menentukan jumlah air (moisture), zat terbang (volatile matter), karbon padat (fixed carbon), dan kadar abu (ash), sedangkan analisis ultimat dilakukan untuk menentukan kandungan unsur kimia pada batubara seperti : karbon, hidrogen, oksigen, nitrogen, sulfur, unsur tambahan dan juga unsur jarang.

Kualitas dan Klasifikasi Batubara

Kualitas batubara ditentukan dengan analisis batubara di laboraturium, diantaranya adalah analisis proksimat dan analisis ultimat. Analisis proksimat dilakukan untuk menentukan jumlah air, zat terbang, karbon padat, dan kadar abu, sedangkan analisis ultimat dilakukan untuk menentukan kandungan unsur kimia pada batubara seperti : karbon, hidrogen, oksigen, nitrogen, sulfur, unsur tambahan dan juga unsur jarang.

Page 8: PENYUSUN BATUBARA

Kualitas batubara ini diperlukan untuk menentukan apakah batubara tersebut menguntungkan untuk ditambang selain dilihat dari besarnya cadangan batubara di daerah penelitian.

Untuk menentukan jenis batubara, digunakan klasifikasi American Society for Testing and Material (ASTM, 1981, op cit Wood et al., 1983)(Tabel 5.2). Klasifikasi ini dibuat berdasarkan jumlah karbon padat dan nilai kalori dalam basis dry, mineral matter free (dmmf). Untuk mengubah basis air dried (adb) menjadi dry, mineral matter free (dmmf) maka digunakan Parr Formulas (ASTM, 1981, op citWood et al., 1983) :

dimana :

FC = % karbon padat (adb)

VM = % zat terbang (adb)

M = % air total (adb)

A = % Abu (adb)

S = % sulfur (adb)

Btu = british termal unit = 1,8185*CV adb

TabelKlasifikasi batubara berdasarkan tingkatnya (ASTM, 1981, op cit Wood et al., 1983)

Class Group

Fixed Carbon ,% , dmmf

Volatile Matter Limits, % , dmmf

Calorific Value Limits BTU per pound (mmmf)

Equal or Greater Than

Less Than

GreaterThan

Equal or Less Than

Equal or Greater Than

LessThan

Agglomerating Character

I Anthracite*1.Meta-anthracite 98 2

nonagglomerating

2.Anthracite 92 98 2 83.SemianthraciteC 86 92 8 14

II Bituminous

1.Low volatile bituminous coal

78 86 14 22

Page 9: PENYUSUN BATUBARA

2.Medium volatilebituminous coal

69 78 22 31

3.High volatile A bituminous coal

69 3114000D commonly

4.High volatile B bituminous coal

13000D

14000

agglomerating**

E

5.High volatile C bituminous coal

1150013000

1050011500

agglomerating

III Subbituminous

1.Subbituminous A coal

1050011500

2.Subbituminous B coal

950010500

3.Subbituminous C coal

8300 9500nonagglomerating

IV. Lignite1.Lignite A 6300 83001.Lignite B 6300

Contoh hasil analisa batubara

Lingkungan Pengendapan   Batubara .

Batubara merupakan hasil dari akumulasi tumbuh-tumbuhan pada kondisi lingkungan pengendapan tertentu. Akumulasi tersebut telah dikenai pengaruh-pengaruh synsedimentary dan post-sedimentary. Akibat pengaruh-pengaruh tersebut dihasilkanlah batubara dengan tingkat (rank) dan kerumitan struktur yang bervariasi.

Lingkungan pengendapan batubara dapat mengontrol penyebaran lateral, ketebalan, komposisi, dan kualitas batubara. Untuk pembentukan suatu endapan yag berarti diperlukan suatu susunan pengendapan dimana terjadi produktifitas organik tinggi dan penimbunan secara perlahan-lahan namun terus menerus terjadi dalam kondisi reduksi tinggi dimana terdapat sirukulasi air yang cepat sehingga oksigen tidak ada dan zat organik dapat terawetkan. Kondisi demikian dapat terjadi diantaranya di lingkungan paralik (pantai) dan limnik (rawa-rawa).

Menurut Diessel (1984, op cit Susilawati ,1992) lebih dari 90% batubara di dunia terbentuk di lingkungan paralik yaitu rawa-rawa yang berdekatan dengan pantai.

Page 10: PENYUSUN BATUBARA

Daerah seperti ini dapat dijumpai di dataran pantai, lagunal, deltaik, atau juga fluviatil.

Diessel (1992) mengemukakan terdapat 6 lingkungan pengendapan utama pembentuk batubara (Tabel 2.1) yaitu gravelly braid plain, sandy braid plain, alluvial valley and upper delta plain, lower delta plain, backbarrier strand plain, dan estuary. Tiap lingkungan pengendapan mempunyai asosiasi dan menghasilkan karakter batubara yang berbeda.

Tabel 2.1

Lingkungan Pengendapan Pembentuk Batubara

(Diesel, 1992)

Environment Subenvironment Coal CharacteristicsGravelly braid plain

Bars, channel, overbank plains, swamps, raised bogs

mainly dull coals, medium to low TPI, low GI, low sulphur

Sandy braid plain Bars, channel, overbank plains, swamp, raised bogs,

mainly dull coals, medium to high TPI, low to medium GI, low sulphur

Alluvial valley and upper delta plain

channels, point bars, floodplains and basins, swamp, fens, raised bogs

mainly bright coals, high TPI, medium to high GI, low sulphur

Lower delta plain Delta front, mouth bar, splays, channel, swamps, fans and marshes

mainly bright coals, low to medium TPI, high to very high GI, high sulphur

Backbarrier strand plain

Off-, near-, and backshore, tidal inlets, lagoons, fens, swamp, and marshes

transgressive : mainly bright coals, medium TPI, high GI, high sulphurregressive : mainly dull coals, low TPI and GI, low sulphur

Estuary channels, tidal flats, fens and marshes

mainly bright coal with high GI and medium TPI

Proses pengendapan batubara pada umunya berasosiasi dengan lingkungan fluvial flood plain dan delta plain. Akumulasi dari endapan sungai (fluvial) di daerah pantai akan membentuk delta dengan mekanisme pengendapan progradasi (Allen & Chambers, 1998).

Page 11: PENYUSUN BATUBARA

Lingkungan delta plain merupakan bagian dari kompleks pengendapan delta yang terletak di atas permukaan laut (subaerial). Fasies-fasies yang berkembang di lingkungan delta plain ialah endapan channel, levee, crevase, splay, flood plain, dan swamp. Masing-masing endapan tersebut dapat diketahui dari litologi dan struktur sedimen.

Endapan channel dicirikan oleh batupasir dengan struktur sedimen cross bedding, graded bedding, paralel lamination, dan cross lamination yang berupa laminasi karbonan. Kontak di bagian bawah berupa kontak erosional dan terdapat bagian deposit yang berupa fragmen-fragmen batubara dan plagioklas. Secara lateral endapan channel akan berubah secara berangsur menjadi endapan flood plain. Di antara channel dengan flood plain terdapat tanggul alam (natural levee) yang terbentuk ketika muatan sedimen melimpah dari channel. Endapan levee yang dicirikan oleh laminasi batupasir halus dan batulanau dengan struktur sedimen ripple lamination dan paralel lamination.

Pada saat terjadi banjir, channel utama akan memotong natural levee dan membentuk crevase play. Endapan crevase play dicirikan oleh batupasir halus – sedang dengan struktur sedimen cross bedding, ripple lamination, dan bioturbasi. Laminasi batupasir, batulanau, dan batulempung juga umum ditemukan. Ukuran butir berkurang semakin jauh dari channel utamanya dan umumnya memperlihatkan pola mengasar ke atas.

Endapan crevase play berubah secara berangsur ke arah lateral menjadi endapan flood plain. Endapan flood plain merupakan sedimen klastik halus yang diendapkan secara suspensi dari air limpahan banjir. Endapan flood plain dicirikan oleh batulanau, batulempung, dan batubara berlapis.

Endapan swamp merupakan jenis endapan yang paling banyak membawa batubara karena lingkungan pengendapannya yang terendam oleh air dimana lingkungan seperti ini sangat cocok untuk akumulasi gambut.

Tumbuhan pada sub-lingkungan upper delta plain akan didominasi oleh pohon-pohon keras dan akan menghasilkan batubara yang blocky. Sedangkan tumbuhan pada lower delta plai didominasi oleh tumbuhan nipah-nipah pohon yang menghasilkan batubara berlapis (Allen, 1985).

Batubara

Batubara adalah batuan yang mudah terbakar yang lebih dari 50% -70% berat volumenya merupakan bahan organik yang merupakan material karbonan termasuk inherent moisture. Bahan organik utamanya yaitu tumbuhan yang dapat

Page 12: PENYUSUN BATUBARA

berupa jejak kulit pohon, daun, akar, struktur kayu, spora, polen, damar, dan lain-lain. Selanjutnya bahan organik tersebut mengalami berbagai tingkat pembusukan (dekomposisi) sehingga menyebabkan perubahan sifat-sifat fisik maupun kimia baik sebelum ataupun sesudah tertutup oleh endapan lainnya.

Proses pembentukan batubara terdiri dari dua tahap yaitu tahap biokimia (penggambutan) dan tahap geokimia (pembatubaraan).

peatification                             coalification

Endapan          organik            Gambut           Batubara

Biokimia                                  geokimia

Tahap penggambutan (peatification) adalah tahap dimana sisa-sisa tumbuhan yang terakumulasi tersimpan dalam kondisi reduksi di daerah rawa dengan sistem pengeringan yang buruk dan selalu tergenang air pada kedalaman 0,5 – 10 meter. Material tumbuhan yang busuk ini melepaskan H, N, O, dan C dalam bentuk senyawa CO2, H2O, dan NH3 untuk menjadi humus. Selanjutnya oleh bakteri anaerobik dan fungi diubah menjadi gambut (Stach, 1982, op cit Susilawati 1992).

Tahap pembatubaraan (coalification) merupakan gabungan proses biologi, kimia, dan fisika yang terjadi karena pengaruh pembebanan dari sedimen yang menutupinya, temperatur, tekanan, dan waktu terhadap komponen organik dari gambut (Stach, 1982, op cit Susilawati 1992). Pada tahap ini prosentase karbon akan meningkat, sedangkan prosentase hidrogen dan oksigen akan berkurang (Fischer, 1927, op cit Susilawati 1992). Proses ini akan menghasilkan batubara dalam berbagai tingkat kematangan material organiknya mulai dari lignit, sub bituminus, bituminus, semi antrasit, antrasit, hingga meta antrasit.

DAFTAR PUSTAKA

sumber: http://www.republika.co.id/koran_detail.asp?id=193264&kat_id=4

Jurnal Sains dan Teknologi Indonesia 2000, Vo. 2, No. 1 hal. 1-8. /HUMAS-BPPT/ANY

sumber : Tekmira http://www.tekmira.esdm.go.id/