documentoo

8
Pengertian Reaksi Substitusi Reaksi substitusi adalah suatu reaksi penggantian gugus fungsional pada senyawa kimia tertentu dengan gugus fungsional yang lain. Dalam kimia organik, reaksi substitusi elektrofilik dan nukleofilik merupakan yang paling penting dan banyak digunakan. Reaksi substitusi organik dikategorikan menjadi beberapa tipe berdasarkan reagen yang berperan, apakah termasuk nukleofil atau elektrofil. Intermediet yang terlibat dalam reaksi substitusi dapat berupa karbokation, karbanion, atau radikal bebas. Contoh Reaksi Substitusi Contoh yang paling sederhana untuk reaksi substitusi adalah reaksi klorinasi metana. Produk yang dihasilkan merupakan haloalkana yaitu metil klorida. CH 4 + Cl 2 → CH 3 Cl + HCl Jenis-jenis Reaksi Substitusi Beberapa macam reaksi substitusi adalah: Substitusi nukleofilik Substitusi nukleofilik terjadi ketika reagen yang berperan adalah suatu nukleofil. Nukleofil adalah molekul yang dapat menyumbangkan sepasang elektron membentuk ikatan kimia dalam reaksi. Suatu nukleofil bereaksi dengan zat alifatik pada reaksi substitusi nukleofilik alifatik Reaksi substitusi ini dapat melalui dua macam mekanisme, yaitu SN1 dan SN2 (baca : Perbedaan SN1 dan SN2 ). Ketika zat yang bereaksi merupakan senyawa aromatik, maka reaksi yang terjadi disebut dengan reaksi substitusi nukleofilik aromatik. Turunan asam karboksilat bereaksi dengan nukleofil dalam substitusi asil nukleofilik. Substitusi elektrofilik

Upload: nadia-nafakoti

Post on 18-Dec-2015

215 views

Category:

Documents


1 download

DESCRIPTION

oo

TRANSCRIPT

Pengertian Reaksi SubstitusiReaksi substitusi adalah suatu reaksi penggantian gugus fungsional pada senyawa kimia tertentu dengan gugus fungsional yang lain. Dalam kimia organik, reaksi substitusi elektrofilik dan nukleofilik merupakan yang paling penting dan banyak digunakan. Reaksi substitusi organik dikategorikan menjadi beberapa tipe berdasarkan reagen yang berperan, apakah termasuk nukleofil atau elektrofil. Intermediet yang terlibat dalam reaksi substitusi dapat berupa karbokation, karbanion, atau radikal bebas.Contoh Reaksi SubstitusiContoh yang paling sederhana untuk reaksi substitusi adalah reaksi klorinasi metana. Produk yang dihasilkan merupakan haloalkana yaitu metil klorida.CH4 + Cl2 CH3Cl + HClJenis-jenis Reaksi SubstitusiBeberapa macam reaksi substitusi adalah:Substitusi nukleofilikSubstitusi nukleofilik terjadi ketika reagen yang berperan adalah suatu nukleofil. Nukleofil adalah molekul yang dapat menyumbangkan sepasang elektron membentuk ikatan kimia dalam reaksi.

Suatu nukleofil bereaksi dengan zat alifatik pada reaksi substitusi nukleofilik alifatik Reaksi substitusi ini dapat melalui dua macam mekanisme, yaitu SN1 dan SN2 (baca : Perbedaan SN1 dan SN2).

Ketika zat yang bereaksi merupakan senyawa aromatik, maka reaksi yang terjadi disebut dengan reaksi substitusi nukleofilik aromatik. Turunan asam karboksilat bereaksi dengan nukleofil dalam substitusi asil nukleofilik.Substitusi elektrofilikSubstitusi elektrofilik terjadi ketika reagen yang berperan adalah suatu elektrofil. Elektrofil adalah molekul yang dapat menerima pasangan elektron. Reaksi substitusi elektrofilik biasanya terjadi ada senyawa aromatik, disebut dengan reaksi substitusi elektrofilik aromatik. Benzena lebih mudah melangsungkan reaksi substitusi elektrofilik daripada nukleofilik (baca : Reaksi Terhadap Benzena).

Perbedaan mekanisme reaksi SN2, SN1, E1 dan E2. Reaksi substitusi alkil halida dengan nukleofil dapat terjadi oleh suatu jalur SN1 atau jalur SN2. Metil halida, alkil halida primer dan sekunder terutama bereaksi dengan jalur SN2. Laju reaksi SN2 meningkat dengan bertambahnya nukleofilisitas spesies penyerang. Nukleofil yang lazim baiknya adalah -OH, -OR, dan -CN.

Rintangan yang meningkat di sekitar karbon yang terhalogenasi mengurangi laju reaksi SN2. Alkil halida tersier terlalu terintangi untuk menjalani reaksi dengan jalur SN2, namun dapat menjalani reaksi dngan jalur SN1 (lewat karbokation antara) dengan suatu nukleofil seperti H2O atau ROH. Metil halida dan alkil halida primer sama sekali tidak mengalami reaksi SN1; alkil halida sekunder bereaksi lambat dengan jalur ini.

Inilah ringkasan perbedaan reaksi SN2, SN1, E1 dan E2. Untuk memudahkan dalam mengingat, urutkan pola belajar mekanisme dari SN2, SN1, E1 dan E2.Mekanisme reaksi SN2Mekanisme reaksi SN2 hanya terjadi pada alkil halida primer dan sekunder. Nukleofil yang menyerang adalah jenis nukleofil kuat seperti -OH, -CN, CH3O-. Serangan dilakukan dari belakang. Untuk lebih jelas, perhatikan contoh reaksi mekanisme SN2 bromoetana dengan ion hidroksida berikut ini.

Mekanisme reaksi SN1Mekanisme reaksi SN1 hanya terjadi pada alkil halida tersier. Nukleofil yang dapat menyerang adalah nukleofil basa sangat lemah seperti H2O, CH3CH2OHTerdiri dari 3 tahap reaksi. Sebagai contoh adalah reaksi antara t-butil bromida dengan air.

Tahap 1.

Tahap 2.

Tahap 3.

Mekanisme reaksi E1Mekanisme reaksi E1 merupakan alternatif dari mekanisme reaksi SN1. Karbokation dapat memberikan sebuah proton kepada suatu basa dalam reaksi eliminasi.Mekanisme reaksi E1 terdiri dari dua tahap. Perhatikan contoh berikut ini.

Tahap 1.Tahap 1 reaksi E1 berjalan lambat.

Tahap 2.Tahap 2 reaksi E1 berjalan cepat.

Mekanisme reaksi E2Reaksi E2 menggunakan basa kuat seperti -OH, -OR, dan juga membutuhkan kalor. Dengan memanaskan alkil halida dalam KOH, CH3CH2ONa.

Alkil halida paling banyak ditemui sebagai zat antara dalam sintesis. Mereka dengan mudah diubah ke dalam berbagai jenis senyawa lain, dan dapat diperoleh melalui banyak cara. Reaksi alkil halida yang banyak itu dapat dikelompokkan dalam dua kelompok, yaitu reaksi substitusi dan reaksi eliminasi. Dalam reaksi substitusi, halogen (X) diganti dengan beberapa gugus lain (z).

Reaksi eliminasi melibatkan pelepasan HX, dan hasilnya adalah suatu allena. Banyak sekali modifikasi terhadap reaksi ini, tergantung pada pereaksi yang digunakan.

Substitusi Nukleofilik

Suatu nukleofil (Z) menyerang alkil halida pada atom karbon hibrida-sp3 yang mengikat halogen (X), menyebabkan terusirnya halogen oleh nukleofil. Halogen yang terusir disebut gugus pergi. Nukleofil harus mengandung pasangan elektron yang tadinya sebagai elektron ikatan. Ada dua persamaan umum yang dapat dituliskan:

Contoh masing-masing reaksi adalah:

Mekanisme Substitusi NukleofilikPada dasarnya terdapat dua mekanisme reaksi substitusi nukleofilik. Mereka dilambangkan dengan SN2 adanya SN1. Bagian SN menunjukkan substitusi nukleofilik, sedangkan arti 1 dan 2 akan dijelaskan kemudian. Mekanisme SN2Mekanisme SN2 adalah proses satu tahap yang dapat digambarkan sebagai berikut:

Nukleofil menyerang dari belakang ikatan CX. Pada keadaan transisi, nukleofil dan gugus pergi berasosiasi dengan karbon di mana substitusi akan terjadi. Pada saat gugus pergi terlepas dengan membawa pasangan electron, nukleofil memberikan pasangan elektronnya untuk dijadikan pasangan elektron dengan karbon. Notasi 2 menyatakan bahwa reaksi adalah bimolekuler, yaitu nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi dalam mekanisme reaksi.

Adapun ciri reaksi SN2 adalah:1. Karena nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi, maka kecepatan reaki tergantung pada konsentrasi kedua spesies tersebut.2. Reaksi terjadi dengan pembalikan (inversi) konfigurasi. Misalnya jika kita mereaksikan -2-bromobutana dengan natrium hidrosida, akan diperoleh (S)-2-butanol.

Ion hidroksida menyerang dari belakang ikatan CBr. Pada saat substitusi terjadi, ketiga gugus yang terikat pada karbon sp3 kiral itu seolah-olah terdorong oleh suatu bidang datar sehingga membalik. Karena dalam molekul ini OH mempunyai perioritas yang sama dengan Br, tentu hasilnya adalah (S)-2-butanol. Jadi reaksi SN2 memberikan hasil inversi.3. Jika substrat R-L bereaksi melalui mekanisme SN2 reaksi terjadi lebih cepat apabila R merupakan gugus metil atau primer, dan lambat jika R adalah gugus tersier. Gugus R sekunder mempunyai kecepatan pertengahan. Alasan untuk urutan ini adalah adanya efek rintangan sterik. Rintangan sterik gugus R meningkat dari metil < primer < sekunder < tersier. Jadi kecendrungan reaksi SN2 terjadi pada alkil halida adalah: metil > primer > sekunder >> tersier.

Mekanisme SN1 Mekanisme SN1 adalah proses dua tahap. Pada tahap pertama, ikatan antara karbon dengan gugus pergi putus

Gugus pergi terlepas dengan membawa pasangan electron, dan terbentuklah ion karbonium. Pada tahap kedua (tahap cepat), ion karbonium bergabung dengan nukleofil membentuk produk.

Pada mekanisme SN1 substitusi terjadi dalam dua tahap. Notasi 1 digunakan sebab pada tahap lambat hanya satu dari dua pereaksi yang terlibat, yaitu substrat. Tahap ini sama sekali tidak melibatkan nukleofil.

Berikut ini adalah ciri-ciri suatu reaksi yang berjalan melalui mekanisme SN1:1. Kecepatan reaksinya tidak tergantung pada konsentrasi nukleofil. Tahap penentu kecepatan reaksi adalah tahap pertama di mana nukleofil tidak terlibat.2. Jika karbon pembawa gugus pergi adalah bersifat kiral, reaksi menyebabkan hilangnya aktivitas optik karena terjadi rasemik. Pada ion karbonium, hanya ada tiga gugus yang terikat pada karbon positif. Karena itu, karbon positif mempunyai hibridisasi sp2 dan berbentuk planar. Jadi nukleofil mempunyai dua arah penyerangan, yaitu dari depan dan dari belakang. Dan kesempatan ini masing-masing mempunyai peluang 50 %. Jadi hasilnya adalah rasemit. Misalnya, reaksi (S)-3-metilheksana dengan air menghasilkan alcohol rasemik.

Spesies antaranya (intermediate spesies) adalah ion karbonium dengan geometric planar sehingga air mempunyai peluang menyerang dari dua sisi (depan dan belakang) dengan peluang yang sama menghasilkan adalah campuran rasemik.

Reaksi substrat R-X yang melalui mekanisme SN1 akan berlangsung cepat jika R merupakan struktur tersier, dan lambat jika R adalah struktur primer. Hal ini sesuai dengan urutan kestabilan ion karbonium, 3> 2>> 1.