hukum raoult.docx

13
Hukum Raoult Anda mungkin pernah melihat sekilas hukum Raoult yang telah disederhanakan apabila anda pernah mempelajari efek dari larutan yang tidak dapat menguap seperti garam pada tekanan uap di pelarut seperti air. Definisi di bawah ini adalah yang biasa dipakai dalam pembicaraan mengenai campuran dua larutan yang bisa menguap. Tekanan uap parsial dari sebuah komponen di dalam campuran adalah sama dengan tekanan uap komponen tersebut dalam keadaan murni pada suhu tertentu dikalikan dengan fraksi molnya dalam campuran tersebut. Hukum Raoult hanya dapat diaplikasikan pada campuran ideal. Persamaan untuk campuran dari larutan A dan B, akan menjadi demikian: Pada persamaan ini PA dan P B adalah tekanan uap parsial dari komponen A dan B. Dalam suatu campuran gas, tiap gas mempunyai tekanan uapnya sendiri, dan ini disebut tekanan parsial yangindependent. Bahkan apabila anda memisahkan semua jenis gas- gas lain yang ada, satu-satunya jenis gas yang tersisa akan masih mempunyai tekanan parsialnya. Tekanan uap total dari sebuah campuran adalah sama dengan jumlah dari tekanan parsial individu tiap gas.

Upload: riska-ristiyanti

Post on 13-Dec-2014

69 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Hukum Raoult.docx

 Hukum Raoult

Anda mungkin pernah melihat sekilas hukum Raoult yang telah

disederhanakan apabila anda pernah mempelajari efek dari larutan yang

tidak dapat menguap seperti garam pada tekanan uap di pelarut seperti air.

Definisi di bawah ini adalah yang biasa dipakai dalam pembicaraan

mengenai campuran dua larutan yang bisa menguap.

Tekanan uap parsial dari sebuah komponen di dalam campuran adalah sama dengan tekanan uap komponen tersebut dalam keadaan murni pada suhu tertentu dikalikan dengan fraksi molnya dalam campuran tersebut.

Hukum Raoult hanya dapat diaplikasikan pada campuran ideal.

Persamaan untuk campuran dari larutan A dan B, akan menjadi demikian:

Pada persamaan ini PA dan PB adalah tekanan uap parsial dari komponen A

dan B. Dalam suatu campuran gas, tiap gas mempunyai tekanan uapnya

sendiri, dan ini disebut tekanan parsial yangindependent. Bahkan apabila

anda memisahkan semua jenis gas-gas lain yang ada, satu-satunya jenis gas

yang tersisa akan masih mempunyai tekanan parsialnya.

Tekanan uap total dari sebuah campuran adalah sama dengan jumlah dari

tekanan parsial individu tiap gas. 

Po adalah tekanan uap dari A dan B apabila keduanya berada dalam

keadaan terpisah (dalam larutan murni).xA dan xB adalah fraksi mol A dan B. Keduanya adalah fraksi (bagian/proporsi) dari jumlah total mol (A maupun B) yang ada. 

Anda dapat menghitung fraksi mol dengan rumus ini:

Page 2: Hukum Raoult.docx

Contoh:

Seandainya anda memiliki campuran dari 2 mol methanol dan 1 mol etanol pada suhu tertentu, tekanan uap methanol murni pada suhu ini aalah 81kPa dan etanol murni adalah 45kPa.

Pada campuran ini, ada 3 mol molekul.

2 mol dari total 3 mol ini adalah metanol sehingga fraksi mol metanol adalah 2/3.

Dan fraksi mol etanol, dengan demikan adalah 1/3.

Anda dapat menghitung tekanan uap parsial dengan menggunakan hukum Raoult dengan menganggap bahwa campuran methanol dan etanol ini adalah campuran ideal.

Tekanan parsial metanol:

Tekanan parsial etanol:

Tekanan uap total dari campuran larutan ini adalah jumlah tekanan parsial dari keduanya.

HUKUM RAOULT

Page 3: Hukum Raoult.docx

January 28, 2009 — syariffauzi

Dalam larutan ideal, semua kompenen ( pelarut dan zat terlarut ) mengikuti hukum Raoult pada seluruh selang konsentrasi. Larutan benzena dan toluena adalah larutan ideal. Dalam semua larutan encer yang tak mempunyai interaksi kimia diantara komponen-komponenya, hukum Raoult berlaku bagi pelarut, baik ideal maupun tak ideal. Tetapi hukum Raoult tak berlaku pada zat terlarut pada larutan tak ideal encer. Perbedaan ini bersumber pada kenyataan: molekul-molekul pelarut yang luar biasa banyaknya. Hal ini menyebabkan lingkungan molekul terlarut sanagt berbeda dalam lingkungan pelarut murni. Zat terlarut dalam larutan tak ideal encer mengikuti hukum Henry, bukan Hukum Raoult ( Petrucci, 1992 ).

Larutan ideal adalah larutan yang gaya tarik menarik molekul-molekul komponennya sama dengan gaya tarik menarik anatara molekul dari masing-masing komponennya. Jadi, bila larutan zat A dan B bersifat ideal, maka gaya tarik antara molekul A dan B, sama dengan gaya tarik antara molekul A dan A atau antara B dan B ( Sukardjo, 1990 ).

Bila dua cairan bercampur maka ruang diatasnya berisi uap kedua cairan tersebut. Tekanan uap jenuh masing-masing komponen ( po

i ) di ruangan itu lebih kecil daripada tekanan uap jenuh cairan murni ( po

i ), karena permukaan larutan diisi oleh dua jenis zat sehingga peluang tiap komponen untuk menguap berkurang. Peluang itu setara dengan fraksi molnya masing-masing ( xi ) ( Syukri, 1999 ).

Jika dua macam cairan dicampur dan tekanan uap parsialnya masing-masing diukur, maka menurut hukum Raoult untuk tekanan uap parsial A berlaku :

PA = XA PoA

Sedangkan untuk tekanan uap parsial B berlaku :

PB = XB PoB

PoA = tekanan uap A ( yaitu cairan murni )

PoB = tekanan uap B

XA = 

XB = 

XA dan XB disebut fraksi mol.

Page 4: Hukum Raoult.docx

Jumlah tekanan uap (P) menurut hukum Dalton adalah:

P = PA + PB

( Anonim, 2006 ).

Hukum Raolut secara umum didefinisikan sebagai fugasitas dari tiap komponen dalam larutan yang sama dengan hasil kali fugasitasnya dam keadaan murni pada temperatur dan tekanan yang sama serta fraksi molnya dalam larutan tersebut ( Dogra, 1990 ).

Penyimpangan Hukum Raoult terjadi karena perbedaan interakasi antara partikel sejenis dengan yang tak sejenis. Misalnya campuran A dan B, jika daya tarik A- B lebih besar dari A-A atau B-B, maka kecenderungan bercampur lebih besar, akibatnya jumlah tekanan uap kedua kedua zat lebih kecil daripada larutan ideal disebut penyimpangan negatif. Penyimpangan positif terjadi bila daya tarik A-B lebih kecil daripada daya tarik A-A dan B-B, akibatnya tekanan uapnya menjadi lebih besar dari larutan ideal. Sifat suatu larutan mendekati sifat pelarutnya jika jumlahnya lebih besar. Akan tetapi larutan dua macam cairan dapat berkomposisi tanpa batas, karena saling melarutkan. Kedua cairan dapat sebagai pelarut atau sebagai zat terlarut tergantung pada komposisinya ( Syukri,1999).

 Tekanan uap / diagram komposisi

Seandainya anda mempunyai sebuah campuran ideal dari dua larutan yaitu A dan B, kedua larutan ini akan memberi "sumbangan"-nya masing-masing pada tekanan uap keseluruhan pada campuran seperti yang telah kita lihat pada contoh di atas.

Mari kita lihat larutan A secara khusus sebagai contoh:

Anggap saja anda melipat-duakan fraksi mol larutan A dalam campuran (dalam suhu yang sama). Menurut hukum Raoult, tekanan uapnya juga akan ikut terlipat duakan. Apabila anda melipat-tigakan fraksi mol A, anda juga otomatis melipat-tigakan tekanan uapnya, dan seterusnya.

Dengan kata lain, tekanan uap parsial A pada suhu tertentu berbanding lurus dengan fraksi mol-nya. Apabila anda menggambar grafik tekanan uap parsial terhadap fraksi mol-nya, anda akan memperoleh sebuah garis lurus.

Page 5: Hukum Raoult.docx

Sekarang, mari kita buat grafik yang sama untuk B pada sumbu yang sama. Fraksi mol B mengecil sejalan dengan meningkatnya fraksi mol A sehingga grafik untuk B berbentuk garis yang menurun ke kanan. Bersamaan dengan berkurangnya fraksi mol B, tekanan parsial uapnya juga berkurang dengan kecepatan yang sama.

Perhatikan bahwa tekanan uap larutan B murni lebih tinggi dari larutan A murni. Ini berarti molekul-molekul pada permukaan larutan B lebih mudah melepaskan diri daripada molekul-molekul pada larutan A. Larutan B lebih mudah menguap daripada larutan A.

Untuk memperoleh tekanan uap total dari sebuah campuran, anda harus menjumlahkan tekanan parsial A dan B pada tiap komposisi. Dengan demikian anda akan memperoleh garis lurus seperti pada diagram berikut. 

Page 6: Hukum Raoult.docx

Pada campuran yang non-ideal, garis lurus ini akan berbentuk kurva. Untuk campuran yang mendekati ideal garisnya akan menyerupai garis lurus. Semakin kurang ideal sebuah campuran, semakin berkurvalah garis yang terbentuk. 

 Titik didih / diagram komposisi

Hubungan antara titik didih dan tekanan uap

Apabila sebuah larutan mempunyai tekanan uap yang tinggi pada sebuah suhu, ini berarti bahwa molekul-molekul yang berada dalam larutan tersebut sedang melepaskan diri dari permukaan larutan dengan mudahnya.

Apabila pada suhu yang sama, sebuah larutan lain mempunyai tekanan uap yang rendah, ini berarti bahwa molekul-molekul dalam larutan tersebut tidak dapat dengan mudah melepaskan diri.

Apa efek dari kedua fakta ini terhadap titik didih dari kedua larutan ini?

Ada dua cara untuk melihat hal ini, pilihlah yang termudah untuk anda. 

1. Apabila molekul-molekul dalam larutan sedang melepaskan diri dengan mudahnya dari permukaan larutan, ini berarti bahwa daya tarik intermolekuler relatif lemah. Dengan demikian, anda tidak perlu memanaskannya dengan suhu terlalu tinggi untuk memutuskan semua daya tarik intermolekuler tersebut dan membuat larutan ini mendidih.

Page 7: Hukum Raoult.docx

Larutan dengan tekanan uap yang lebih tinggi pada suatu suhu tertentu adalah larutan yang titik didihnya lebih rendah.

2. Larutan akan mendidih ketika tekanan uapnya menjadi sama dengan tekanan udara luar. Apabila sebuah larutan mempunyai tekanan uap yang tinggi pada suhu tertentu, anda tidak perlu menambah tekanan uapnya supaya menjadi sama dengan tekanan udara luar. Di lain pihak, apabila tekanan uapnya rendah, anda harus meningkatkan tekanan uapnya setinggi-tingginya sampai besarnya menjadi sama dengan tekanan udara luar.

Larutan dengan tekanan uap yang lebih tinggi pada suatu suhu tertentu adalah larutan yang titik didihnya lebih rendah.Sekali lagi, dua larutan pada suhu yang sama:Larutan dengan tekanan uap yang lebih tinggi adalah larutan yang titik didihnya lebih rendah.

Menghitung titik didih/membuat diagram komposisi

Pada bagian yang sebelumnya, kita telah melihat diagram komposisi seperti di bawah ini:

Kita akan mengubah diagram ini menjadi diagram komposisi/titik didih.

Kita akan mulai dengan titik didih dari larutan murni A dan larutan murni B.

B memiliki tekanan uap yang lebih tinggi. Ini berarti bahwa larutan B mempunyai titik didih yang lebih rendah dari larutan A.

Page 8: Hukum Raoult.docx

Pada campuran larutan A dan B, anda mungkin telah menduga bahwa titik-titik didih keduanya akan membentuk sebuah garis lurus yang menghubungkan kedua titik didih ini.Pada kenyataannya, tidak demikian! Bukan garis lurus, tapi garis kurvalah yang terbentuk. 

Kita akan menambah sebuah garis lagi pada diagram ini yang akan menunjukkan komposisi uap pada larutan yang mendidih.

Apabila anda mendidihkan sebuah campuran larutan, larutan yang lebih mudah menguap, tentunya akan membentuk lebih banyak uap daripada larutan yang sukar menguap.

Ini berarti, akan ada lebih banyak komponen B (komponen yang lebih mudah menguap) terdapat dalam uap daripada dalam larutannya. Anda dapat

Page 9: Hukum Raoult.docx

membuktikannya dengan memadatkan udap yang didapat dan menganalisanya. Diagram ini menunjukkan apa yang terjadi bila anda mendidihkan campuran larutan A dan B.

Perhatikan bahwa ada lebih banyak uap larutan B daripada uap larutan A yang ada di atas campuran larutan yang mendidih ini karena larutan B lebih mudah menguap.

Apabila anda mengulangi proses ini dengan campuran larutan dengan berbagai komposisi, anda akan dapat menggambar kurva kedua, yaitu garis komposisi uap. 

Page 10: Hukum Raoult.docx

Ini adalah diagram fase kita yang terakhir

Menggunakan diagram komposisi

Diagram ini dapat digunakan dengan cara yang persis sama seperti dengan cara pembentukannya. Apabila anda mendidihkan campuran larutan, anda dapat mendapatkan titik didihnya dan komposisi uap di atas larutan yang mendidih ini.

Sebagai contoh, pada diagram berikut ini, apabila anda mendidihkan campuran larutan C1, titik didihnya adalah T1 dan komposisi uapnya adalah C2.

Yang harus anda lakukan hanyalah menggunakan kurva komposisi larutan untuk mencari titik didih larutan dan melihat pada grafik ini, bagaimana komposisi uap pada suhu tersebut (titik didih).

Perhatikan sekali lagi bahwa ada lebih banyak uap larutan B daripada uap larutan A yang ada di atas campuran larutan yang mendidih ini karena larutan B lebih mudah menguap.

Permulaan dari distilasi fraksional

Umpamanya anda mengumpulkan semua uap yang ada di atas larutan yang mendidih dan anda didihkan untuk kedua kalinya.

Ini berarti, sekarang anda mendidihkan larutan baru yang komposisinya

Page 11: Hukum Raoult.docx

adalah C2.

Larutan ini akan mendidih pada temperatur baru yaitu T2, dan uap yang berada di atas larutan baru ini akan mempunyai komposisi C3.

Anda dapat melihat sekarang bahwa kita mempunyai uap yang hampir merupakan komponen B murni.

Apabila anda terus melakukan hal ini (mengkondensasi uap dan mendidihkan cairan yang terbentuk) , pada akhirnya anda akan mendapatkan larutan B murni.Ini adalah dasar dari distilasi fraksional. Walaupun begitu, melakukannya dengan cara seperti ini akan sangat melelahkan dan kecuali anda dapat memproduksi dan mengkondensasi uap di atas sebuah larutan mendidih dalam jumlah yang luar biasa banyak, jumlah larutan B yang akan anda dapat pada akhirnya akan sangat sedikit.

Kolom fraksional sesungguhnya (baik di laboratorium ataupun di industri) melakukan proses kondensasi dan pendidihan ulang ini secara otomatis.