jenis jenis pembangkit tenaga listrik

29
1. PLTA (PEMBANGKIT LISTRIK TENAGA AIR) Air adalah sumber daya alam yang merupakan energi primer potensial untuk Pusat Listrik Tenaga Air (PLTA), dengan jumlah cukup besar di Indonesia. Potensi tenaga air tersebut tersebar di seluruh Indonesia. Dengan pemanfaatan air sebagai energi primer, terjadi penghematan penggunaan bahan bakar minyak. Selain itu, PLTA juga memiliki keuntungan bagi pengembangan pariwisata, perikanan dan pertanian.Pada dasarnya, energi listrik yang dihasilkan dari air, sangat tergantung pada volume aliran dan tingginya air yang dijatuhkan. Sumber air potensial didapat dari hasil pembelokkan arah arus air sungai di daerah pegunungan tinggi oleh sebuah bendungan/waduk yang memotong arah aliran sungai dan mengubah arah arus menuju PLTA. Dari cara membendung air, PLTA terbagi atas 2 jenis, yaitu: PLTA Run-Off River (Memotong Aliran Sungai) dan PLTA Kolam Tando. 1

Upload: yoga-prastyo

Post on 25-Nov-2015

1.093 views

Category:

Documents


5 download

DESCRIPTION

berbagai macam pembangkit tenaga listrik

TRANSCRIPT

1.PLTA (PEMBANGKIT LISTRIK TENAGA AIR)Air adalah sumber daya alam yang merupakan energi primer potensial untuk Pusat Listrik Tenaga Air (PLTA), dengan jumlah cukup besar di Indonesia. Potensi tenaga air tersebut tersebar di seluruh Indonesia. Dengan pemanfaatan air sebagai energi primer, terjadi penghematan penggunaan bahan bakar minyak. Selain itu, PLTA juga memiliki keuntungan bagi pengembangan pariwisata, perikanan dan pertanian.Pada dasarnya, energi listrik yang dihasilkan dari air, sangat tergantung pada volume aliran dan tingginya air yang dijatuhkan. Sumber air potensial didapat dari hasil pembelokkan arah arus air sungai di daerah pegunungan tinggi oleh sebuah bendungan/waduk yang memotong arah aliran sungai dan mengubah arah arus menuju PLTA. Dari cara membendung air, PLTA terbagi atas 2 jenis, yaitu: PLTA Run-Off River (Memotong Aliran Sungai) dan PLTA Kolam Tando.Ilustrasi siklus perubahan wujud energi pada PLTA PLTA tersebut memiliki kesamaan, yaitu membendung aliran air sungai dan mengubah arahnya ke PLTA. Bedanya, pada PLTA Kolam Tando sebelum aliran air sampai ke PLTA, debit air ditampung dalam suatu kolam yang biasa disebut kolam tando. Sedangkan pada PLTA Run-Off River tidak. Kolam Tando ini berguna menjadi sumber cadangan air, ketika debit air sungai menurun akibat musim kemarau yang panjang. Memang dari segi biaya pembangunan, PLTA Run-Off River akan menelan biaya yang lebih rendah daripada PLTA Kolam Tando karena PLTA Kolam Tando memerlukan waduk yang besar dan daerah genangan yang luas. Air yang terbendung dalam waduk akan dialirkan melalui saluran/terowongan tertutup/pipa pesat sampai ke turbin, dengan melalui katup pengaman di Intake dan katup pengatur turbin sebelum turbin. Pada saluran pipa pesat terdapat tabung peredam (surge tank), yang berfungsi sebagai pengaman tekanan yang tiba-tiba naik, saat katup pengatur ditutup.Air mengenai sudu-sudu turbin yang merubah energi potensial air menjadi energi gerak/mekanik yang memutar roda turbin, yang pada gilirannya generator akan merubah energi gerak/mekanik tersebut menjadi energi listrik. Katup pengatur turbin akan mengatur banyaknya air yang akan dialirkan ke sudu-sudu turbin sesuai kebutuhan energi listrik yang akan dibangkitkan pada putaran turbin yang tertentu. Putaran turbin yang terlalu cepat dapat menimbulkan kerusakan pada turbin dan generator, dimana hal ini dapat terjadi pada saat beban listrik tiba-tiba lepas/ hilang. Untuk mengatasi putaran yang berlebihan maka katup pengatur turbin harus segera ditutup. Katup pengatur turbin yang tiba-tiba menutup akan mengakibatkan terjadinya goncangan tekanan arus balik air ke pipa pesat, dimana goncangan ini diredam dalam tabung peredam.

2.PLTU (PEMBANGKIT LISTRIK TENAGA UAP)Uap yang terjadi dari hasil pemanasan boiler/ketel uap pada Pusat Listrik Tenaga Uap (PLTU) digunakan untuk memutar turbin yang kemudian oleh generator diubah menjadi energi listrik. Energi primer yang digunakan oleh PLTU adalah bahan bakar yang dapat berwujud padat, cair maupun gas. Batubara adalah wujud padat bahan bakar dan minyak merupakan wujud cairnya. Terkadang dalam satu PLTU dapat digunakan beberapa macam bahan bakar. PLTU menggunakan siklus uap dan air dalam pembangkitannya. Mula-mula air dipompakan ke dalam pipa air yang mengelilingi ruang bakar ketel. Lalu bahan bakar dan udara yang sudah tercampur disemprotkan ke dalam ruang bakar dan dinyalakan, sehingga terjadi pembakaran yang mengubah bahan bakar menjadi energi panas/ kalor. Udara untuk pembakaran yang dihasilkan kipas tekan/force draf fan akan dipanasi dahulu oleh pemanas udara/heater. Setelah itu, energi panas akan dialirkan ke dalam air di pipa melalui proses radiasi, konduksi dan konveksi, sehingga air berubah menjadi uap bertekanan tinggi. Drum ketel akan berisi air di bagian bawah dan uap di bagian atasnya. Gas sisa setelah dialirkan ke air masih memiliki cukup banyak energi panas, tidak dibuang begitu saja melalui cerobong, tetapi akan digunakan kembali untuk memanasi Pemanas Lanjut ( Super Heater), Pemanas Ulang (Reheater), Economizer dan Pemanas Udara.Dari drum ketel, uap akan dialirkan menuju turbin uap. Pada PLTU besar (di atas 150 MW), turbin yang digunakan ada 3 jenis yaitu turbin tekanan tinggi, menengah dan rendah. Sebelum ke turbin uap tekanan tinggi, uap dari ketel akan dialirkan menuju Pemanas Lanjut, hingga uap akan mengalami kenaikan suhu dan menjadi kering.Setelah keluar dari turbin tekanan tinggi, uap akan masuk ke dalam Pemanas Ulang yang akan menaikkan suhu uap sekali lagi dengan proses yang sama seperti di Pemanas Lanjut. Selanjutnya uap baru akan dialirkan ke dalam turbin tekanan menengah dan langsung dialirkan kembali ke turbin tekanan rendah.Ilustrasi siklus energi pada PLTU Energi gerak yang dihasilkan turbin tekanan tinggi, menengah dan rendah inilah yang akan diubah wujudnya dalam generator menjadi energi listrik.Dari turbin tekanan rendah uap dialirkan ke kondensor untuk diembunkan menjadi air kembali. Pada kondensor diperlukan air pendingin dalam jumlah besar. Inilah yang menyebabkan banyak PLTU dibangun di daerah pantai atau sungai. Jika jumlah air pendingin tidak mencukupi, maka dapat digunakan cooling tower yang mempunyai siklus tertutup. Air dari kondensor dipompa ke tangki air/deareator untuk mendapat tambahan air akibat kebocoran dan juga diolah agar memenuhi mutu air ketel berkandungan NaCl, Cl,O2 dan derajat keasaman (pH). Setelah itu, air akan melalui Economizer untuk kembali dipanaskan dari energi gas sisa dan dipompakan kembali ke dalam ketel.3.PLTG (PEMBANGKIT LISTRIK TENAGA GAS)Gas yang dihasilkan dalam ruang bakar pada pusat listrik tenaga gas (PLTG) akan menggerakkan turbin dan kemudian generator, yang akan mengubahnya menjadi energi listrik. Sama halnya dengan PLTU, bahan bakar PLTG bisa berwujud cair (BBM) maupun gas (gas alam). Penggunaan bahan bakar menentukan tingkat efisiensi pembakaran dan prosesnya.Prinsip kerja PLTG adalah sebagai berikut, mulamula udara dimasukkan dalam kompresor dengan melalui air filter/penyaring udara agar partikel debu tidak ikut masuk dalam kompresor tersebut. Pada kompresor tekanan udara dinaikkan lalu dialirkan ke ruang bakar untuk dibakar bersama bahan bakar. Ilustrasi siklus perubahan wujud energi pada PLTG

Di sini, penggunaan bahan bakar menentukan apakah bisa langsung dibakar dengan udara atau tidak. Jika menggunakan BBG, gas bisa langsung dicampur dengan udara untuk dibakar. Tapi jika menggunakan BBM, harus dilakukan proses pengabutan dahulu pada burner baru dicampur udara dan dibakar. Pembakaran bahan bakar dan udara ini akan menghasilkan gas bersuhu dan bertekanan tinggi yang berenergi (enthalpy). Gas ini lalu disemprotkan ke turbin, hingga enthalpy gas diubah oleh turbin menjadi energi gerak yang memutar generator untuk menghasilkan listrik. Setelah melalui turbin sisa gas panas tersebut dibuang melalui cerobong/stack. Karena gas yang disemprotkan ke turbin bersuhu tinggi, maka pada saat yang sama dilakukan pendinginan turbin dengan udara pendingin dari lubang pada turbin. Untuk mencegah korosi turbin akibat gas bersuhu tinggi ini, maka bahan bakar yang digunakan tidak boleh mengandung logam Potasium, Vanadium dan Sodium.

4.PLTP (PEMBANGKIT LISTRIK TENAGA PANAS BUMI)Panas Bumi Panas bumi merupakan sumber tenaga listrik untuk pembangkit Pusat Listrik Tenaga Panas (PLTP). Sesungguhnya, prinsip kerja PLTP sama saja dengan PLTU. Hanya saja uap yang digunakan adalah uap panas bumi yang berasal langsung dari perut bumi. Karena itu, PLTP biasanya dibangun di daerah pegunungan dekat gunung berapi. Biaya operasional PLTP juga lebih murah daripada PLTU, karena tidak perlu membeli bahan bakar, namun memerlukan biaya investasi yang besar terutama untuk biaya eksplorasi dan pengeboran perut bumi.

Ilustrasi siklus perubahan energi pada PLTP

Uap panas bumi didapatkan dari suatu kantong uap di perut bumi. Tepatnya di atas lapisan batuan yang keras di atas magma dan mendapat air dari lapisan humus di bawah hutan penahan air hujan. Pengeboran dilakukan di atas permukaan bumi menuju kantong uap tersebut, hingga uap dalam kantong akan menyembur keluar. Semburan uap dialirkan ke turbin uap penggerak generator. Setelah menggerakkan turbin, uap akan diembunkan dalam kondensor menjadi air dan disuntikkan kembali ke dalam perut bumi menuju kantong uap. Jumlah kandungan uap dalam kantong uap ini terbatas, karenanya daya PLTP yang sudah maupun yang akan dibangun harus disesuaikan dengan perkiraan jumlah kandungan tersebut. Melihat siklus dari PLTP ini maka PLTP termasuk pada pusat pembangkit yang menggunakan energi terbarukan.

5.PLTD (PEMBANGKIT LISTRIK TENAGA DIESEL)Diesel Pusat Listrik Tenaga Diesel (PLTD) berbahan bakar BBM (solar), biasanya digunakan untuk memenuhi kebutuhan listrik dalam jumlah beban kecil, terutama untuk daerah baru yang terpencil atau untuk listrik pedesaan. Di dalam perkembangannya PLTD dapat juga menggunakan bahan bakar gas (BBG).Mesin diesel ini menggunakan ruang bakar dimana ledakan pada ruang bakar tersebut menggerak torak/piston yang kemudian pada poros engkol dirubah menjadi energi putar.Ilustrasi siklus perubahan energi pada PLTP

Energi putar ini digunakan untuk memutar generator yang merubahnya menjadi energi listrik. Untuk meningkatkan efisiensi udara yang dicampur dengan bahan bakar dinaikkan tekanan dan temperaturnya dahulu pada turbo charger. turbo charger ini digerakkan oleh gas buang hasil pembakaran dari ruang bakar. Mesin diesel terdiri dari 2 macam mesin, yaitu mesin diesel 2 langkah dan 4 langkah. Perbedaannya terletak pada langkah penghasil tenaga dalam putaran toraknya. Pada mesin 2 langkah, tenaga akan dihasilkan pada tiap 2 langkah atau 1 kali putaran. Sedang pada mesin 4 langkah, tenaga akan dihasilkan pada tiap 4 langkah atau 2 putaran. Seharusnya mesin 2 langkah dapat menghasilkan daya 2 kali lebih besar dari mesin 4 langkah, namun karena proses pembilasan ruang bakar silindernya tidak sesempurna mesin 4 langkah, tenaga yang dihasilkan hanya sampai 1,8 kalinya saja. Ilustrasi siklus perubahan energi pada PLTD :Selain kedua jenis mesin di atas, mesin diesel yang digunakan di PLTD ada yang berputaran tinggi (high speed) dengan bentuk yang lebih kompak atau berputaran rendah (low speed) dengan bentuk yang lebih besar. 6.PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUTSebagian besar energi yang digunakan rakyat Indonesia saat ini berasal dari bahan bakar fosil yaitu minyak bumi, gas dan batu bara. Dengan adanya kebijakan pemerintah untuk melakukan penghematan energi, maka perlu dilakukan pencarian sumber energi yang ramah lingkungan dan terbarukan.Lebih dari 70% bagian permukaan bumi adalah lautan, sedangkan Indonesia sendiri merupakan negara kepulauan yang mempunyai potensi sumber energi alternatif yang melimpah, yaitu energi yang terbarukan dan tak terbarukan. Sumber energi yang terbarukan dari laut adalah energi gelombang, pasang surut, energi yang timbul akibat perbedaan suhu antara permukaan air dan dasar laut (OTEC), serta energi arus laut.

Ilustrasi siklus perubahan energi pada PLTGL

Energi ini dapat dikonversi ke listrik lewat 2 kategori yaitu off-shore (lepas pantai) and on-shore (pantai). Kategori lepas pantai (off-shore) dirancang pada kedalaman sekitar 40 meter dengan menggunakan mekanisme kumparan seperti Salter Duck yang diciptakan Stephen Salter (Scotish) yang memanfaatkan pergerakan gelombang untuk memompa energi. Sistem ini memanfaatkan gerakan relatif antara bagian/pembungkus luar (external hull) dan bandul didalamnya (internal pendulum) untuk diubah menjadi listrik. Peralatan yang digunakan yaitu pipa penyambung ke pengapung di permukaan yang mengikuti gerakan gelombang.Naik turunnya pengapung berpengaruh pada pipa penghubung selanjutnya menggerakan rotasi turbin bawah laut. Di Amerika Serikat, telah ada perusahan yang mengembangkan untaian buoy pelampung plastik yang mendukung penghasil listrik ini. Setiap Buoy pelampung bisa menghasilkan 20 kW listrik dan saat ini telah dikembangkan untuk mengisi ulang energi (recharge) bagi robot selam angkatan laut AS dan digunakan bagi komunitas kecil.Cara lain untuk menangkap energi gelombang lepas pantai adalah dengan membangun tempat khusus seperti sistem tabung Matsuda, metodenya adalah memanfaatkan gerak gelombang yang masuk di dalam ruang bawah dalam pelampung dan sehingga timbul gerakan perpindahan udara ke bagian atas pelampung. Gerakan perpindahan udara ini menggerakkan turbin. Pusat Teknologi Kelautan Jepang telah mengembangkan prototype jenis ini yang disebut Mighty Whale berupa peralatan penangkap gelombang yang di tempatkan di dasar laut (anchored) dan dikontol dari pantai untuk kebutuhan listrik di pulau-pulau kecil.

Keuntungan pemanfaatan energi gelombang ini adalah: Energi ini bebas, tidak perlu bahan bakar, tidak ada limbah/polusi Sumber energi yang dapat diperbaharui Dapat menghasilkan banyak energi Biaya tidak mahalSedangkan kelemahannya adalah: Sangat tergantung dengan karakteristik gelombang, kadang-kadang bisa menghasilkan energi yang besar, kadang-kadang tidak ada. Perlu satu lokasi yang tepat dimana gelombangnya konsisten besar. Alatnya harus kokoh sehingga tahan terhadap kondisi cuaca yang jelek.7.PLTN (Pembangkit Listrik Tenaga Nuklir)Pembangkit Listrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari). Daya yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe.

PLTN (Pembangkit Tenaga Nuklir)

Keuntungan Dan KekuranganKeuntungan PLTN dibandingkan dengan pembangkit daya utama lainnya adalah:1. Tidak menghasilkan emisi gas rumah kaca (selama operasi normal) - gas rumah kaca hanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikit menghasilkan gas).2. Sedikit menghasilkan limbah padat (selama operasi normal).3. Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan.4. Ketersedian bahan bakar yang melimpah - sekali lagi, karena sangat sedikit bahan bakar yang diperlukan.5. Baterai nuklirBerikut ini berberapa hal yang menjadi kekurangan PLTN:1. Risiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan Chernobyl (yang tidak mempunyai containment building).2. Limbah nuklir - limbah radioaktif tingkat tinggi yang dihasilkan dapat bertahan hingga ribuan tahun.

8.PEMBANGKIT LISTRIK TENAGA SAMPAH Ilustrasi PLTSa

Pembangkit Listrik Tenaga Sampah Gedebage adalah sebuah fasilitas pembangkitan listrik berkapasitas 7 MW yang menggunakan sampah sebagai bahan bakarnya. PLTSa Gedebage dibangun di Bandung Timur untuk mengatasi masalah sampah di kota Bandung Raya. PLTSa ini akan dibangun oleh PT Bandung Raya Indah Lestari (BRIL) diatas lahan seluas 10 hektar , 3 hektar akan digunakan untuk fasilitas Pembangkita listrik , sedangkan 7 hektar akan digunakan sebagai sabuk hijau mengelilingi fasilitas pembangkit.Penggambaran SistemSampah yang datang akan diturunkan kadar airnya dengan jalan ditiriskan dalam bunker selama 5 hari. Setelah kadar air berkurang tinggal 45%, sampah akan dimasukan ke dalam tungku pembakaran, kemudian dibakar pada suhu 850'C-900'C , pembakaran yang menghasilkan panas ini akan memanaskan boiler dan mengubah air didalam boiler menjadi uap. Uap yang tercipta akan disalurkan ke turbin uap sehingga turbin akan berputar.Karena turbin dihubungkan dengan generator maka ketika turbin berputar generator juga akan berputar. Generator yang berputar akan mengahsilkan tenaga listrik yang kan disalurkan ke jaringan listrik milik PLN.

Pengolahan limbahLimbah padatSisa pembakaran abu dan debu terbang sebesar 20% dari berat semula akan diuji kandungannya apakah mengandung Bahan Berbahaya dan Beracun (B3) atau tidak, di laboratorium. Jika tidak mengandung B3, dapat dijadikan sebagai bahan baku bangunan seperti batako. Namun jika mengandung B3, akan diproses dengan teknologi tertentu sesuai ketentuan yang berlaku. Untuk menampung abu ini, di lokasi PLTSa akan dibuat penampungan abu dengan kapasitas 1.400 M3, yang mampu menampung abu selama 14 hari beroperasi.

Limbah gasSisa gas buang akan diproses melalui pengolahan yang terdiri dari : Gas buang hasil pembakaran akan dilakukan pada squenching chamber. Dari sini gas buang disemprot dengan air untuk menurunkan temperatur gas dengan cepat guna mencegah dioxin terbentuk kembali dan menangkap zat pencemar udara yang larut dalam air seperti NOx, Sox, HCL, abu, debu, dan partikulat. Kemudian gas yang akan dilakukan pada reaktor akan ditambahkan CaO sebanyak 12 kg/ton sampah. Tujuannya menghilangkan gas-gas asam, Sox< HCL, H2S, VOC, HAP, debu dan partikulat. Pada saat gas keluar dari reaktor, pada gas akan disemburkan karbon aktif sebanyak 1 kg/ton sampah, bertujuan menyerap uap merkuri, dioksin, CO. Kemudian gas akan dialirkan ke Bag Filler dengan tujuan menyaring partikel PM10 dan PM 2,5. Terakhir, gas buang akan dilepaskan ke udara melalui cerobong dengan ketinggian sekitar 70 meter.Limbah cairPada kegiatan penirisan sampah akan menghasilkan lindi dan bau. Lindi akan ditampung kemudian diolah sampai pada tingkat tertentu. Kemudian akan disalurkan ke Bojongsoang untuk diolah lebih lanjut. Rencana pembuangan hasil olahan lindi ke pengolahan air kotor Bojongsoang sesuai perjanjian kerja sama antara PT BRIL dengan PDAM Kota Bandung. Intinya, PDAM akan membangun saluran air buangan dari PLTSa dan membangun fasilitas pengolahan limbah PLTSa, sedangkan PT BRIL akan membayar jasa pengolahan ke PDAM. Sedangkan bau yang ditimbulkan berada dalam bunker bertekanan negatif sehingga tidak akan keluar tetapi tersedot dalam tungku pembakaran sehingga tidak menimbulkan bau sampah di luar bangunan.ManfaatDiperkirakan dari 500 - 700 ton sampah atau 2.000 -3.000 m3 sampah per hari akan menghasilkan listrik dengan kekuatan 7 Megawatt. Sampah sebesar itu sama dengan sampah yang dibuang ke TPA Sarimukti sekarang. Dari pembakaran itu, selain menghasilkan energi listrik, juga memperkecil volume sampah kiriman. Jika telah dibakar dengan temperatur tinggi , sisa pembakaran akan menjadi abu dan arang dan volumenya 5% dari jumlah sampah sebelumnya. Abu sisa pembakaran pun bisa dimanfaatkan untuk bahan baku pembuatan batu bata.

9.PEMBANGKIT LISTRIK TENAGA ANGINAngin adalah salah satu bentuk energi yang tersedia di alam, Pembangkit Listrik Tenaga Angin mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin. Cara kerjanya cukup sederhana, energi angin yang memutar turbin angin, diteruskan untuk memutar rotor pada generator dibagian belakang turbin angin, sehingga akan menghasilkan energi listrik. Energi Listrik ini biasanya akan disimpan kedalam baterai sebelum dapat dimanfaatkan. Secara sederhana sketsa kincir angin adalah sebagai berikut :

Sketsa Kincir Angin

Indonesia, negara kepulauan yang 2/3 wilayahnya adalah lautan dan mempunyai garis pantai terpanjang di dunia yaitu 80.791,42 Km merupakan wilayah potensial untuk pengembangan pembanglit listrik tenaga angin, namun sayang potensi ini nampaknya belum dilirik oleh pemerintah. Sungguh ironis, disaat Indonesia menjadi tuan rumah konfrensi dunia mengenai pemanasan global di Nusa Dua, Bali pada akhir tahun 2007, pemerintah justru akan membangun pembangkit listrik berbahan bakar batubara yang merupakan penyebab nomor 1 pemanasan global.Pemanfaatan energi angin merupakan pemanfaatan energi terbarukan yang paling berkembang saat ini. Berdasarkan data dari WWEA (World Wind Energy Association), sampai dengan tahun 2007 perkiraan energi listrik yang dihasilkan oleh turbin angin mencapai 93.85 GigaWatts, menghasilkan lebih dari 1% dari total kelistrikan secara global. Amerika, Spanyol dan China merupakan negara terdepan dalam pemanfaatan energi angin. Diharapkan pada tahun 2010 total kapasitas pembangkit listrik tenaga angin secara glogal mencapai GigaWatt.Di tengah potensi angin melimpah di kawasan pesisir Indonesia, total kapasitas terpasang dalam sistem konversi energi angin saat ini kurang dari 800 kilowatt. Di seluruh Indonesia, lima unit kincir angin pembangkit berkapasitas masing-masing 80 kilowatt (kW) sudah dibangun.Ada ribuan turbin angin yang beroperasi, dengan kapasitas total 58.982 MW yang 69% berada di Eropa (2005). Dia merupakan cara alternatif penghasilan listrik yang paling tumbuh cepat dan menyediakan tambahan yang berharga bagi stasiun tenaga berskala besar yang berbeban besar. Penghasilan kapasitas listrik diproduksi-angin berlipat empat antara 1999 dan 2005. 90% dari instalasi tenaga angin berada di AS dan Eropa. Pada 2010, Asosiasi Tenaga Angin Dunia mengharapkan 120.000 MW akan terpasang di dunia.Jerman, Spanyol, Amerika Serikat, India dan Denmark telah membuat invesatasi terbesar dalam penghasilan listrik dari angin. Denmark terkenal dalam pemroduksian dan penggunaan turbin angin, dengan sebuah komitmen yang dibuat pada 1970-an untuk menghasilkan setengah dari tenaga negara tersebut dengan angin. Denmark menghasil lebih dari 20% listriknya dengan turbin angin, persentase terbesar dan ke-lima terbesar dari penghasilan tenaga angin. Denmark dan Jerman merupakan eksportir terbesar dari turbin besar.Penggunaan tenaga angin hanya 1% dari total produksi listrik dunia (2005). Jerman merupakan produsen terbesar tenaga angin dengan 32% dari total kapasitas dunia pada 2005; targetnya pada 2010, energi terbarui akan memenuhi 12,5% kebutuhan listrik Jerman. Jerman memiliki 16.000 turbin angin, kebanyakan terletak di utara negara tersebut - termasuk tiga terbesar dunia, dibuat oleh perusahaan Enercon (4,5 MW), Multibrid (5 MW) dan Repower (5 MW). Provinsi Schleswig-Holstein Jerman menghasilkan 25% listriknya dari turbin angin.

10.PLTS (Pembangkit Listrik Tenaga Surya)Energi Matahari telah diketahui dapat dirubah menjadi energi listrik dengan berbagai cara. Salah satunya dengan menggunakan Solar Cell (Sel Surya/Matahari) dengan teknologi Photovoltaic. Pembangkit listrik tenaga surya jenis Solar Cell menggunakan konsep sederhana,yaitu mengubah cahaya matahari menjadi energi listrik. Cahaya matahari merupakan salah satu bentuk energi dari sumber daya alam. Sumber daya alam matahari ini sudah banyak digunakan untuk memasok daya listrik di satelit komunikasi melalui sel surya. Sel surya ini dapat menghasilkan energi listrik dalam jumlah yang tidak terbatas langsung diambil dari cahaya matahari, tanpa ada bagian yang berputar dan tidak memerlukan bahan bakar. Sehingga sistem sel surya sering dikatakan bersih dan ramah lingkungan.Teknologi lainnya adalah Solar Thermal Energy (STE) yang merupakan teknologi mengumpulkan energi matahari sebagai energi panas dengan menggunakan pantulan cermin sesuai area yang dibutuhkan yang dipusatkan atau ditujukan kepada suatu titik penangkap panas matahari yang telah difokuskan cermin tersebut. Telah terdapat beberapa pembangkit listrik tenaga matahari/surya (PLTM/PLTS) atau Solar System (Solar Thermal System) yang dibangun.Solar Thermal System lebih cocok untuk daerah panas dan gersang. Kelemahan Solar System Konvensional adalah berkurangnya tenaga listrik ketika malam hari ataupun ketika cuaca mendung. Untuk mengatasi hal ini, Solar Reverse telah membangun sebuah Pembangkit Listrik Tenaga Matahari (PLTM) atau kadang disebut Pembangkit Listrik Tenaga Surya (PLTS) di California. Bedanya adalah cairan pemanas sebagai penggerak turbin digunakan bukan air biasa, tetapi menggunakan cairan garam (MOLTEN SALT).Cairan Molten Salt dapat mencapai suhu 1000 derajat Fahrenheit (537 derajat Celcius) ketika mengalir turun dari tower pemanas dan setelah digunakan oleh turbin, suhu molten salt masih berkisar 500 derajat Fahrenheit (260 derajat Celcius) yang menuju ke tower untuk digunakan atau dipanaskan kembali.

Skema Solar Thermal SystemTeknologi baru ini agak berbeda dengan sistem tenaga matahari konvensional. Pada teknologi Molten Salt, cairan tersebut juga disimpan pada tabung Thermal Storage System yang akan dilepas lagi ketika dibutuhkan pada malam hari atau ketika cuaca mendung. Hal ini diharapkan sesuai kapasitas dapat memberikan listrik selama 24 jam penuh. PLTM/PLTS ini menggunakan banyak cermin disekeliling tower pemanas untuk memantulkan cahaya panas matahari ke titik pusat tower yang berisi aliran cairan Molten Salt. Molten salt yang digunakan dan disimpan diharapkan dapat memberikan efisiensi kerja dan hasil akhirnya adalah tersedianya listrik selama 24 jam penuh kepada pemakai.PLTM/PLTS ini merupakan pembangkit yang paling efektif untuk di bangun di Indonesia, melihat iklim dan cuaca di Indonesia yang Tropis. Selain itu pembangkit ini juga merupakan pembangkit yang sangat ramah lingkungan, karena tidak ada limbah maupun emisi gas buang yang dapat merusak lingkungan. Sudah merupakan keharusan global bagi pemerintah Indonesia khususnya dan negara-negara di dunia pada umumnya untuk beralih membangun pembangkit-pembangkit alternatif yang ramah lingkungan, mengingat kondisi sumber energi minyak, gas, batu-bara yang makin lama kian menipis dan kondisi alam yang sering tidak bersahabat.19