pembuatan model solid runner turbin air pada autodesk inventor menggunakan equation curve

7
Ujian CAD/CAM dalam bentuk tugas Abiyyu Andre Saputra 17 Mei 2015 1311056 B. Pembuatan model solid runner turbin air pada Autodesk Inventor menggunakan equation curve i) Pembuatan kode Pada bidang tangensial, xu=(t-yt*sin(atan(dyc/dx)))*l_s yu=(yc+yt*cos(atan(dyc/ dx)))*l_s xl=(t+yt*sin(atan(dyc/dx)))*l_s yl=(yc-yt*cos(atan(dyc/ dx)))*l_s dimana : yt=((t_l_s/100)/ 0.2)*(0.2969*t^0.5-0.126*t- 0.3516*t^2+0.2843*t^3-0.1036*t^4) 0<=x<L yc/l=((m_l_s/100)/((L_l_s/ 100)^2))*(2*(L_l_s/100)*t-t^2) d(yc/l)/d(x/l)=(2*(m_l_s/100)/ ((L_l_s/100)^2))*((L_l_s/100)-t) L<=x<=l yc/l=((m_l_s/100)/(1-(L_l_s/ 100))^2)*(1-2*(L_l_s/ 100)+2*(L_l_s/100)*t-t^2) d(yc/l)/d(x/l)=(2*(m_l_s/100)/(1- (L_l_s/100))^2)*((L_l_s/100)-t) Untuk menggeser ke centroid x'=(x)-(xspd) y'=(y)-(yspd) dimana: xspd=x_spindle_s/100 yspd=((m_l_s/100)/((L_l_s/ 100)^2))*(2*(L_l_s/ 100)*(x_spindle_s/100)- (x_spindle_s/100)^2) Untuk memutar sejauh sudut puntir (beta) X=-(x')*cos(beta_s)+ (y')*sin(beta_s) Y=-(x')*sin(beta_s)- (y')*cos(beta_s) Untuk mengubah dari koordinat cartesian menjadi koordinat silinder R=d_s/2 Teta=(X)*l_s/(d_s/2)*180/PI Z=(Y)*l_s Maka didapat persamaan dalam koordinat silinder 0 <= t < L R U (t) = d_s/2 θ U (t) = (-((t-((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t- 0.3516*t^2+0.2843*t^3-0.1036*t^4)*sin(atan((2*(m_l_s/100)/((L_l_s/ 100)^2))*((L_l_s/100)-t))))-(x_spindle_s/100))*cos(beta_s)+((((m_l_s/100)/

Upload: andre

Post on 13-Jan-2016

33 views

Category:

Documents


4 download

DESCRIPTION

pembuatan model turbin air pada autodesk inventor menggunakan equation curve

TRANSCRIPT

Page 1: Pembuatan Model Solid Runner Turbin Air Pada Autodesk Inventor Menggunakan Equation Curve

Ujian CAD/CAM dalam bentuk tugas Abiyyu Andre Saputra17 Mei 2015 1311056

B. Pembuatan model solid runner turbin air pada Autodesk Inventor menggunakan equation curve

i) Pembuatan kode

Pada bidang tangensial,

xu=(t-yt*sin(atan(dyc/dx)))*l_s

yu=(yc+yt*cos(atan(dyc/dx)))*l_s

xl=(t+yt*sin(atan(dyc/dx)))*l_s

yl=(yc-yt*cos(atan(dyc/dx)))*l_s

dimana :

yt=((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)

0<=x<L

yc/l=((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*t-t^2)

d(yc/l)/d(x/l)=(2*(m_l_s/100)/((L_l_s/100)^2))*((L_l_s/100)-t)

L<=x<=l

yc/l=((m_l_s/100)/(1-(L_l_s/100))^2)*(1-2*(L_l_s/100)+2*(L_l_s/100)*t-t^2)

d(yc/l)/d(x/l)=(2*(m_l_s/100)/(1-(L_l_s/100))^2)*((L_l_s/100)-t)

Untuk menggeser ke centroid

x'=(x)-(xspd)

y'=(y)-(yspd)

dimana:

xspd=x_spindle_s/100

yspd=((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*(x_spindle_s/100)-(x_spindle_s/100)^2)

Untuk memutar sejauh sudut puntir (beta)

X=-(x')*cos(beta_s)+(y')*sin(beta_s)

Y=-(x')*sin(beta_s)-(y')*cos(beta_s)

Untuk mengubah dari koordinat cartesian menjadi koordinat silinder

R=d_s/2

Teta=(X)*l_s/(d_s/2)*180/PI

Z=(Y)*l_s

Maka didapat persamaan dalam koordinat silinder

0 <= t < L

RU(t) = d_s/2

θU(t) = (-((t-((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*sin(atan((2*(m_l_s/100)/((L_l_s/100)^2))*((L_l_s/100)-t))))-(x_spindle_s/100))*cos(beta_s)+((((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*t-t^2)+((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*cos(atan((2*(m_l_s/100)/((L_l_s/100)^2))*((L_l_s/100)-t))))-(((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*(x_spindle_s/100)-(x_spindle_s/100)^2)))*sin(beta_s))*l_s/(d_s/2)*180/PI

ZU(t) = (-((t-((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*sin(atan((2*(m_l_s/100)/((L_l_s/100)^2))*((L_l_s/100)-t))))-(x_spindle_s/100))*sin(beta_s)-((((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*t-t^2)+((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*cos(atan((2*(m_l_s/100)/((L_l_s/100)^2))*((L_l_s/100)-t))))-(((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*(x_spindle_s/100)-(x_spindle_s/100)^2)))*cos(beta_s))*l_s

Page 2: Pembuatan Model Solid Runner Turbin Air Pada Autodesk Inventor Menggunakan Equation Curve

Ujian CAD/CAM dalam bentuk tugas Abiyyu Andre Saputra17 Mei 2015 1311056

RL(t) = d_s/2

θL(t) = (-((t+((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*sin(atan((2*(m_l_s/100)/((L_l_s/100)^2))*((L_l_s/100)-t))))-(x_spindle_s/100))*cos(beta_s)+((((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*t-t^2)-((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*cos(atan((2*(m_l_s/100)/((L_l_s/100)^2))*((L_l_s/100)-t))))-(((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*(x_spindle_s/100)-(x_spindle_s/100)^2)))*sin(beta_s))*l_s/(d_s/2)*180/PI

ZL(t) = (-((t+((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*sin(atan((2*(m_l_s/100)/((L_l_s/100)^2))*((L_l_s/100)-t))))-(x_spindle_s/100))*sin(beta_s)-((((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*t-t^2)-((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*cos(atan((2*(m_l_s/100)/((L_l_s/100)^2))*((L_l_s/100)-t))))-(((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*(x_spindle_s/100)-(x_spindle_s/100)^2)))*cos(beta_s))*l_s

L <= t <= 1

RU(t) = d_s/2

θU(t) =(-((t-((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*sin(atan((2*(m_l_s/100)/(1-(L_l_s/100))^2)*((L_l_s/100)-t))))-(x_spindle_s/100))*cos(beta_s)+((((m_l_s/100)/(1-(L_l_s/100))^2)*(1-2*(L_l_s/100)+2*(L_l_s/100)*t-t^2)+((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*cos(atan((2*(m_l_s/100)/(1-(L_l_s/100))^2)*((L_l_s/100)-t))))-(((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*(x_spindle_s/100)-(x_spindle_s/100)^2)))*sin(beta_s))*l_s/(d_s/2)*180/PI

ZU(t) = (-((t-((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*sin(atan((2*(m_l_s/100)/(1-(L_l_s/100))^2)*((L_l_s/100)-t))))-(x_spindle_s/100))*sin(beta_s)-((((m_l_s/100)/(1-(L_l_s/100))^2)*(1-2*(L_l_s/100)+2*(L_l_s/100)*t-t^2)+((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*cos(atan((2*(m_l_s/100)/(1-(L_l_s/100))^2)*((L_l_s/100)-t))))-(((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*(x_spindle_s/100)-(x_spindle_s/100)^2)))*cos(beta_s))*l_s

RL(t) = d_s/2

θL(t) = (-((t+((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*sin(atan((2*(m_l_s/100)/(1-(L_l_s/100))^2)*((L_l_s/100)-t))))-(x_spindle_s/100))*cos(beta_s)+((((m_l_s/100)/(1-(L_l_s/100))^2)*(1-2*(L_l_s/100)+2*(L_l_s/100)*t-t^2)-((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*cos(atan((2*(m_l_s/100)/(1-(L_l_s/100))^2)*((L_l_s/100)-t))))-(((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*(x_spindle_s/100)-(x_spindle_s/100)^2)))*sin(beta_s))*l_s/(d_s/2)*180/PI

ZL(t) = (-((t+((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*sin(atan((2*(m_l_s/100)/(1-(L_l_s/100))^2)*((L_l_s/100)-t))))-(x_spindle_s/100))*sin(beta_s)-((((m_l_s/100)/(1-(L_l_s/100))^2)*(1-2*(L_l_s/100)+2*(L_l_s/100)*t-t^2)-((t_l_s/100)/0.2)*(0.2969*t^0.5-0.126*t-0.3516*t^2+0.2843*t^3-0.1036*t^4)*cos(atan((2*(m_l_s/100)/(1-(L_l_s/100))^2)*((L_l_s/100)-t))))-(((m_l_s/100)/((L_l_s/100)^2))*(2*(L_l_s/100)*(x_spindle_s/100)-(x_spindle_s/100)^2)))*cos(beta_s))*l_s

ii) Input pada inventor

Page 3: Pembuatan Model Solid Runner Turbin Air Pada Autodesk Inventor Menggunakan Equation Curve

Ujian CAD/CAM dalam bentuk tugas Abiyyu Andre Saputra17 Mei 2015 1311056

Sebelum memasukkan 3D equation curve pada inventor maka hal yang pertama dilakukan adalah menentukan parameter yang digunakan, berikut beberapa parameter yang didefinisikan:

Gambar 1 pemasukkan parameter pada Autodesk Inventor

Number of Section

Profile Type Radius of calculus section r [mm]

Length of the profile l [mm]

Stagger Angle β [◦]

0 NACA 4412 600 694,2 36,01 NACA 4411 665 712,6 29,52 NACA 4410 730 748,3 25,03 NACA 4409 795 793,4 22,04 NACA 4408 860 841,9 19,75 NACA 4407 925 890,5 17,96 NACA 4407 990 939,8 16,47 NACA 4406 1055 988,4 15,28 NACA 4406 1120 1036,0 14,29 NACA 4406 1185 1083,0 13,310 NACA 4406 1250 1128,0 12,5

Tabel 1 Parameter turbin 6 sudu yang akan dibuat

Kemudian buat 3D sketch baru dan pilih equation curve, ubah koordinat cartesian menjadi koordinat silinder kemudian masukkan equation yang telah dibuat

Gambar 2 Pemasukkan equation pada 3D curve equation

Lanjutkan hingga kesepuluh section telah dimasukkan

Page 4: Pembuatan Model Solid Runner Turbin Air Pada Autodesk Inventor Menggunakan Equation Curve

Ujian CAD/CAM dalam bentuk tugas Abiyyu Andre Saputra17 Mei 2015 1311056

Gambar 3 Pembuatan permukaan runner menggunakan fitur loft

Setelah semua section dibuat, gunakan fitur loft surface dan pilih semua section dari section 0 hingga 10. Tambahkan boundary patch pada surface yang belum tertutup.

Gambar 4 Pembuatan boundary patch

Buat sketch baru untuk poros dari turbin, kemudian gunakan fitur extrude untuk membuat poros berbentuk silinder

Gambar 5 Pembuatan poros turbin

Page 5: Pembuatan Model Solid Runner Turbin Air Pada Autodesk Inventor Menggunakan Equation Curve

Ujian CAD/CAM dalam bentuk tugas Abiyyu Andre Saputra17 Mei 2015 1311056

Untuk pembuatan solid model, gunakan fitur stitch dan pilih semua permukaan dari runner turbin

Gambar 6 Pembuatan solid model menggunakan fitur stitch

Sudu pertama turbin sudah terbentuk, untuk penambahan sudu turbin digunakan circular pattern dengan sumbu rotasi adalah sumbu putar dari poros yang berbentuk silinder.

Gambar 7 Penambahan jumlah sudu menggunakan circular pattern

Runner tubin 6 sudu telah terbentuk dan siap untuk dimasukkan sebagai bahan analisis pada CAE ataupun proses manufaktur pada CAM