makalah osean.docx

34
MAKALAH-SALINITAS DAN AIR LAUT- OSEANOLOGI PENDAHULUAN MAKALAH OSEANOLOGI PENDAHULUAN “SALINITAS DAN AIR LAUT” KATA PENGANTAR Puji dan syukur penulis panjatkan kehadirat Allah SWT karena atas berkat dan rahmat-Nyalah sehingga penulis dapat menyelesaikan makalah yang berjudul “Unsur-Unsur Dalam Air Laut Dan Salinitas”. Salam dan salawat kepada junjungan Nabi Muhammad SAW yang merupakan tauladan bagi kaum muslimin dimuka bumi ini. Walaupun berbagai macam tantangan yang dihadapi, tapi semua itu telah memberikan pengalaman yang berharga untuk dijadikan pelajaran dimasa yang akan datang. Dalam penyusunan makalah ini, penulis banyak mendapat tantangan dan hambatan akan tetapi dengan bantuan dari berbagai pihak tantangan itu bisa teratasi. Olehnya itu, penulis mengucapkan terima kasih yang sebesar-besarnya kepada semua pihak yang telah membantu dalam penyusunan makalah ini, semoga bantuannya mendapat balasan yang setimpal dari Tuhan Yang Maha Esa. Penulis menyadari bahwa makalah ini masih jauh dari kesempurnaan baik dari bentuk penyusunan maupun materinya. Kritik konstruktif dari pembaca sangat penulis harapkan untuk penyempurnaan makalah selanjutnya. Akhir kata semoga makalah ini dapat memberikan manfaat kepada kita sekalian. Makassar, April 2012 Penyusun

Upload: asep-asep

Post on 15-Jan-2016

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MAKALAH osean.docx

MAKALAH-SALINITAS DAN AIR LAUT-OSEANOLOGI PENDAHULUAN

MAKALAHOSEANOLOGI PENDAHULUAN

“SALINITAS DAN AIR LAUT”

KATA PENGANTAR

Puji dan syukur penulis panjatkan kehadirat Allah SWT karena atas berkat dan rahmat-

Nyalah sehingga penulis dapat menyelesaikan makalah yang berjudul “Unsur-Unsur Dalam Air Laut

Dan Salinitas”. Salam dan salawat kepada junjungan Nabi Muhammad SAW yang merupakan

tauladan bagi kaum muslimin dimuka bumi ini. Walaupun berbagai macam tantangan yang dihadapi,

tapi semua itu telah memberikan pengalaman yang berharga untuk dijadikan pelajaran dimasa yang

akan datang.

Dalam penyusunan makalah ini, penulis banyak mendapat tantangan dan hambatan akan tetapi dengan bantuan dari berbagai pihak tantangan itu bisa teratasi. Olehnya itu, penulis mengucapkan terima kasih yang sebesar-besarnya kepada semua pihak yang telah membantu dalam penyusunan makalah ini, semoga bantuannya mendapat balasan yang setimpal dari Tuhan Yang Maha Esa.

Penulis menyadari bahwa makalah ini masih jauh dari kesempurnaan baik dari bentuk penyusunan maupun materinya. Kritik konstruktif dari pembaca sangat penulis harapkan untuk penyempurnaan makalah selanjutnya.

Akhir kata semoga makalah ini dapat memberikan manfaat kepada kita sekalian.

Makassar, April  2012Penyusun

DAFTAR ISI

Halaman Judul…………………………………………………………………………..i

Kata Pengantar…………………………………………………………………………ii

Page 2: MAKALAH osean.docx

Daftar Isi………………………………………………………………………………...iii

BAB I  PENDAHULUAN

A.   Latar Belakang…………………………………………………………………1

B.   Rumusan Masalah…………………………………………………………….1

C.   Tujuan Penulisan……………………………………………………………...2

BAB II PEMBAHASAN

A.   Teori Asal-Usul Garam-Garam di Laut…………………………………….3

B.   Devenisi Salinitas……………………………………………………………..4

C.   Faktor-Faktor Yang Mempengaruhi Salinitas…………………………….4

D.   Sebaran Salinitas Di Laut……………………………………………………6

E.    Model Salinitas………………………………………………………………...9

F.    Hubungan Densitas Ikan Dan Salinitas………………………………….10

G.   Pengaruh Faktor Salinitas Di Laut Pada Tingkah Laku

Dan Kelimpahan Ikan………………………………………………………..11

H.   Penentuan Nilai Salinitas…………………………………………………..15

I.      Desalinisasi………………………………………………………………..…16

BAB III  PENUTUP

A.   Kesimpulan……………………………………………………………………20

DAFTAR PUSTAKA…………………………………………………………………..21

BAB IPENDAHULUAN

A.           Latar BelakangSumber air terbanyak di bumi ini adalah air laut, namun untuk sampai pada tahap

penggunaan sehari-hari tidak bisa langsung digunakan harus melalui pengolahan terlebih dahulu, mengingat salinitas air laut sangat tinggi. HYDRO sea water membran dapat mengubah air laut dengan salinitas tinggi menjadi air tawar untuk penggunaan sehari-hari.

Air laut mengandung 3,5% garam-garaman, gas-gas terlarut, bahan-bahan organik dan partikel-partikel tak terlarut. Keberadaan garam-garaman mempengaruhi sifat fisis air laut (seperti: densitas, kompresibilitas, titik beku, dan temperatur dimana densitas menjadi maksimum) beberapa tingkat, tetapi tidak menentukannya. Beberapa sifat (viskositas, daya serap cahaya) tidak terpengaruh secara signifikan oleh salinitas. Dua sifat yang sangat ditentukan oleh jumlah garam di laut (salinitas) adalah daya hantar listrik (konduktivitas) dan tekanan osmosis.

Page 3: MAKALAH osean.docx

Garam-garaman utama yang terdapat dalam air laut adalah klorida (55%), natrium (31%), sulfat (8%), magnesium (4%), kalsium (1%), potasium (1%) dan sisanya (kurang dari 1%) teridiri dari bikarbonat, bromida, asam borak, strontium dan florida. Tiga sumber utama garam-garaman di laut adalah pelapukan batuan di darat, gas-gas vulkanik dan sirkulasi lubang-lubang hidrotermal (hydrothermal vents) di laut dalam.

B.           Rumusan Masalah1.            Bagaimana  asal-usul garam-garam di laut ?2.            Apa pengertian Salinitas ?3.            Apa faktor-faktor yang mempengaruhi salinitas ?4.            Bagaimana sebaran salinitas dilaut ?5.            Bagaimana model salinitas ?6.            Apa dan bagaiman hubungan antara densitas ikan dan salinitas ?7.            Apa pengaruh faktor salinitas di laut pada tingkah laku dan kelimpahan ikan ?8.            Bagaiman cara menentukan nilai salinitas ?9.            Apa devenisi desalinisasi ?C.           Tujuan Penulisan1.            Untuk mengetahui  asal-usul garam-garam di laut ?2.            Untuk mengetahui pengertian Salinitas ?3.            Untuk mengetahui  faktor-faktor yang mempengaruhi salinitas ?4.            Untuk mengetahui  sebaran salinitas dilaut ?5.            Untuk mengetahui  model salinitas ?6.            Untuk mengetahui hubungan antara densitas ikan dan salinitas ?7.            Untuk mengetahui pengaruh faktor salinitas di laut pada tingkah laku dan kelimpahan ikan ?8.            Untuk mengetahui  cara menentukan nilai salinitas ?9.            Untuk mengetahui devenisi desalinisasi ?

BAB II

PEMBAHASAN

A.           Teori Asal-Usul Garam-Garam Di Laut

Mula-mula diperkirakan bahwa zat-zat kimia yang menyebabkan air laut asin berasal dari

darat yang dibawa oleh sungai-sungai yang mengalir ke laut, entah itu dari pengikisan batu-batuan

darat, dari tanah longsor, dari air hujan atau dari gejala alam lainnya, yang terbawa oleh air sungai ke

laut. Jika hal ini benar tentunya susunan kimiawi air sungai tidak akan berbeda dengan susunan

kimiawi air laut.

Menurut teori, zat-zat garam tersebut berasal dari dalam dasar laut melalui prosesoutgassing,

yakni rembesan dari kulit bumi di dasar laut yang berbentuk gas ke permukaan dasar laut. Bersama

gas-gas ini, terlarut pula hasil kikisan kerak bumi dan bersama-sama garam-garam ini merembes pula

air, semua dalam perbandingan yang tetap sehingga terbentuk garam di laut. Kadar garam ini tetap

tidak berubah sepanjang masa. Artinya kita tidak menjumpai bahwa air laut makin lama makin asin.

Page 4: MAKALAH osean.docx

Zat-zat yang terlarut yang membentuk garam, yang kadarnya diukur dengan istilah salinitas

dapat dibagi menjadi empat kelompok, yakni:

1. Konstituen utama          : Cl, Na, SO4, dan Mg.

2. Gas terlarut                   : CO2, N2, dan O2.

3. Unsur Hara                   : Si, N, dan P.

4. Unsur Runut                 : I, Fe, Mn, Pb, dan Hg.

Konstituen utama merupakan 99,7% dari seluruh zat terlarut dalam air laut, sedangkan sisanya 0,3%

terdiri dari ketiga kelompok zat lainnya. Akan tetapi meskipun kelompok zat terakhir ini sangat kecil

persentasenya, mereka banyak menentukan kehidupan di laut. Sebaliknya kepekatan zat-zat ini

banyak ditentukan oleh aktivitas kehidupan di laut.

Selain zat-zat terlarut ini, air juga mengandung butiran-butiran halus dalam suspense.

Sebagian dari zat ini akhirnya terlarut, sebagian lagi mengendap ke dasar laut dan sisanya diurai oleh

bakteri menjadi zat-zat hara yang dimanfaatkan tumbuhan untuk fotosintesis.

B.           Definisi Salinitas

Salinitas adalah tingkat keasinan atau kadar garam terlarut dalam air. Salinitas juga dapat

mengacu pada kandungan garam dalam tanah. Kandungan garam pada sebagian

besar danau,sungai, dan saluran air alami sangat kecil sehingga air di tempat ini dikategorikan

sebagai air tawar. Kandungan garam sebenarnya pada air ini, secara definisi, kurang dari 0,05%. Jika

lebih dari itu, air dikategorikan sebagai air payau atau menjadi saline bila konsentrasinya 3 sampai

5%. Lebih dari 5%, ia disebut brine.

C.           Faktor – Faktor Yang Mempengaruhi Salinitas

1. Penguapan, makin besar tingkat penguapan air laut di suatu wilayah, maka salinitasnya tinggi

dan sebaliknya pada daerah yang rendah tingkat penguapan air lautnya, maka daerah itu rendah

kadar garamnya.

2. Curah hujan, makin besar/banyak curah hujan di suatu wilayah laut maka salinitas air laut itu

akan rendah dan sebaliknya makin sedikit/kecil curah hujan yang turun salinitas akan tinggi.

3.    Banyak sedikitnya sungai yang bermuara di laut tersebut, makin banyak sungai yang bermuara ke laut

tersebut maka salinitas laut tersebut akan rendah, dan sebaliknya makin sedikit sungai yang

bermuara ke laut tersebut maka salinitasnya akan tinggi.

Air laut secara alami merupakan air saline dengan kandungan garam sekitar 3,5%.

Beberapadanau garam di daratan dan beberapa lautan memiliki kadar garam lebih tinggi dari air laut

umumnya. Sebagai contoh, Laut Mati memiliki kadar garam sekitar 30%. Walaupun kebanyakan air

laut di dunia memiliki kadar garam sekitar 3,5 %, air laut juga berbeda-beda kandungan garamnya.

Yang paling tawar adalah di timur Teluk Finlandia dan di utara Teluk Bothnia, keduanya bagian dari

Laut Baltik. Yang paling asin adalah di Laut Merah, di mana suhu tinggi dan sirkulasi terbatas

membuat penguapan tinggi dan sedikit masukan air dari sungai-sungai. Kadar garam di beberapa

danau dapat lebih tinggi lagi.

Tabel 1. Salinitas air berdasarkan persentase garam terlarut

Salinitas Air Berdasarkan Persentase Garam TerlarutAir Tawar Air Payau Air Saline Brine< 0.05 % 0.05 – 3 % 3 – 5 % > 5 %

Zat terlarut meliputi garam-garam anorganik, senyawa-senyawa organik yang berasal dari

organisme hidup, dan gas-gas yang terlarut. Garam-garaman utama yang terdapat dalam air laut

Page 5: MAKALAH osean.docx

adalah klorida (55,04%), natrium (30,61%), sulfat (7,68%), magnesium (3.69%), kalsium (1,16%),

kalium (1,10%) dan sisanya (kurang dari 1%) teridiri dari bikarbonat, bromida, asam borak, strontium

dan florida. Tiga sumber utama dari garam-garaman di laut adalah pelapukan batuan di darat, gas-

gas vulkanik dan sirkulasi lubang-lubang hidrotermal (hydrothermal vents) di laut dalam. Keberadaan

garam-garaman mempengaruhi sifat fisis air laut (seperti: densitas, kompresibilitas, titik beku, dan

temperatur dimana densitas menjadi maksimum) beberapa tingkat, tetapi tidak menentukannya.

Beberapa sifat (viskositas, daya serap cahaya) tidak terpengaruh secara signifikan oleh salinitas. Dua

sifat yang sangat ditentukan oleh jumlah garam di laut (salinitas) adalah daya hantar listrik

(konduktivitas) dan tekanan osmosis.

Kandungan garam mempunyai pengaruh pada sifat-sifat air laut. Karena mengandung garam,

titik beku air laut menjadi lebih rendah daripada 0 0C (air laut yang bersalinitas 35 %o titik bekunya -

1,9 0C), sementara kerapatannya meningkat sampai titik beku (kerapatan maksimum air murni terjadi

pada suhu 4 0C). Sifat ini sangat penting sebagai penggerak pertukaran massa air panas dan dingin,

memungkinkan air permukaan yang dingin terbentuk dan tenggelam ke dasar sementara air dengan

suhu yang lebih hangat akan terangkat ke atas. Sedangkan titik beku dibawah 00 C memungkinkan

kolom air laut tidak membeku. Sifat air laut yang dipengaruhi langsung oleh salinitas adalah

konduktivitas dan tekanan osmosis.

Istilah teknik untuk keasinan lautan adalah halinitas, dengan didasarkan bahwa halida-halida

terutama klorida adalah anion yang paling banyak dari elemen-elemen terlarut. Dalam oseanografi,

halinitas biasa dinyatakan bukan dalam persen tetapi dalam “bagian perseribu” (parts per thousand ,

ppt) atau permil (‰), kira-kira sama dengan jumlah gram garam untuk setiap liter larutan.

Sebelum tahun 1978, salinitas atau halinitas dinyatakan sebagai ‰ dengan didasarkan pada

rasio konduktivitas elektrik sampel terhadap “Copenhagen water”, air laut buatan yang digunakan

sebagai standar air laut dunia. Pada 1978, oseanografer meredifinisikan salinitas dalam Practical

Salinity Units (psu, Unit Salinitas Praktis): rasio konduktivitas sampel air laut terhadap larutan KCL

standar. Rasio tidak memiliki unit, sehingga tidak bisa dinyatakan bahwa 35 psu sama dengan 35

gram garam per liter larutan.

Tabel 2. Perbedaan kandungan garam dan ion utama antara air laut dan air sungai

NAMA UNSUR % jumlah berat seluruh gram

AIR LAUT AIR SUNGAIKlorida 55,04 5,68Natrium 30,61 5,79Sulfat 7,68 12,14

Magnesium 3,69 3,41Kalsium 1,16 20,29Kalium 1,10 2,12

Bikarbonat 0,41 -Karbonat - 35,15

Brom 0,19 -Asam borak 0,07 -Strontium 0,04 -

Flour 0,00 -Silika - 11,67

Oksida - 2,75Nitrat - 0,90

Page 6: MAKALAH osean.docx

D.           Sebaran Salinitas di Laut

Sebaran salinitas di laut dipengaruhi oleh berbagai faktor seperti pola sirkulasi air,

penguapan, curah hujan, aliran sungai. Perairan estuaria atau daerah sekitar kuala dapat mempunyai

struktur salinitas yang kompleks, karena selain merupakan pertemuan antara air tawar yang relatif

lebih ringan  dan air laut yang lebih berat, juga pengadukan air sangat menentukan.

Pertama adalah perairan dengan stratifikasi salinitas yang sangat kuat, terjadi di mana air

tawar merupakan lapisan yang tipis di permukaan sedangkan di bawahnya terdapat air laut. Ini bisa

ditemukan di depan muara sungai yang alirannya kuat sedangkan pengaruh pasang-surut kecil.

Nelayan atau pelaut di pantai Sumatra yang dalam keadaan darurat kehabisan air tawar kadang-

kadang masih dapat menyiduk air tawar di lapisan tipis teratas dengan menggunakan piring, bila

berada di depan muara sungai besar.

Kedua, adalah perairan dengan stratifikasi sedang. Ini terjadi karena adanya gerak pasang-

surut yang menyebabkan terjadinya pengadukan pada kolom air hingga terjadi pertukaran air secara

vertikal. Di permukaan, air cenderung mengalir keluar sedangkan air laut merayap masuk dari bawah.

Antara keduanya terjadi percampuran. Akibatnya garis isohalin (=garis yang menghubungkan

salinitas yang sama) mempunyai arah yang condong ke luar. Keadaan semacam ini juaga bisa

dijumpai di beberapa perairan estuaria di Sumatra.

Di perairan lepas pantai yang dalam, angin dapat pula melakukan pengadukan di lapisan atas

hingga membentuk lapisan homogen kira-kira setebal 50-70 m atau lebih bergantung intensitas

pengadukan. Di perairan dangkal, lapisan homogen ini berlanjut sampai ke dasar. Di lapisan dengan

salinitas homogen, suhu juga biasanya homogen. Baru di bawahnya terdapat lapisan pegat

(discontinuity layer) dengan gradasi densitas yang tajam yang menghambat percampuran antara

lapisan di atas dan di bawahnya.

Di bawah lapisan homogen, sebaran salinitas tidak banyak lagi ditentukan oleh angin tetapi

oleh pola sirkulasi massa air di lapisan massa air di lapisan dalam. Gerakan massa air ini bisa

ditelusuri antara lain dengan mengakji sifat-sifat sebaran salinitas maksimum dan salinitas minimum

dengan metode inti (core layer method).

Salinitas di daerah subpolar (yaitu daerah di atas daerah subtropis hingga mendekati kutub)

rendah di permukaan dan bertambah secara tetap (monotonik) terhadap kedalaman. Di daerah

subtropis (atau semi tropis, yaitu daerah antara 23,5o – 40oLU atau 23,5o – 40oLS), salinitas di

permukaan lebih besar daripada di kedalaman akibat besarnya evaporasi (penguapan). Di kedalaman

sekitar 500 sampai 1000 meter harga salinitasnya rendah dan kembali bertambah secara monotonik

terhadap kedalaman. Sementara itu, di daerah tropis salinitas di permukaan lebih rendah daripada di

kedalaman akibatnya tingginya presipitasi (curah hujan).

1.    Dinamika Salinitas di Daerah Estuaria

Estuaria adalah perairan muara sungai semi tertutup yang berhubungan bebas dengan laut,

sehingga air laut dengan salinitas tinggi dapat bercampur dengan air tawar. Estuaria dapat terjadi

pada lembah-lembah sungai yang tergenang air laut, baik karena permukaan laut yang naik (misalnya

pada zaman es mencair) atau pun karena turunnya sebagian daratan oleh sebab-sebab tektonis.

Estuaria juga dapat terbentuk pada muara-muara sungai yang sebagian terlindungi oleh beting pasir

atau lumpur.

Kombinasi pengaruh air laut dan air tawar akan menghasilkan suatu komunitas yang khas,

dengan lingkungan yang bervariasi, antara lain:

Page 7: MAKALAH osean.docx

a)    Tempat bertemunya arus air tawar dengan arus pasang-surut, yang berlawanan menyebabkan suatu

pengaruh yang kuat pada sedimentasi, pencampuran air, dan ciri-ciri fisika lainnya, serta membawa

pengaruh besar pada biotanya.

b)   Pencampuran kedua macam air tersebut menghasilkan suatu sifat fisika lingkungan khusus yang

tidak sama dengan sifat air sungai maupun sifat air laut.

c)   Perubahan yang terjadi akibat adanya pasang-surut mengharuskan komunitas mengadakan

penyesuaian secara fisiologis dengan lingkungan sekelilingnya.

d)   kadar garam di daerah estuaria tergantung pada pasang-surut air laut, banyaknya aliran air tawar dan

arus-arus lainnya, serta topografi daerah estuaria tersebut.

2.   Sifat-sifat Ekologis

Sebagai tempat pertemuan air laut dan air tawar, salinitas di estuaria sangat bervariasi. Baik

menurut lokasinya di estuaria, ataupun menurut waktu.

Secara umum salinitas yang tertinggi berada pada bagian luar, yakni pada batas wilayah estuaria

dengan laut, sementara yang terendah berada pada tempat-tempat di mana air tawar masuk ke

estuaria. Pada garis vertikal, umumnya salinitas di lapisan atas kolom air lebih rendah daripada

salinitas air di lapisan bawahnya. Ini disebabkan karena air tawar cenderung ‘terapung’ di atas air laut

yang lebih berat oleh kandungan garam. Kondisi ini disebut ‘estuaria positif’ atau ‘estuaria baji garam’

(salt wedge estuary).

Akan tetapi ada pula estuaria yang memiliki kondisi berkebalikan, dan karenanya dinamai

‘estuaria negatif’. Misalnya pada estuaria-estuaria yang aliran air tawarnya sangat rendah, seperti di

daerah gurun pada musim kemarau. Laju penguapan air di permukaan, yang lebih tinggi daripada laju

masuknya air tawar ke estuaria, menjadikan air permukaan dekat mulut sungai lebih tinggi kadar

garamnya. Air yang hipersalin itu kemudian tenggelam dan mengalir ke arah laut di bawah

permukaan. Dengan demikian gradien salinitas airnya berbentuk kebalikan daripada “estuaria positif’’.

Dalam pada itu, dinamika pasang surut air laut sangat mempengaruhi perubahan-perubahan

salinitas dan pola persebarannya di estuaria. Pola ini juga ditentukan oleh geomorfologi dasar

estuaria.

Sementara perubahan-perubahan salinitas di kolom air dapat berlangsung cepat dan

dinamis, salinitas substrat di dasar estuaria berubah dengan sangat lambat. Substrat estuaria

umumnya berupa lumpur atau pasir berlumpur, yang berasal dari sedimen yang terbawa aliran air,

baik dari darat maupun dari laut. Sebabnya adalah karena pertukaran partikel garam dan air yang

terjebak di antara partikel-partikel sedimen, dengan yang berada pada kolom air di atasnya

berlangsung dengan lamban.

E.             Model Salinitas

”Model Salinitas” adalah suatu penggambaran atas kadar garam yang terdapat pada air, baik

kandungan atau perbedaannya sehingga untuk tiap daerah dimungkinkan terdapat perbedaan ”model

salinitas”nya.

Perubahan salinitas dipengaruhi oleh pasang surut dan musim. Ke arah darat, salinitas

muara cenderung lebih rendah. Tetapi selama musim kemarau pada saat aliran air sungai berkurang,

air laut dapat masuk lebih jauh ke arah darat sehingga salinitas muara meningkat. Sebaliknya pada

musim hujan, air tawar mengalir dari sungai ke laut dalam jumlah yang lebih besar sehingga salinitas

air di muara menurun.

Perbedaan salinitas dapat mengakibatkan terjadinya lidah air tawar dan pergerakan massa di

muara. Perbedaan salinitas air laut dengan air sungai yang bertemu di muara menyebabkan

keduanya bercampur membentuk air payau. Karena kadar garam air laut lebih besar, maka air laut

Page 8: MAKALAH osean.docx

cenderung bergerak di dasar perairan sedangkan air tawar di bagian permukaan. Keadaan ini

mengakibatkan terjadinya sirkulasi air di muara.

Aliran air tawar yang terjadi terus-menerus dari hulu sungai membawa mineral, bahan

organik, dan sedimen ke perairan muara. Di samping itu, unsur hara terangkut dari laut ke daerah

muara oleh adanya gerakan air akibat arus dan pasang surut. Unsur-unsur hara yang terbawa ke

muara merupakan bahan dasar yang diperlukan untuk fotosintesis yang menunjang produktifitas

perairan. Itulah sebabnya produktifitas muara melebihi produktifitas ekosistem laut lepas dan perairan

tawar. Lingkungan muara yang paling produktif di jumpai di daerah yang ditumbuhi komunitas bakau.

F.            Hubungan Densitas Ikan Dengan Salinitas

Salinitas dipengaruhi oleh massa air oseanis di bagian utara hingga bagian tengah perairan,

dan massa air tawar dari daratan yang mempengaruhi massa air di bagian selatan dan bagian utara

dekat pantai. Kondisi ini mempengaruhi densitas ikan, dan kebanyakan kelompok ikan yang

ditemukan dengan densitas tinggi (0,9 ikan/mł) pada daerah bagian selatan dengan salinitas antara

29,36-31,84 %, dan densitas 0,4 ikan/mł di bagian utara  dengan salinitas 29,97-32,59 % . Densitas

ikan tertinggi pada lapisan kedalaman 5-15 m (0,8 ikan/mł) ditemukan pada daerah dengan salinitas

≥31,5 % yaitu pada bagian utara perairan. Dibagian selatan, densitas ikan tertinggi sebesar 0,6-0,7

ikan/mł ditemukan pada daerah dengan salinitas ≤30,0 %. Pola pergeseran nilai salinitas hampir

sama di tiap kedalaman, dengan nilai yang makin bertambah sesuai dengan makin dalam perairan.

Pada lapisan kedalaman 15-25 m, kisaran salinitas meningkat hingga lebih dari 32 %, dan

konsentrasi densitas ikan ditemukan lebih dari 0,4 ikan/mł dengan areal yang lebih besar pada

konsentrasi salinitas ≤31,5 %. Konsentrasi ikan yang ditemukan pada daerah dengan salinitas ≥32,0

%, yaitu di bagian utara perairan sebesar 0,2-0,3 ikan/mł.

Pada lapisan kedalaman 25-35 m dan 35-45 m dijumpai kisaran salinitas yang hampir sama

yaitu 31,43-32,53 % dan 31,77-32,73 %, dengan distribusi densitas ikan lebih banyak ditemukan pada

daerah dengan salinitas 32,0-32,5 % yaitu sebesar 0,1-0,8 ikan/mł, dan kelompok ikan dengan

densitas lebih kecil dari 0,1 ikan/mł banyakditemukan pada perairan dengan salinitas ≤32,0 %. Pada

lapisan kedalaman 35-45 m, konsentrasi densitas ikan makin berkurang. Densitas tertinggi di lapisan

ini hanya sebesar 0,17 ikan/mł, atau rata-rata densitas ikan yang ditemukan di bawah 0,1 ikan/mł. Hal

ini sesuai dengan ukuran ikan yang terdeteksi, yang umumnya merupakan ikan-ikan berukuran kecil.

Dimana lebih condong terkonsentrasi pada daerah permukaan dan dekat pantai.

G.           Pengaruh Faktor Salinitas Di Laut Pada Tingkah Laku Dan Kelimpahan Ikan.

1. Suhu air laut

Ikan adalah hewan berdarah dingin, yang suhu tubuhnya selalu menyesuaikan dengan suhu

sekitarnya. Selanjutnya dikatakan pula bahwa ikan mempunyai kemampuan untuk mengenali dan

memilih range suhu tertentu yang memberikan kesempatan untuk melakukan aktivitas secara

maksimum dan pada akhirnya mempengaruhi kelimpahan dan distribusinya. Pengaruh suhu terhadap

ikan adalah dalam proses vertikall, seperti pertumbuhan dan pengambilan makanan, aktivitas tubuh,

seperti kecepatan renang, serta dalam rangsangan syaraf. Pengaruh suhu air pada tingkah laku ikan

paling jelas terlihat selama pemijahan. Suhu air laut dapat mempercepat atau memperlambat

mulainya pemijahan pada beberapa jenis ikan. Suhu air dan arus selama dan setelah pemijahan

adalah faktor-faktor yang paling penting yang menentukan “kekuatan keturunan” dan daya tahan larva

pada spesies-spesies ikan yang paling penting secara komersil. Suhu ekstrim pada daerah pemijahan

(spawning ground) selama musim pemijahan dapat memaksa ikan untuk memijah di daerah lain

Page 9: MAKALAH osean.docx

daripada di daerah tersebut. Perubahan suhu jangka panjang dapat mempengaruhi perpindahan

tempat pemijahan (spawning ground) dan fishing ground secara vertikal.

Secara alami suhu air permukaan merupakan lapisan hangat karena mendapat radiasi

matahari pada siang hari. Karena pengaruh angin, maka di lapisan teratas sampai kedalaman kira-

kira 50-70 m terjadi pengadukan, hingga di lapisan tersebut terdapat suhu hangat (sekitar 28°C) yang

ertical. Oleh sebab itu lapisan teratas ini sering pula disebut lapisan vertikal. Karena adanya pengaruh

arus dan pasang surut, lapisan ini bisa menjadi lebih tebal lagi. Di perairan dangkal lapisan vertikal ini

sampai ke dasar. Lapisan permukaan laut yang hangat terpisah dari lapisan dalam yang dingin oleh

lapisan tipis dengan perubahan suhu yang cepat yang disebut termoklin atau lapisan diskontinuitas

suhu. Suhu pada lapisan permukaan adalah seragam karena percampuran oleh angin dan

gelombang sehingga lapisan ini dikenal sebagai lapisan percampuran (mixed layer). Mixed

layermendukung kehidupan ikan-ikan pelagis, secara pasif mengapungkan plankton, telur ikan, dan

larva, sementara lapisan air dingin di bawah termoklin mendukung kehidupan hewan-hewan bentik

dan hewan laut dalam.

Pada saat terjadi penaikan massa air (upwelling), lapisan termoklin ini bergerak ke atas dan

gradiennya menjadi tidak terlalu tajam sehingga massa air yang kaya zat hara dari lapisan dalam naik

ke lapisan atas.jangka pendek dari kedalaman termoklin dipengaruhi oleh pergerakan permukaan,

pasang surut, dan arus. Di bawah lapisan termoklin suhu menurun secara perlahan-lahan dengan

bertambahnya kedalaman.

Kedalaman termoklin di dalam lautan Hindia mencapai 120 meter. Menuju ke selatan di

daerah arus equatorial selatan, kedalaman termoklin mencapai 140 meter.

2.    Pengaruh arus

Ikan bereaksi secara langsung terhadap perubahan lingkungan yang dipengaruhi oleh arus

dengan mengarahkan dirinya secara langsung pada arus. Arus tampak jelas dalam

organmechanoreceptor yang terletak garis mendatar pada tubuh ikan. Mechanoreceptoradalah

reseptor yang ada pada vertikal yang mampu memberikan informasi perubahan mekanis dalam

lingkungan seperti gerakan, tegangan atau tekanan. Biasanya gerakan ikan selalu mengarah menuju

arus.Fishing ground yang paling baik biasanya terletak pada daerah batas antara dua arus atau di

daerah upwelling dan divergensi. Batas arus (konvergensi dan divergensi) dan kondisi oseanografi

dinamis yang lain (seperti eddies), berfungsi tidak hanya sebagai perbatasan distribusi lingkungan

bagi ikan, tetapi juga menyebabkan pengumpulan ikan pada kondisi ini. Pengumpulan ikan-ikan yang

penting secara komersil biasanya berada pada tengah-tengah arus eddies. Akumulasi plankton, telur

ikan juga berada di tengah-tengah antisiklon eddies. Pengumpulan ini bisa berkaitan dengan

pengumpulan ikan dewasa dalam arus eddi (melalui rantai makanan).

3.    Pengaruh cahaya

Ikan bersifat fototaktik baik secara positif maupun vertikal. Banyak ikan yang tertarik pada

cahaya buatan pada malam hari, satu fakta yang digunakan dalam penangkapan ikan. Pengaruh

cahaya buatan pada ikan juga dipengaruhi oleh faktor lingkungan lain dan pada beberapa spesies

bervariasi terhadap waktu dalam sehari. Secara umum, sebagian besar ikan pelagis naik ke

permukaan sebelum matahari terbenam. Setelah matahari terbenam, ikan-ikan ini menyebar pada

kolom air, dan tenggelam ke lapisan lebih dalam setelah matahari terbit. Ikan demersal biasanya

menghabiskan waktu siang hari di dasar selanjutnya naik dan menyebar pada kolom air pada malam

hari.

Cahaya mempengaruhi ikan pada waktu memijah dan pada larva. Jumlah cahaya yang

tersedia dapat mempengaruhi waktu kematangan ikan. Jumlah cahaya juga mempengaruhi daya

hidup larva ikan secara tidak langsung, hal ini diduga berkaitan dengan jumlah produksi organik yang

Page 10: MAKALAH osean.docx

sangat dipengaruhi oleh ketersediaan cahaya. Cahaya juga mempengaruhi tingkah laku larva.

Penangkapan beberapa larva ikan pelagis ditemukan lebih banyak pada malam hari dibandingkan

pada siang hari.

4.    Upwelling

Upwelling adalah penaikan massa air laut dari suatu lapisan dalam ke lapisan permukaan.

Gerakan naik ini membawa serta air yang suhunya lebih dingin, salinitas tinggi, dan zat-zat hara yang

vertikal permukaan. Proses upwelling ini dapat terjadi dalam tiga bentuk.

Pertama, pada waktu arus dalam (deep current) bertemu dengan rintangan seperti mid-ocean

ridge (suatu sistem ridge bagian tengah lautan) di mana arus tersebut dibelokkan ke atas dan

selanjutnya air mengalir deras ke permukaan.

Kedua, ketika dua massa air bergerak berdampingan, misalnya saat massa air yang di utara

di bawah pengaruh gaya coriolis dan massa air di selatan ekuator bergerak ke selatan di bawah

pengaruh gaya coriolis juga, keadaan tersebut akan menimbulkan “ruang kosong” pada lapisan di

bawahnya. Kedalaman di mana massa air itu naik tergantung pada jumlah massa air permukaan

yang bergerak ke sisi ruang kosong tersebut dengan kecepatan arusnya. Hal ini terjadi karena

adanya divergensi pada perairan laut tersebut.

Ketiga, upwelling dapat pula disebabkan oleh arus yang menjauhi pantai akibat tiupan angin

darat yang terus-menerus selama beberapa waktu. Arus ini membawa massa air permukaan pantai

ke laut lepas yang mengakibatkan ruang kosong di daerah pantai yang kemudian diisi dengan massa

air di bawahnya.

Meningkatnya produksi perikanan di suatu perairan dapat disebabkan karena terjadinya

proses air naik (upwelling). Karena gerakan air naik ini membawa serta air yang suhunya lebih dingin,

salinitas yang tinggi dan tak kalah pentingnya zat-zat hara yang kaya seperti fosfat dan nitrat naik ke

permukaan. Selain itu proses air naik tersebut disertai dengan produksi plankton yang tinggi.

Di perairan Selat Makasar bagian selatan diketahui terjadi upwelling. Proses

terjadinyaupwelling tersebut disebabkan karena pertemuan arus dari Selat Makasar dan Laut Flores

bergabung kuat menjadi satu dan mengalir kuat ke barat menuju Laut Jawa. Dengan kondisi demikian

dimungkinkan massa air di permukaan di dekat pantai Ujung Pandang secara cepat terseret oleh

aliran tersebut dan untuk menggantikannya massa air dari lapisan bawah naik ke atas. Proses air

naik di Selat Makasar bagian selatan ini terjadi sekitar Juni sampai September dan berkaitan erat

dengan sistem arus. Air laut di lapisan permukaan umumnya mempunyai suhu tinggi, salinitas, dan

kandungan zat hara yang rendah. Sebaliknya pada lapisan yang lebih dalam air laut mempunyai suhu

yang rendah, salinitas, dan kandungan zat hara yang lebih tinggi.

Pada waktu terjadinya upwelling, akan terangkat massa air dari lapisan bawah dengan suhu

rendah, salinitas, dan kandungan zat hara yang tinggi.  Keadaan ini mengakibatkan air laut di lapisan

permukaan memiliki suhu rendah, salinitas, dan kandungan zat hara yang lebih tinggi jika

dibandingkan dengan massa air laut sebelum terjadinya proses upwelling ataupun massa air

sekitarnya. Sebaran suhu, salinitas, dan zat hara secara vertical maupun horizontal sangat membantu

dalam menduga kemungkinan terjadinya upwelling di suatu perairan. Pola-pola sebaran oseanografi

tersebut digunakan untuk mengetahui jarak vertikal yang ditempuh oleh massa air yang terangkat.

Sebaran suhu permukaan laut merupakan salah satu parameter yang dapat dipergunakan untuk

mengetahui terjadinya proses upwelling di suatu perairan.

Dalam proses upwelling ini terjadi penurunan suhu permukaan laut dan tingginya kandungan

zat hara dibandingkan daerah sekitarnya. Tingginya kadar zat hara tersebut merangsang

perkembangan fitoplankton di permukaan. Karena perkembangan fitoplankton sangat erat kaitannya

dengan tingkat kesuburan perairan, maka proses air naik selalu dihubungkan dengan meningkatnya

Page 11: MAKALAH osean.docx

produktivitas primer di suatu perairan dan selalu diikuti dengan meningkatnya populasi ikan di

perairan tersebut. Upwelling di perairan Indonesia dijumpai di Laut Banda, Laut Arafura, selatan Jawa

hingga selatan Sumbawa, Selat Makasar, Selat Bali, dan diduga terjadi di Laut Maluku, Laut

Halmahera, Barat Sumatra, serta di Laut Flores dan Teluk Bone. Upwelling berskala besar terjadi di

selatan Jawa, sedangkan berskala kecil terjadi di Selat Bali dan Selat Makasar. Upwelling di perairan

Indonesia bersifat musiman terjadi pada Musim Timur (Mei-September), hal ini menunjukan adanya

hubungan yang erat antara upwelling dan musim.

H.           Penentuan Nilai Salinitas

Ciri yang paling khas pada air laut yang diketahui oleh semua orang adalah rasanya yang

asin. Ini disebabkan karena di dalam air laut terlarut bermacam-macam garam, yang paling utama

adalah garam natrium korida (NaCl) yang sering pula disebut garam dapur. Selain garam-garam

korida, di dalam air laut terdapat pula garam-garam magnesium, kalsium, kalium dan sebagainya.

Dalam literatur oseanologi dikenal istilah salinitas (acapkali pula disebut kadar garam atau

kegaraman) yang maksudnya ialah jumlah berat semua garam (dalam garam) yang terlarutdalam

satu liter air, biasanya dinyatakan dengan satuan 0/00 (per mil, gram per liter).

Ada berbagai cara menentukan salinitas, baik secara kimia maupun fisika. Secara  kimia

untuk menentukan nilai salinitas dilakukan dengan cara menghitung jumlah kadar klor dalam sample

air laut. Hal ini dilakukan karena sangat susah untuk menentukan salinitas senyawa terlarut secara

keseluruhan. Oleh sebab itu hanya dilakukan peninjauan pada komponen terbesar yaitu klorida (Cl).

Kandungan klorida ditetapkan pada tahun 1902 sebagai jumlah dalam gram ion klorida pada satu

kilogram air laut jika semua halogen digantikan oleh klorida. Penetapan ini mencerminkan proses

kimiawi titrasi untuk menentukan kandungan klorida.

Salinitas ditetapkan pada tahun 1902 sebagai jumlah total dalam gram bahan-bahan terlarut

dalam satu kilogram air laut jika semua karbonat dirubah menjadi oksida, semua bromida dan yodium

dirubah menjadi klorida dan semua bahan-bahan organik dioksidasi. Selanjutnya hubungan antara

salinitas dan klorida ditentukan melalui suatu rangkaian pengukuran dasar laboratorium berdasarkan

pada sampel air laut di seluruh dunia dan dinyatakan sebagai: S (o/oo) = 0.03 +1.805 Cl (o/oo) (1902)

Lambang o/oo (dibaca per mil) adalah bagian per seribu. Kandungan garam 3,5% sebanding dengan

35o/oo atau 35 gram garam di dalam satu kilogram air laut. Persamaan tahun 1902 di atas akan

memberikan harga salinitas sebesar 0,03o/oo jika klorinitas sama dengan nol dan hal ini sangat

menarik perhatian dan menunjukkan adanya masalah dalam sampel air yang digunakan untuk

pengukuran laboratorium. Oleh karena itu, pada tahun 1969 UNESCO memutuskan untuk mengulang

kembali penentuan dasar hubungan antara klorinitas dan salinitas dan memperkenalkan definisi baru

yang dikenal sebagai salinitas absolut dengan rumus: S (o/oo) = 1.80655 Cl (o/oo) (1969) Namun

demikian, dari hasil pengulangan definisi ini ternyata didapatkan hasil yang sama dengan definisi

sebelumnya.

Definisi salinitas ditinjau kembali ketika tekhnik untuk menentukan salinitas dari pengukuran

konduktivitas, temperatur dan tekanan dikembangkan. Sejak tahun 1978, didefinisikan suatu satuan

baru yaitu Practical Salinity Scale (Skala Salinitas Praktis) dengan simbol S, sebagai rasio dari

konduktivitas. “Salinitas praktis dari suatu sampel air laut ditetapkan sebagai rasio dari konduktivitas

listrik (K) sampel air laut pada temperatur 15oC dan tekanan satu standar atmosfer terhadap larutan

kalium klorida (KCl), dimana bagian massa KCl adalah 0,0324356 pada temperatur dan tekanan yang

sama. Rumus dari definisi ini adalah: S = 0.0080 – 0.1692 K1/2 + 25.3853 K + 14.0941 K3/2 – 7.0261

K2 + 2.7081 K5/2 Sebagai catatan: dari penggunaan definisi baru ini, dimana salinitas dinyatakan

sebagai rasio, maka satuan o/oo tidak lagi berlaku, nilai 35o/oo berkaitan dengan nilai 35 dalam

satuan praktis. Beberapa oseanografer menggunakan satuan “psu” dalam menuliskan harga salinitas,

Page 12: MAKALAH osean.docx

yang merupakan singkatan dari “practical salinity unit”. Karena salinitas praktis adalah rasio, maka

sebenarnya ia tidak memiliki satuan, jadi penggunaan satuan “psu” sebenarnya tidak mengandung

makna apapun dan tidak diperlukan.

Kemudian untuk menghitung nilai salinitas secara fisik adalah ini untuk menentukan salinitas

melalui konduktivitas air laut. Alat-alat elektronik canggih menggunakan prinsip konduktivitas. Salah

satu alat yang paling popular untuk mengukur salinitas dengan ketelitian tinggi ialah salinometer yang

bekerjanya didasarkan pada daya hantar listrik. Makin besar salinitas, makin besar pula daya hantar

listriknya. Selain itu telah pula dikembangkan pula alat STD (salinity-temperature-depth recorder)

yang apabila diturunkan ke dalam laut dapat dengan otomatis membuat kurva salinitas dan suhu

terhadap kedalaman di lokasi tersebut.

I.              Desalinisasi

Desalinasi adalah proses pemisahan yang digunakan untuk mengurangi kandungan garam

terlarut dari air garam hingga level tertentu sehingga air dapat digunakan. Proses desalinasi

melibatkan tiga aliran cairan, yaitu umpan berupa air garam (misalnya air laut), produk bersalinitas

rendah, dan konsentrat bersalinitas tinggi. Produk proses desalinasi umumnya merupakan air dengan

kandungan garam terlarut kurang dari 500 mg/l, yang dapat digunakan untuk keperluan domestik,

industri, dan pertanian. Hasil sampingan dari proses desalinasi adalah brine. Brine adalah larutan

garam berkonsentrasi tinggi (lebih dari 35000 mg/l garam terlarut).

Distilasi merupakan metode desalinasi yang paling lama dan paling umum digunakan.

Distilasi adalah metode pemisahan dengan cara memanaskan air laut untuk menghasilkan uap air,

yang selanjutnya dikondensasi untuk menghasilkan air bersih. Berbagai macam proses distilasi yang

umum digunakan, seperti multistage flash, multiple effect distillation, dan vapor

compressionumumnya menggunakan prinsip mengurangi tekanan uap dari air agar pendidihan dapat

terjadi pada temperatur yang lebih rendah, tanpa menggunakan panas tambahan.

Metode lain desalinasi adalah dengan menggunakan membran. Terdapat dua tipe membran

yang dapat digunakan untuk proses desalinasi, yaitu reverse osmosis (RO) dan electrodialysis (ED).

Pada proses desalinasi menggunakan membran RO, ialah sebuah istilah teknologi yang berasal dari

osmosis. Osmosis adalah sebuah fenomena alam dalam sel hidup di mana molekul “solvent”

(biasanya air) akan mengalir dari daerah “solute” rendah ke daerah “solute” tinggi melalui sebuah

membran “semipermeable”. Membran “semipermeable” ini menunjuk ke membran sel atau membran

apa pun yang memiliki struktur yang mirip atau bagian dari membran sel. Gerakan dari “solvent”

berlanjut sampai sebuah konsentrasi yang seimbang tercapai di kedua sisi membrane. Reverse

osmosis dapat diartikan proses pemaksaan sebuah solvent dari daerah konsentrasi “solute” tinggi

melalui sebuah membran ke sebuah daerah “solute” rendah dengan menggunakan sebuah tekanan

melebihi tekanan osmotik.

Dalam istilah lebih mudah, reverse osmosis adalah mendorong sebuah solusi

melalui filteryang menangkap “solute” dari satu sisi dan membiarkan pendapatan “solvent” murni dari

sisi satunya. air pada larutan garam dipisahkan dari garam terlarutnya dengan mengalirkannya

melalui membran water-permeable. Permeate dapat mengalir melalui membran akibat adanya

perbedaan tekanan yang diciptakan antara umpan bertekanan dan produk, yang memiliki tekanan

dekat dengan tekanan atmosfer. Sisa umpan selanjutnya akan terus mengalir melalui sisi reaktor

bertekanan sebagai brine. Proses ini tidak melalui tahap pemanasan ataupun perubahan fasa.

Kebutuhan energi utama adalah untuk memberi tekanan pada air umpan. Desalinasi air payau

membutuhkan tekanan operasi berkisar antara 250 hingga 400 psi, sedangkan desalinasi air laut

memiliki kisaran tekanan operasi antara 800 hingga 1000 psi.

Page 13: MAKALAH osean.docx

Dalam praktiknya, umpan dipompa ke dalam container tertutup, pada membran, untuk

meningkatkan tekanan. Saat produk berupa air bersih dapat mengalir melalui membran, sisa umpan

dan larutan brine menjadi semakin terkonsentrasi. Untuk mengurangi konsentrasi garam terlarut pada

larutan sisa, sebagian larutan terkonsentrasi ini diambil dari container untuk mencegah konsentrasi

garam terus meningkat.

Sistem RO terdiri dari 4 proses utama, yaitu:

1.            Pretreatment: Air umpan pada tahap pretreatment disesuaikan dengan membran dengan cara

memisahkan padatan tersuspensi, menyesuaikan pH, dan menambahkan inhibitor untuk

mengontrolscaling yang dapat disebabkan oleh senyawa tetentu, seperti kalsium sulfat.

2.            Pressurization: Pompa akan meningkatkan tekanan dari umpan yang sudah melalui

prosespretreatment hingga tekanan operasi yang sesuai dengan membran dan salinitas air umpan.

3.            Separation: Membran permeable akan menghalangi aliran garam terlarut, sementara membran akan

memperbolehkan air produk terdesalinasi melewatinya. Efek permeabilitas membran ini akan

menyebabkan terdapatnya dua aliran, yaitu aliran produk air bersih, dan aliran brine terkonsentrasi.

Karena tidak ada membran yang sempurna pada proses pemisahan ini, sedikit garam dapat mengalir

melewati membran dan tersisa pada air produk. Membran RO memiliki berbagai jenis konfigurasi,

antara lain spiral wound dan hollow fine fiber membranes.

4.            Stabilization: Air produk hasil pemisahan dengan membran biasanya membutuhkan penyesuaian pH

sebelum dialirkan ke sistem distribusi untuk dapat digunakan sebagai air minum. Produk mengalir

melalui kolom aerasi dimana pH akan ditingkatkan dari sekitar 5 hingga mendekati 7.

Dua metode yang paling banyak digunakan adalah Reverse Osmosis (47,2%)  ialah sebuah

istilah teknologi yang berasal dari osmosis. Osmosis adalah sebuah fenomena alam dalm sel hidup di

mana molekul “solvent” (biasanya air) akan mengalir dari daerah “solute” rendah ke daerah “solute”

tinggi melalui sebuah membran “semipermeable”. Membran “semipermeable” ini menunjuk ke

membran sel atau membran apa pun yang memiliki struktur yang mirip atau bagian dari membran sel.

Gerakan dari “solvent” berlanjut sampai sebuah konsentrasi yang seimbang tercapai di kedua sisi

membrane. Reverse osmosis dapat diartikan proses pemaksaan sebuah solvent dari daerah

konsentrasi “solute” tinggi melalui sebuah membran ke sebuah daerah “solute” rendah dengan

menggunakan sebuah tekanan melebihi tekanan osmotik. Dalam istilah lebih mudah, reverse osmosis

adalah mendorong sebuah solusi melalui filter yang menangkap “solute” dari satu sisi dan

membiarkan pendapatan “solvent” murni dari sisi satunya. Proses ini telah digunakan untuk

mengolah air laut untuk mendapatkan air tawar, sejak awal 1970-an

BAB III

PENUTUP

A.           Kesimpulan

Adapun kesimpulan dari makalah “Unsur-Unsur Dalam Air Laut dan Salinitas” yaitu :

1.            Salinitas adalah tingkat keasinan atau kadar garam terlarut dalam air.

2.            Faktor-faktor yang mempengaruhi salinitas :

a.    Penguapan

b.    Curah hujan

c.    Banyak sedikitnya sungai yang bermuara dilaut

Page 14: MAKALAH osean.docx

3.            Sebaran salinitas di laut dipengaruhi oleh berbagai faktor seperti pola sirkulasi air, penguapan, curah

hujan, aliran sungai.

4.            Model Salinitas adalah suatu penggambaran atas kadar garam yang terdapat pada air, baik kandungan

atau perbedaannya sehingga untuk tiap daerah dimungkinkan terdapat perbedaan ”model

salinitas”nya.

5.            Pengaruh Faktor Salinitas Di Laut Pada Tingkah Laku Dan Kelimpahan Ikan:

a.    Suhu air laut

b.    Pengaruh arus

c.    Pengaruh cahaya

d.    upwelling

6.            Ada berbagai cara menentukan salinitas, baik secara kimia maupun fisika. Secara  kimia untuk

menentukan nilai salinitas dilakukan dengan cara menghitung jumlah kadar klor dalam sample air

laut. Hal ini dilakukan karena sangat susah untuk menentukan salinitas senyawa terlarut secara

keseluruhan.

7.            Desalinasi adalah proses pemisahan yang digunakan untuk mengurangi kandungan garam terlarut dari

air garam hingga level tertentu sehingga air dapat digunakan. Proses desalinasi melibatkan tiga aliran

cairan, yaitu umpan berupa air garam (misalnya air laut), produk bersalinitas rendah, dan konsentrat

bersalinitas tinggi.

DAFTAR PUSTAKA

http://www.gewater.com/what_we_do/water_scarcity/desalination.jsp

http://www.oas.org/dsd/publications/Unit/oea59e/ch20.htm#TopOfPage

Nontji, A. , 2007. LAUT NUSANTARA. Jakarta : Djambatan.Romimohtarto, K. dan Juwana, S. 2007. BIOLOGI LAUT : Ilmu Pengetahuan Tentang Biota Laut. Jakarta : Djambatan.

www.oseanografi.blogspot.com/200/07/salinitas-air-laut.html

www.wikipedia.com

Page 15: MAKALAH osean.docx

Tugas Makalah Oceanografi Fix

DAFTAR ISI

Halaman Judul………………………………………………………………………..     i

Kata Pengantar……………………………………………………………………….     ii

Daftar Isi……………………………………………………………………………….     iii

BAB I  PENDAHULUAN

      A.   Latar Belakang…………………………………………………………………..        1

      B.   Rumusan Masalah……………………………………………………………….     2

      C.   Tujuan Penulisan……………………………………………………………......       2

BAB II PEMBAHASAN

      A.  Teori Asal-Usul Garam-Garam di

Laut……………………………………….        .3

      B.  Devenisi

Salinitas………………………………………………………………..       4         

      C.  Faktor-Faktor Yang Mempengaruhi Salinitas………………………………        4

      D.  Pengaruh faktor salinitas di laut pada tingkah laku dan kelimpahan ikan         5

E.  Devenisi Desalinisasi……………………………………………………………     11

      F.   Apa saja kelompok elemen (organic dan inorganic di

alam……..............        14

G.  Peranan bahan Organik dalam Ekologi

Laut……………………………….       18

BAB III  PENUTUP

      A.  Kesimpulan………………………………………………………………………        19

DAFTAR PUSTAKA…………………………………………………………………      20

BAB IPENDAHULUAN

Page 16: MAKALAH osean.docx

A.   Latar BelakangSumber air terbanyak di bumi ini adalah air laut, namun untuk sampai pada

tahap penggunaan sehari-hari tidak bisa langsung digunakan harus melalui pengolahan terlebih dahulu, mengingat salinitas air laut sangat tinggi. HYDRO sea water membran dapat mengubah air laut dengan salinitas tinggi menjadi air tawar untuk penggunaan sehari-hari.

Laut sendiri menurut sejarahnya terbentuk 4,4 milyar tahun yang lalu, dimana awalnya bersifat sangat asam dengan air yang mendidih (dengan suhu sekitar 100C) karena panasnya bumi pada saat itu. Asamnya air laut terjadi karena saat itu atmosfer bumi dipenuhi oleh karbon dioksida. Keasaman air inilah yang menyebabkan tingginya pelapukan yang terjadi yang menghasilkan garam-garaman yang menyebabkan air laut menjadi asin seperti sekarang ini. Pada saat itu, gelombang tsunami sering terjadi karena seringnya asteroid menghantam bumi. Pasang surut laut yang terjadi pada saat itu bertipe mamut alias 'luar biasa' tingginya karena jarak bulan yang begitu dekat dengan bumi.

Air laut mengandung 3,5% garam-garaman, gas-gas terlarut, bahan-bahan organik dan partikel-partikel tak terlarut. Keberadaan garam-garaman mempengaruhi sifat fisis air laut (seperti: densitas, kompresibilitas, titik beku, dan temperatur dimana densitas menjadi maksimum) beberapa tingkat, tetapi tidak menentukannya. Beberapa sifat (viskositas, daya serap cahaya) tidak terpengaruh secara signifikan oleh salinitas. Dua sifat yang sangat ditentukan oleh jumlah garam di laut (salinitas) adalah daya hantar listrik (konduktivitas) dan tekanan osmosis.

Garam-garaman utama yang terdapat dalam air laut adalah klorida (55%), natrium (31%), sulfat (8%), magnesium (4%), kalsium (1%), potasium (1%) dan sisanya (kurang dari 1%) teridiri dari bikarbonat, bromida, asam borak, strontium dan florida. Tiga sumber utama garam-garaman di laut adalah pelapukan batuan di darat, gas-gas vulkanik dan sirkulasi lubang-lubang hidrotermal (hydrothermal vents) di laut dalam.

        B.  Rumusan Masalah

1          Bagaimana  asal-usul garam-garam di laut ?2.         Apa pengertian Salinitas ?

3.         Apa saja faktor yang mempengaruhi salinitas ?           4.         Apa pengertian Desalinisasi?5.         Apa pengaruh faktor salinitas di laut pada tingkah laku dan kelimpahan ikan ?6.         Apa saja kelompok elemen (organic dan inorganic di alam ?7.         Apa saja peranan bahan organic didalam air

Page 17: MAKALAH osean.docx

C. Tujuan Penulisan1.         Untuk mengetahui  asal-usul garam-garam di laut.2.         Untuk mengetahui pengertian Salinitas.3.         Untuk mengetahui  faktor-faktor yang mempengaruhi salinitas.

4.         Untuk mengetahui pengertian dari desalinisasi5.         Untuk mengetahui  pengaruh salinitas di laut pada tingkah laku dan

kelimpahan ikan.6.         Untuk mengetahui kelompok elemen (organic dan inorganic di alam terutama

di perairan..7.         Untuk mengetahui peranan bahan organic didalam air

BAB IIPEMBAHASAN

 A.           Teori Asal-Usul Garam-Garam Di Laut

Mula-mula diperkirakan bahwa zat-zat kimia yang menyebabkan air laut asin berasal dari darat yang dibawa oleh sungai-sungai yang mengalir ke laut, entah itu dari pengikisan batu-batuan darat, dari tanah longsor, dari air hujan atau dari gejala alam lainnya, yang terbawa oleh air sungai ke laut. Jika hal ini benar tentunya susunan kimiawi air sungai tidak akan berbeda dengan susunan kimiawi air laut.

Menurut teori, zat-zat garam tersebut berasal dari dalam dasar laut melalui proses outgassing, yakni rembesan dari kulit bumi di dasar laut yang berbentuk gas ke permukaan dasar laut. Bersama gas-gas ini, terlarut pula hasil kikisan kerak bumi dan bersama-sama garam-garam ini merembes pula air, semua dalam perbandingan yang tetap sehingga terbentuk garam di laut. Kadar garam ini tetap tidak berubah sepanjang masa. Artinya kita tidak menjumpai bahwa air laut makin lama makin asin.

Zat-zat yang terlarut yang membentuk garam, yang kadarnya diukur dengan istilah salinitas dapat dibagi menjadi empat kelompok, yakni:1. Konstituen utama          : Cl, Na, SO4, dan Mg.2. Gas terlarut                   : CO2, N2, dan O2.

3. Unsur Hara                   : Si, N, dan P.4. Unsur Runut                 : I, Fe, Mn, Pb, dan Hg.Konstituen utama merupakan 99,7% dari seluruh zat terlarut dalam air laut, sedangkan sisanya 0,3% terdiri dari ketiga kelompok zat lainnya. Akan tetapi meskipun kelompok zat terakhir ini sangat kecil persentasenya, mereka banyak

Page 18: MAKALAH osean.docx

menentukan kehidupan di laut. Sebaliknya kepekatan zat-zat ini banyak ditentukan oleh aktivitas kehidupan di laut.

Selain zat-zat terlarut ini, air juga mengandung butiran-butiran halus dalam suspense. Sebagian dari zat ini akhirnya terlarut, sebagian lagi mengendap ke dasar laut dan sisanya diurai oleh bakteri menjadi zat-zat hara yang dimanfaatkan tumbuhan untuk fotosintesis.

B.   Definisi SalinitasSalinitas adalah tingkat keasinan atau kadar garam terlarut dalam air.

Salinitas juga dapat mengacu pada kandungan garam dalam tanah. Kandungan garam pada sebagian besar danau, sungai, dan saluran air alami sangat kecil sehingga air di tempat ini dikategorikan sebagai air tawar. Kandungan garam sebenarnya pada air ini, secara definisi, kurang dari 0,05%. Jika lebih dari itu, air dikategorikan sebagai air payau atau menjadi saline bila konsentrasinya 3 sampai 5%. Lebih dari 5%, ia disebut brine.

C.   Faktor-faktor yang mempengaruhi Salinitas1. Penguapan, makin besar tingkat penguapan air laut di suatu wilayah, maka salinitasnya tinggi dan sebaliknya pada daerah yang rendah tingkat penguapan air lautnya, maka daerah itu rendah kadar garamnya.2. Curah hujan, makin besar/banyak curah hujan di suatu wilayah laut maka salinitas air laut itu akan rendah dan sebaliknya makin sedikit/kecil curah hujan yang turun salinitas akan tinggi.3. Banyak sedikitnya sungai yang bermuara di laut tersebut, makin banyak sungai yang bermuara ke laut tersebut maka salinitas laut tersebut akan rendah, dan sebaliknya makin sedikit sungai yang bermuara ke laut tersebut maka salinitasnya akan tinggi.Air laut secara alami merupakan air saline dengan kandungan garam sekitar 3,5%. Beberapa danau garam di daratan dan beberapa lautan memiliki kadar garam lebih tinggi dari air laut umumnya. Sebagai contoh, Laut Mati memiliki kadar garam sekitar 30%. Walaupun kebanyakan air laut di dunia memiliki kadar garam sekitar 3,5 %, air laut juga berbeda-beda kandungan garamnya. Yang paling tawar adalah di timur Teluk Finlandia dan di utara Teluk Bothnia, keduanya bagian dari Laut Baltik. Yang paling asin adalah di Laut Merah, di mana suhu tinggi dan sirkulasi terbatas membuat penguapan tinggi dan sedikit masukan air dari sungai-sungai. Kadar garam di beberapa danau dapat lebih tinggi lagi.

D.    Pengaruh Faktor Salinitas Di Laut Pada Tingkah Laku Dan Kelimpahan Ikan.

1.    Suhu air laut

Page 19: MAKALAH osean.docx

Ikan adalah hewan berdarah dingin, yang suhu tubuhnya selalu menyesuaikan dengan suhu sekitarnya. Selanjutnya dikatakan pula bahwa ikan mempunyai kemampuan untuk mengenali dan memilih range suhu tertentu yang memberikan kesempatan untuk melakukan aktivitas secara maksimum dan pada akhirnya mempengaruhi kelimpahan dan distribusinya. Pengaruh suhu terhadap ikan adalah dalam proses vertikall, seperti pertumbuhan dan pengambilan makanan, aktivitas tubuh, seperti kecepatan renang, serta dalam rangsangan syaraf. Pengaruh suhu air pada tingkah laku ikan paling jelas terlihat selama pemijahan. Suhu air laut dapat mempercepat atau memperlambat mulainya pemijahan pada beberapa jenis ikan. Suhu air dan arus selama dan setelah pemijahan adalah faktor-faktor yang paling penting yang menentukan “kekuatan keturunan” dan daya tahan larva pada spesies-spesies ikan yang paling penting secara komersil. Suhu ekstrim pada daerah pemijahan (spawning ground) selama musim pemijahan dapat memaksa ikan untuk memijah di daerah lain daripada di daerah tersebut. Perubahan suhu jangka panjang dapat mempengaruhi perpindahan tempat pemijahan (spawning ground) dan fishing ground secara vertikal.

Secara alami suhu air permukaan merupakan lapisan hangat karena mendapat radiasi matahari pada siang hari. Karena pengaruh angin, maka di lapisan teratas sampai kedalaman kira-kira 50-70 m terjadi pengadukan, hingga di lapisan tersebut terdapat suhu hangat (sekitar 28°C) yang ertical. Oleh sebab itu lapisan teratas ini sering pula disebut lapisan vertikal. Karena adanya pengaruh arus dan pasang surut, lapisan ini bisa menjadi lebih tebal lagi. Di perairan dangkal lapisan vertikal ini sampai ke dasar. Lapisan permukaan laut yang hangat terpisah dari lapisan dalam yang dingin oleh lapisan tipis dengan perubahan suhu yang cepat yang disebut termoklin atau lapisan diskontinuitas suhu. Suhu pada lapisan permukaan adalah seragam karena percampuran oleh angin dan gelombang sehingga lapisan ini dikenal sebagai lapisan percampuran (mixed layer). Mixed layer mendukung kehidupan ikan-ikan pelagis, secara pasif mengapungkan plankton, telur ikan, dan larva, sementara lapisan air dingin di bawah termoklin mendukung kehidupan hewan-hewan bentik dan hewan laut dalam.

Pada saat terjadi penaikan massa air (upwelling), lapisan termoklin ini bergerak ke atas dan gradiennya menjadi tidak terlalu tajam sehingga massa air yang kaya zat hara dari lapisan dalam naik ke lapisan atas.jangka pendek dari kedalaman termoklin dipengaruhi oleh pergerakan permukaan, pasang surut, dan arus. Di bawah lapisan termoklin suhu menurun secara perlahan-lahan dengan bertambahnya kedalaman.

Kedalaman termoklin di dalam lautan Hindia mencapai 120 meter. Menuju ke selatan di daerah arus equatorial selatan, kedalaman termoklin mencapai 140 meter.

2.    Pengaruh Arus

Page 20: MAKALAH osean.docx

Ikan bereaksi secara langsung terhadap perubahan lingkungan yang dipengaruhi oleh arus dengan mengarahkan dirinya secara langsung pada arus. Arus tampak jelas dalam organ mechanoreceptor yang terletak garis mendatar pada tubuh ikan. Mechanoreceptoradalah reseptor yang ada pada vertikal yang mampu memberikan informasi perubahan mekanis dalam lingkungan seperti gerakan, tegangan atau tekanan. Biasanya gerakan ikan selalu mengarah menuju arus. Fishing ground yang paling baik biasanya terletak pada daerah batas antara dua arus atau di daerah upwelling dan divergensi. Batas arus (konvergensi dan divergensi) dan kondisi oseanografi dinamis yang lain (sepertieddies), berfungsi tidak hanya sebagai perbatasan distribusi lingkungan bagi ikan, tetapi juga menyebabkan pengumpulan ikan pada kondisi ini. Pengumpulan ikan-ikan yang penting secara komersil biasanya berada pada tengah-tengah arus eddies. Akumulasi plankton, telur ikan juga berada di tengah-tengah antisiklon eddies. Pengumpulan ini bisa berkaitan dengan pengumpulan ikan dewasa dalam arus eddi (melalui rantai makanan).

3.    Pengaruh CahayaIkan bersifat fototaktik baik secara positif maupun vertikal. Banyak ikan yang

tertarik pada cahaya buatan pada malam hari, satu fakta yang digunakan dalam penangkapan ikan. Pengaruh cahaya buatan pada ikan juga dipengaruhi oleh faktor lingkungan lain dan pada beberapa spesies bervariasi terhadap waktu dalam sehari. Secara umum, sebagian besar ikan pelagis naik ke permukaan sebelum matahari terbenam. Setelah matahari terbenam, ikan-ikan ini menyebar pada kolom air, dan tenggelam ke lapisan lebih dalam setelah matahari terbit. Ikan demersal biasanya menghabiskan waktu siang hari di dasar selanjutnya naik dan menyebar pada kolom air pada malam hari.

Cahaya mempengaruhi ikan pada waktu memijah dan pada larva. Jumlah cahaya yang tersedia dapat mempengaruhi waktu kematangan ikan. Jumlah cahaya juga mempengaruhi daya hidup larva ikan secara tidak langsung, hal ini diduga berkaitan dengan jumlah produksi organik yang sangat dipengaruhi oleh ketersediaan cahaya. Cahaya juga mempengaruhi tingkah laku larva. Penangkapan beberapa larva ikan pelagis ditemukan lebih banyak pada malam hari dibandingkan pada siang hari.

4.    Upwelling

Upwelling adalah penaikan massa air laut dari suatu lapisan dalam ke lapisan permukaan. Gerakan naik ini membawa serta air yang suhunya lebih dingin, salinitas

Page 21: MAKALAH osean.docx

tinggi, dan zat-zat hara yang vertikal permukaan. Prosesupwelling ini dapat terjadi dalam tiga bentuk.

Pertama, pada waktu arus dalam (deep current) bertemu dengan rintangan seperti mid-ocean ridge (suatu sistem ridge bagian tengah lautan) di mana arus tersebut dibelokkan ke atas dan selanjutnya air mengalir deras ke permukaan.

Kedua, ketika dua massa air bergerak berdampingan, misalnya saat massa air yang di utara di bawah pengaruh gaya coriolis dan massa air di selatan ekuator bergerak ke selatan di bawah pengaruh gaya coriolis juga, keadaan tersebut akan menimbulkan “ruang kosong” pada lapisan di bawahnya. Kedalaman di mana massa air itu naik tergantung pada jumlah massa air permukaan yang bergerak ke sisi ruang kosong tersebut dengan kecepatan arusnya. Hal ini terjadi karena adanya divergensi pada perairan laut tersebut.

Ketiga, upwelling dapat pula disebabkan oleh arus yang menjauhi pantai akibat tiupan angin darat yang terus-menerus selama beberapa waktu. Arus ini membawa massa air permukaan pantai ke laut lepas yang mengakibatkan ruang kosong di daerah pantai yang kemudian diisi dengan massa air di bawahnya.

E.   Definisi DesalinisasiDesalinasi adalah proses pemisahan yang digunakan untuk mengurangi

kandungan garam terlarut dari air garam hingga level tertentu sehingga air dapat digunakan. Proses desalinasi melibatkan tiga aliran cairan, yaitu umpan berupa air garam (misalnya air laut), produk bersalinitas rendah, dan konsentrat bersalinitas tinggi. Produk proses desalinasi umumnya merupakan air dengan kandungan garam terlarut kurang dari 500 mg/l, yang dapat digunakan untuk keperluan domestik, industri, dan pertanian. Hasil sampingan dari proses desalinasi adalah brine. Brine adalah larutan garam berkonsentrasi tinggi (lebih dari 35000 mg/l garam terlarut).

Distilasi merupakan metode desalinasi yang paling lama dan paling umum digunakan. Distilasi adalah metode pemisahan dengan cara memanaskan air laut untuk menghasilkan uap air, yang selanjutnya dikondensasi untuk menghasilkan air bersih. Berbagai macam proses distilasi yang umum digunakan, sepertimultistage flash, multiple effect distillation, dan vapor compression umumnya menggunakan prinsip mengurangi tekanan uap dari air agar pendidihan dapat terjadi pada temperatur yang lebih rendah, tanpa menggunakan panas tambahan.

Metode lain desalinasi adalah dengan menggunakan membran. Terdapat dua tipe membran yang dapat digunakan untuk proses desalinasi, yaitu reverse osmosis (RO) dan electrodialysis (ED). Pada proses desalinasi menggunakan membran RO, ialah sebuah istilah teknologi yang berasal dari osmosis. Osmosisadalah sebuah fenomena alam dalam sel hidup di mana molekul “solvent” (biasanya air) akan mengalir dari daerah “solute” rendah ke daerah “solute” tinggi melalui sebuah membran “semipermeable”. Membran “semipermeable” ini

Page 22: MAKALAH osean.docx

menunjuk ke membran sel atau membran apa pun yang memiliki struktur yang mirip atau bagian dari membran sel. Gerakan dari “solvent” berlanjut sampai sebuah konsentrasi yang seimbang tercapai di kedua sisi membrane. Reverse osmosis dapat diartikan proses pemaksaan sebuah solvent dari daerah konsentrasi “solute” tinggi melalui sebuah membran ke sebuah daerah “solute” rendah dengan menggunakan sebuah tekanan melebihi tekanan osmotik.

Dalam istilah lebih mudah, reverse osmosis adalah mendorong sebuah solusi melalui filter yang menangkap “solute” dari satu sisi dan membiarkan pendapatan “solvent” murni dari sisi satunya. air pada larutan garam dipisahkan dari garam terlarutnya dengan mengalirkannya melalui membran water-permeable. Permeate dapat mengalir melalui membran akibat adanya perbedaan tekanan yang diciptakan antara umpan bertekanan dan produk, yang memiliki tekanan dekat dengan tekanan atmosfer. Sisa umpan selanjutnya akan terus mengalir melalui sisi reaktor bertekanan sebagai brine. Proses ini tidak melalui tahap pemanasan ataupun perubahan fasa. Kebutuhan energi utama adalah untuk memberi tekanan pada air umpan. Desalinasi air payau membutuhkan tekanan operasi berkisar antara 250 hingga 400 psi, sedangkan desalinasi air laut memiliki kisaran tekanan operasi antara 800 hingga 1000 psi.

Dalam praktiknya, umpan dipompa ke dalam container tertutup, pada membran, untuk meningkatkan tekanan. Saat produk berupa air bersih dapat mengalir melalui membran, sisa umpan dan larutan brine menjadi semakin terkonsentrasi. Untuk mengurangi konsentrasi garam terlarut pada larutan sisa, sebagian larutan terkonsentrasi ini diambil dari container untuk mencegah konsentrasi garam terus meningkat.Sistem RO terdiri dari 4 proses utama, yaitu:1.            Pretreatment: Air umpan pada tahap pretreatment disesuaikan dengan membran dengan cara memisahkan padatan tersuspensi, menyesuaikan pH, dan menambahkan inhibitor untuk mengontrol scaling yang dapat disebabkan oleh senyawa tetentu, seperti kalsium sulfat.2.            Pressurization: Pompa akan meningkatkan tekanan dari umpan yang sudah melalui proses pretreatment hingga tekanan operasi yang sesuai dengan membran dan salinitas air umpan.3.            Separation: Membran permeable akan menghalangi aliran garam terlarut, sementara membran akan memperbolehkan air produk terdesalinasi melewatinya. Efek permeabilitas membran ini akan menyebabkan terdapatnya dua aliran, yaitu aliran produk air bersih, dan aliran brine terkonsentrasi. Karena tidak ada membran yang sempurna pada proses pemisahan ini, sedikit garam dapat mengalir melewati membran dan tersisa pada air produk. Membran RO memiliki berbagai jenis konfigurasi, antara lain spiral wound dan hollow fine fiber membranes.4.            Stabilization: Air produk hasil pemisahan dengan membran biasanya membutuhkan penyesuaian pH sebelum dialirkan ke sistem distribusi untuk dapat

Page 23: MAKALAH osean.docx

digunakan sebagai air minum. Produk mengalir melalui kolom aerasi dimana pH akan ditingkatkan dari sekitar 5 hingga mendekati 7.

Dua metode yang paling banyak digunakan adalah Reverse Osmosis (47,2%)  ialah sebuah istilah teknologi yang berasal dari osmosis. Osmosisadalah sebuah fenomena alam dalm sel hidup di mana molekul “solvent” (biasanya air) akan mengalir dari daerah “solute” rendah ke daerah “solute” tinggi melalui sebuah membran “semipermeable”. Membran “semipermeable” ini menunjuk ke membran sel atau membran apa pun yang memiliki struktur yang mirip atau bagian dari membran sel. Gerakan dari “solvent” berlanjut sampai sebuah konsentrasi yang seimbang tercapai di kedua sisi membrane. Reverse osmosis dapat diartikan proses pemaksaan sebuah solvent dari daerah konsentrasi “solute” tinggi melalui sebuah membran ke sebuah daerah “solute” rendah dengan menggunakan sebuah tekanan melebihi tekanan osmotik. Dalam istilah lebih mudah, reverse osmosis adalah mendorong sebuah solusi melaluifilter yang menangkap “solute” dari satu sisi dan membiarkan pendapatan “solvent” murni dari sisi satunya. Proses ini telah digunakan untuk mengolah air laut untuk mendapatkan air tawar, sejak awal 1970-an

F.    Macam-macam Elemen Organik dan Inorganik

Millero  (2006)  membagi  elemen  (organik  dan  inorganik)  menjadi  3  kelompok berdasarkan  rata-rata  konsentrasinya  di  alam,  yaitu:1. Elemen makro (Mayor)  (0,05  – 750 mM) (Na, Cl, Mg)

2. Elemen mikro (Minor) (0,05 – 50 μM) (P dan N)

3. Elemen trace atau kelumit (0,05 -50 nM) (Pb, Hg, Cd)

1.      Elemen Makro (Mayor)

Elemen mayor disuatu perairan jumlahnya sangat banyak (unlimited elements) dimana untuk rata – rata RT > 106 year. Elemen mayor bersifat sangat konservatif atau keberadaanya dilaut sangat tetap, dan konsentrasi tidak berkurang ataupun tidak bertambah dengan semakin dalam suatu perairain. Tiga sumber utama dari garam-garaman di laut adalah pelapukan batuan di darat, gasgas vulkanik dan sirkulasi lubang-lubang hidrotermal (hydrothermal vents) di laut dalam. salinitas merupakan jumlah dari seluruh garam-garaman dalam gram pada setiap kilogram air laut.untuk elemen mayor sendiri tergolong dalam beberapa logam – logam, yang termasuk dalam elemen mayor adalah : B, Br, Cl, Cs, F, K, Lr, Mg, Mo, Na, Rb, S, Ti, dan U.

Mengingat tingginya kandungan kation, air laut dapat digunakan sebagai salah satu sumber hara bagi tanaman termasuk tanaman yang sensitive terhadap kadar garam yang tinggi.Untuk elemen mayor atau mayor elemen yang mempunyai ukuran

Page 24: MAKALAH osean.docx

> 1 ppm yaitu diantaranya adalah : Na, Mg, Ca, K, Cl, SO4dan HCO3. Sedangkan untuk keberadaan perbandingan elemen mayor yang terdapat pada suatu perairan sangat stabil, kestabilan dari ratio mayor elemen disuatu perairan tergantung pada kondisi disuatu perairan.berikut ini merupakan contoh dari karakteristik komposisi ratrio dengan antar elemen : SO4 : Cl  ; HCO3 : Cl  ; K : Na

Berkaitan dengan tingginya salinitas air laut, tantangan yang dihadapi adalah upaya untuk memanfaatkan unsur-unsur hara tersebut dengan menurunkan kandungan Na dan ClMg : Na       dan Ca : Mg dimana kondisi suatu perairan disungai lebih tinggi dibandingkan dilaut. Selain proses di atas, proses-proses biogeokimia seperti reaksi redoks, kompleksasi –solidifikasi, mineralisasi-remineralisasi dan faktor lingkungan seperti pH, suhu, salinitas, arus dan aktifitas hidrothermal juga berperan penting terhadap distribusi mikro elemen di laut.

  Kelompok Elemen Kimia Utama (major elements)

Karena elemen kimia ini terdapat dilaut dalam kadar yang besar, yaitu terdapat dalam jumlah lebih dari 31,67 miligram elemen dalam 1 liter air laut. Atau 21,5 g/l. Nama-nama elemen Kimia Utama Yaitu:

  Khlor (Cl) 89.500.000 ton/mil³ air laut  Natrium (Na) 49.500.000 ton/mil³ air laut  Magnesium (Mg) 6.400.000 ton/mil³ air laut  Belerang (S) 4.200.000 ton/mil³ air laut  Kalsium (Ca) 1.900.000 ton/mil³ air laut  Kalium (Br) 1.800.000 ton/mil³ air laut  Brom (Br) 306.000 ton/mil³ air laut  Karbon (C1) 32.000 ton/mil³ air laut

2.      Elemen Mikro (Minor)

Minor elemen atau elemen mayor memiliki suatu ukuran 1 ppb – 4 ppm (< 1ppm) yang termasuk dalam elemen minor disuatu lautan yaitu diantaranya : O, H, Cl, Na, Mg, C, Ca, K, Dr, C, Sr, B, dan F. dari elemen – elemen tersebut terdapat ada 14 unsur yang termasuk dalam elemen minor.elemen minor memiliki pola distribusi yang luas atau dengan kata lain pola penyebaran yang luas dari suatu perairan tropis sampai sub tropis.dari 14 jenis ion pada air laut.Dari jumlah itu, konsentrasi klorida dan natrium terdapat dalam jumlah yang sangattinggi. Hal inilah yang menyebabkan tingginya salinitas air laut. . Di samping itu unsure Na juga dapat dimanfaatkan sebagai unsur hara untuk jenis-jenis tanaman tertentu yang membutuhkannya baik sebagai unsure tambahan/menguntungkan maupun sebagai pengganti sebagian dari kebutuhan akan unsur K.

Page 25: MAKALAH osean.docx

Kelompok ini terdapat dalam kadar yang lebih kecil dibandingkan dengankelompok elemen kimia utama, sehingga elemen-elemen ini dimasukan kedalamkelompok elemen kimia tambahan atau minor elemen. Kadarnya di laut mempunyainilai kisaran antara 5,52 mg sampai 0,079 mg yang terdapat dalam satu liter air laut.Karena kadarnya relatip lebih kecil, maka kelompok jenis elemen ini mudah lenyapdari perairan laut oleh sebab itu prose absorbsi atau penyerapan oleh partikel-partikelmaupun organisme ± organisme yang ada dan hidup dilaut. Berbeda dengan kelompok elemen kimia utama , maka untuk menentukan kadar dari kelompok elemen kimiatambahan yang ada dilaut diperlukan contoh yang banyak. Yang tergolong ke dalam minor elemen antara lain : Boron (B), Silikon (Si), Flour (F), Argon (Ar), Nitrogen(N), Liitium (Li), Rubidium (Rb), dan Fosfor (P).

  Kelompok Elemen Kimia Tambahan (minor elements)

Kelompok ini terdapat dalam kadar yang lebih kecil dibandingkan dengan kelompok elemen kimia utama, sehingga elemen-elemen ini dimasukan kedalam kelompok elemen kimia tambahan atau minor elemen. Nama-nama elemen Tambahan Utama Yaitu:

  Boron (B) 23.000 ton/mil³ air laut  Silikon (Si) 14.000 ton/mil³ air laut  Flour (F) 6.100 ton/mil³ air laut  Argon (Ar) 2.800 ton/mil³ air laut  Nitrogen (N) 2.400 ton/mil³ air laut  Liitium (Li) 800 ton/mil³ air laut  Rubidium (Rb) 570 ton/mil³ air laut  Fosfor (P) 330 ton/mil³ air laut

3.      Trace Element

Trace Elemen merupakan unsure – unsure atau senyawa – senyawa kimia dilaut yang kelarutanya kurang dari 1 ppb atau dapat diartikan sang kecil.tetapi untuk keberadaanya sang diperlukan dalam pengaturan keseimbangan kelarutan elemen – elemen dilaut dan proses biologi organism bahari. rasio konsentrasi elemen yang konstan terhadap elemen yang berkaitan dengan khlorinitas atau salinitas ditemukan pada beberapa elemen karena tingkat reaktifitasnya yang rendah. Logam-logam Cu, Mn, Fe dan Zn jika terjadi defisiensi menyebabkan penyakit baik pada hewan maupun tumbuhan. Cu, Cr, Se dan I untuk hewan dan B dan Mo untuk tanaman. Hampir semua mikronutrien memiliki peran sebagai penyusun enzym dan protein-

protein penting lain yang terlibat dalam pathway/siklus metabolik. Ketiadaan

Page 26: MAKALAH osean.docx

mikronutrien akan menyebabkan disfungsi metabolik yang mengakibatkan penyakit. Elemen-elemen yang tidak mempunyai kepentingan secara biokimiawi disebut "non essensial element". Contohnya “non-essential element” adalah As, Cd, Hg, Pb, Po, Sb, Ti dan U yang menyebabkan toksisitas pada konsentrasi yang melebihi ambang batas tetapi tidak menyebabkan "deficiency disorder" padakonsentrasi rendah seperti mikronutrien.

  Kelompok Elemen Kimia Jarang (Trace Element)

Di laut terdapat pula kelompok elemen yang disebut kelompok elemen jarang atau “Trace Element”. Elemen ini terdapat di laut dalam kadar yang sanagt kecil sekali dibandingkan dengan kadar-kadar dari elemen- elemen dari kelompok yang lain. Kadar elemen jarang yang terdapat di laut mempunyai nilai kisaran antara 67.18µg sampai 0,024 µg dalam 1 liter air laut. Nama-nama elemen Jarang Utama Yaitu:

         Yod (I) 280 ton/mil³ air laut         Barium (Ba) 140 ton/mil³ air laut         Besi (Fe) 47 ton/mil³ air laut         Molibden(Mo) 47 ton/mil³ air laut         Seng (Zn) 47 ton/mil³ air laut         Selen (Se) 29 ton/mil³ air laut         Argon (Ar) 14 ton/mil³ air laut         Tembaga (Cu) 14 ton/mil³ air laut         Timah (Sn) 14 ton/mil³ air laut         Uranium (U) 14 ton/mil³ air laut         Mangan (Mn) 9 ton/mil³ air laut         Nikel (Ni) 9 ton/mil³ air laut         Vanadium (V) 9 ton/mil³ air laut

G.   Peranan Bahan Organik dalam Ekologi Laut

Adapun peranan bahan organik di dalam ekologi laut adalah sebagai berikut :  Sumber energi (makanan)  Sumber bahan keperluan bakteri, tumbuhan maupun hewan  Sumber vitamin  memiliki peranan penting dalam mengatur kehidupan fitoplankton di laut.  Mengontrol Proses-Proses Geokimia, Memberi Pengaruh Transpor & Degradasi

Polutan, serta berperan dalam Reaksi-Reaksi Disolusi, Prespitasi MineralJumlah bahan organik terlarut dalam air laut biasanya melebihi rata-rata bahan

organik tidak terlarut. Semua bahan organik ini dihasilkan oleh organisme hidup melalui proses metabolisme dan hasil pembusukan.

Page 27: MAKALAH osean.docx

Ekresi dari mikroorganisme seperti protozoa merupakan sumber yang penting dari bahan organik karbon. Proses pelepasan nitrogen dan fospor dari organisme mati dalam air laut terjadi dengan cepat.

Hampir seluruh organik karbon terlarut dalam air laut berasal dari karbondioksida yang dihasilkan oleh fitoplankton. Konsentrasinya tergantung pada keseimbangan antara rata-rata organik karbon terlarut yang dibentuk oleh hasil pembusukan, eksresi dan rata-rata hasil penguraian atau pemanfaatannya.

BAB IIIPENUTUP

A.           KesimpulanAdapun kesimpulan dari makalah “Unsur-Unsur Dalam Air Laut dan Salinitas”

yaitu :Salinitas adalah tingkat keasinan atau kadar garam terlarut dalam air.

Faktor-faktor yang mempengaruhi salinitas :a.    Penguapanb.    Curah hujanc.    Banyak sedikitnya sungai yang bermuara dilaut

Sebaran salinitas di laut dipengaruhi oleh berbagai faktor seperti pola sirkulasi air, penguapan, curah hujan, aliran sungai.

                        Pengaruh Faktor Salinitas Di Laut Pada Tingkah Laku Dan Kelimpahan Ikan:a.    Suhu air lautb.    Pengaruh arusc.    Pengaruh cahayad.    upwelling            Desalinasi adalah proses pemisahan yang digunakan untuk mengurangi kandungan garam terlarut dari air garam hingga level tertentu sehingga air dapat digunakan. Proses desalinasi melibatkan tiga aliran cairan, yaitu umpan berupa air garam (misalnya air laut), produk bersalinitas rendah, dan konsentrat bersalinitas tinggi.

Berdasarkan  rata-rata  konsentrasinya  di  alam, elemen terbagi atas elemen makro yaitu elemen kimia yang terdapat dilaut dalam kadar yang besar, elemen mikro atau minor elemen yaitu kadarnya yang lebih kecil dibandingkan dengan kelompok elemen kimia utama, dan trace elemen dalam kadar yang sangat kecil sekali dibandingkan dengan kadar-kadar dari elemen-elemen dari kelompok yang lain.

Page 28: MAKALAH osean.docx

Adapun peranan bahan organik di dalam ekologi laut adalah sebagai berikut :Sumber energi (makanan), sumber bahan keperluan bakteri, tumbuhan maupun hewan, sumber vitamin, memiliki peranan penting dalam mengatur kehidupan fitoplankton di laut.

DAFTAR PUSTAKA

http://www.gewater.com/what_we_do/water_scarcity/desalination.jsp

http://www.oas.org/dsd/publications/Unit/oea59e/ch20.htm#TopOfPage

Nontji, A. , 2007. LAUT NUSANTARA. Jakarta : Djambatan.

Romimohtarto, K. dan Juwana, S. 2007. BIOLOGI LAUT : Ilmu Pengetahuan Tentang

Biota Laut. Jakarta : Djambatan.

www.oseanografi.blogspot.com/200/07/salinitas-air-laut.html

www.wikipedia.com

Sanusi, H. S. 2006. Kimia Laut. Proses Fisik Kimia dan Interaksinya dengan

Lingkungan. Departemen Ilmu dan Teknologi Kelautan. Fakultas Perikanan dan Ilmu

Kelautan. Institut Pertanian Bogor. 188 + xi halaman.