hubungan antara ciri-ciri · web viewdan memproses informasi tersebut dapat dikembangkan atau...

109
1 MANAJEMEN AGROEKOSISTEM (smno.tnh.fpub) Definisi Manajemen Ekosistem Banyak orang dan organisasi telah mendefinisikan “pengelolaan ekosistem”. Contoh-contoh berikut ini menampilkan beragam definisi-definisi. Ada dua macam thema umum pada definisi-definisi pengelolaan-ekosistem ini, yaitu: (1) pengelolaan harus memelihara atau memperbaiki ekosistem, dan (2) ekosistem harus dapat menyediakan beragam barang dan jasa untuk generasi sekarang dan masa depan. ...regulating internal ecosystem structure and function, plus inputs and outputs, to achieve socially desirable conditions. (Agee and Johnson 1987) ...the strategy by which, in aggregate, the full array of forest values and functions is maintained at the landscape level. Coordinated management at the landscape level, including across ownerships, is an essential component. (Society of American Foresters 1993) ...a strategy or plan to manage ecosystems for all associated organisms, as opposed to a strategy or plan for managing individual species. (Forest Ecosystem Management Assessment Team, 1993) ....a resource management system designed to maintain or enhance ecosystem health and productivity while producing essential commodities and other values to meet human needs and desires within the limits of socially, biologically and economically acceptable risk. (American Forest Paper Association Forest Resources Board, 1993)

Upload: dangxuyen

Post on 30-Mar-2018

222 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

1

MANAJEMEN AGROEKOSISTEM(smno.tnh.fpub)

Definisi Manajemen Ekosistem

Banyak orang dan organisasi telah mendefinisikan “pengelolaan ekosistem”. Contoh-contoh berikut ini menampilkan beragam definisi-definisi. Ada dua macam thema umum pada definisi-definisi pengelolaan-ekosistem ini, yaitu: (1) pengelolaan harus memelihara atau memperbaiki ekosistem, dan (2) ekosistem harus dapat menyediakan beragam barang dan jasa untuk generasi sekarang dan masa depan.

...regulating internal ecosystem structure and function, plus inputs and outputs, to achieve socially desirable conditions. (Agee and Johnson 1987)

...the strategy by which, in aggregate, the full array of forest values and functions is maintained at the landscape level. Coordinated management at the landscape level, including across ownerships, is an essential component. (Society of American Foresters 1993)

...a strategy or plan to manage ecosystems for all associated organisms, as opposed to a strategy or plan for managing individual species. (Forest Ecosystem Management Assessment Team, 1993)

…....a resource management system designed to maintain or enhance ecosystem health and productivity while producing essential commodities and other values to meet human needs and desires within the limits of socially, biologically and economically acceptable risk. (American Forest Paper Association Forest Resources Board, 1993)

…....integrating scientific knowledge of ecological relationships within a complex sociopolitical and values framework toward the general goal of protecting native ecosystem integrity over the long term. (Grumbine, 1994)

…....management driven by explicit goals, executed by policies, protocols, and practices, and made adaptable by monitoring and research based on our best understanding of the ecological interactions and processes necessary to sustain ecosystem structure and function. (Christensen et al., 1996)

Page 2: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

2

 

Definisi Ekosistem

Istilah "ecosystem" dikemukakan oleh Tansley (1935) dalam rangka menerapkan pemikiran system untuk menelaah kompleksitas alam. Ecosystems bersifat hierarkhis. Dengan demikian, ada ekosistem di dalam suatu ekosistem. For example, a single decaying log on the forest floor may host an entire ecosystem; just as the watershed in which the log occurs may be considered an ecosystem. Both ecosystems depend on inputs of nutrients, water, and light; both include plants, animals, predators, prey, and detritivores that transform the inputs to produce outputs of nutrients, energy, and water. Within components of the decaying log there may be several levels of nested ecosystems. Similarly, the watershed may be a subcomponent of larger ecosystems. Kompleksitas sifat ekosistem dapat lebih mudah dipahami dengan pendekatan “hierarkhis system tersarang”.

Proses-proses dalam ekosistem

Kita semua memahami bahwa ekosistem adalah segala sesuatu di sekitar kita, leh karena itu kita perlu mengkajinya secara lebih akurat. Since we know that ecosystems are made up of many interacting abiotic and biotic parts, those interactions must hold the key to what ecosystems can do. First, an ecosystem needs energy to work. Just like the computer you are using to read this, an ecosystem cannot function without energy. In many ecosystems, energy first enters the ecosystem from the sun. You may have heard of solar-powered electricity. Well, many ecosystems are also solar-powered.

Tumbuhan dan beberapa jenis bakteri dapat menangkap energy dari cahaya matahari dan menyimpannya dalam jaringan tubuhnya. Mereka menggunakan energy untuk tumbuh dan reproduksi.

Energi yang ditangkap oleh tumbuhan tidak tinggal diam di dalam tumbuhan itu. Tumbuhan menjadi makanan bagi konsumer, sehingga energy yang ada di dalam jaringan tumbuhan dipindahkan ke dalam tubuh organism yang memakan tumbuhan tersebut. Predators get their energy by eating consumers. Dead plants and animals are food for tiny micro-organisms like bacteria and fungi. You probably know these feeding relationships as a food web. The food web allows energy to flow through the ecosystem and power the activities of many organisms (including people).

Ekosistem mencakup semua benda yang dapat kita lihat, seperti air, tanah, dan vegetasi. Ekosistem juga mencakup benda-benda yang tersembunyi dari pandangan mata kita, seperti organism yang hidup di dalam tanah dan micro-organisme yang terlalu kecil untuk dilihat dengan mata telanjang.

Ecosystems include not only living and non-living things, but also interactions among them. In this forest ecosystem, precipitation, represented by blue arrows, may

Page 3: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

3

be taken up by plants by roots, or may percolate through the soil and be stored as groundwater. Sunlight, shown in yellow, provides energy to plants. This energy may be passed on to animals that eat plants (shown by the green arrow), like the deer in this forest.

Energi dalam tumbuhan juga dapat diteruskan kepada decomposer (perombak), seperti cacing tanah, dan bacteria yang hidup dalam bangkai tumbuhan atau dalam tanah. Micro-organisme yang melekat pada akar tumbuhan dapat membantu tumbuhan menangkap sejumlah hara yang dilepaskan oleh dekomposer pada saat mereka merombak bahan organik.

Sumber: http://askabiologist.asu.edu/explore/i-spy-ecosystem ..... diunduh 26/6/2011)

 Definisi Manajemen

Tantangan besar dalam mengimplementasikan pengelolaan ekosistem adalah “apa yang dimaksud dengan “pengelolaan”. Dalam konteks proses pengambilan keputusan, keputusan pengelolaan di dalam suatu hierarkhis harus dilakukan pada setiap level dalam hierarkhis tersebut. Karena adanya perbedaan di antara level-level dalam hierarkhis, maka tipe-tipe keputusan yang dilakukan pada setiap level tentu akan berbeda. Kalau pembahasan pengelolaan ekosistem difokuskan pada jasa-jasa dan keterbatasan suatu system silvikultur tertentu (misalnya

Page 4: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

4

tebang-habis), maka akan mengabaikan keputusan-keputusan pengelolaan skala yang lebih luas, padahal hal ini sama pentingnya untuk mengelola system yang hierakrhisnya multi-skala. Oleh karena itu sangat penting untuk memperhatikan dengan seksama bagaimana kita membuat konsep pengelolaan dan proses pengambilan keputusan yang kompleks untuk system-sistem yang kompleks. Pertama-tama kita harus memikirkan bagaimana mengelola informasi pada berbagai sekala dan bagaimana menggunakaninformasi ini untuk membuat keputusan pada setiap level dalam suatu hierarkhis. Kalau telah tercapai, sarana untuk meneruskan dan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan secara rinci (misalnya tegakan mana yang harus ditebang atau ditanam).

Managemen (Pengelolaan) juga dipandang sebagai “driver” independen, dimana keputusan-keputusan yang dilakukan secara sadar dapat diambil untuk secara langsung mempengaruhi gangguan-gangguan (misalnya bencana kebakaran, dll) dan memodifikasi resultante karakteristik ekosistem hutan. Manajemen kabakaran, khususnya, memegang peranan penting dalam mengendalikan proses-proses jangka panjang yang mendasari adanya tantangan dalam pengelolaa ekosistem hutan. Pembakaran hutan secara terkendali menjadi salam satu instrument utama dalam pengelolaan ekosistem hutan. Model konseptual untuk pengelolaan ekosistem hutan (Taman Hutan kota) berikut ini meliputi tujuan pengelolaan secara luas.

Page 5: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

5

Sumber: http://www.climate-decisions.org/4_cc_adaptation%20planning_2.htm ….. diunduh 28/6/2011

Agro-Ekosistem

Agroecosystem merupakan unit dasar dari kajian yang dilakukan oleh para ahli agroekologi, dan secara mudahnya didefinisikan sebagai unit-unit aktivitas pertanian yang saling berkaitan secara spatial dan secara fungsional, dan meliputi komponen-komponen benda hidup dan komponen benda mati yang saling berinteraksi.

An agroecosystem can be viewed as a subset of a conventional ecosystem. As the name implies, at the core of an agroecosystem lies the human activity of agriculture. However, an agroecosystem is not restricted to the immediate site of agricultural activity (e.g. the farm), but rather includes the region that is impacted by this activity, usually by changes to the complexity of species assemblages and energy flows, as well as to the net nutrient balance. Traditionally an agroecosystem, particularly one managed intensively, is characterized as having a simpler species composition and simpler energy and nutrient flows than "natural" ecosystem. Likewise, agroecosystems are often associated with elevated nutrient input, much of which exits the farm leading to eutrophication of connected ecosystems not directly engaged in agriculture.

It is necessary to start with some definitions, including the distinction between agroecosystems and agricultural technology systems (Fig. 1). An agroecosystem is a complex of air, water, soil, plants, animals, micro-organisms, and everything else in a bounded area that people have modified for the purposes of agricultural production. An agroecosystem can be of any specified size. It can be a single field, it can be a household farm, or it can be the agricultural landscape of a village, region, or nation.An agricultural technology system is the blueprint for an agroecosystem. It is a 'design', 'plan', or 'mental image' - the total package of technology which a farmer or community uses to mold a given area into an agroecosystem. An agricultural technology system specifies all the crops (and/or livestock) to be employed, the spatial arrangement and temporal sequence of the crops, and all inputs to modify the environment so crops produce as they should. Agricultural technology systems embrace all that is customarily included in the concept of cropping systems, but agricultural technology systems are broader in the sense that they include everything that is done to shape an agroecosystem, including parts of the ecosystem that are not directly related to the crops.

Page 6: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

6

Beberapa konsep dasar dalam pendugaan valuasi agroekosistem. (Sumber:

http://www.gerrymarten.com/publicatons/agroecosystem-Assessment.html ..... diunduh 27/6/2011)

Sistem teknologi pertanian sangat penting bagi petani sebagai sarana untuk mengelola agroekosistem, tetapi system teknologi ini juga sangat penting bagi para ilmuwan pertanian. When scientists try to improve agriculture, they are seeking better designs for technology systems, and it is through technology systems that scientists communicate the fruits of their efforts to farmers. (The 'technology' can be any form of agricultural knowledge, including traditional and informal knowledge as well as technology associated with modern science.)

Agricultural technology systems can be at any level of generality. For example, 'shifting cultivation' specifies a broad array of agricultural technologies, while the technology system for a mixture of maize and beans, explicitly designed for particular soil conditions at a particular location and season of the year, may be highly specific with regard to crop variety and cultivation practices. As a rule, a more general technology system applies to a broader geographic area, or a broader range of environmental and social conditions, while a specific technology system applies to a particular locality.Agricultural technology systems are applied to specific pieces of landscape under specific environmental and social conditions to form real-world agroecosystems. Just as the structure of a house is a consequence of not only an architect's blueprint, but also the particular site on which it is built, the specific materials available for construction, and the carpenter's skills and personal style with regard to details of construction, the same applies to agroecosystems.

Struktur suatu agroekosistem merupakan hasil interaksi dari teknologi pertanian, dan juga:

1. Kondisi lingkungan sekitarnya (misalnya iklim, tanah, topografi, berbagai organism yang ada di lokasi), yang mendefinisikan

Page 7: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

7

(membatasi) sumberdaya material yang tersedia untuk membentuk agroekosistem;2. Petani dan tatanan sosialnya (misalnya nilai-nilai kemanuisaan,

kelembagaan dan ketrampilan), yang mengkondisikan bagaimana manusia berinteraksi dengan manusia lain dan berinteraksi dengan ekosistemnya, sehingga menentukan bagaimana sebenarnya manusia menggunakan teknologinya untuk “memasukkan” lingkungan ke dalam agroekosistem.

The distinction between agricultural technology systems and agroecosys-tems is important because evaluations of agroecosystem performance may be directed toward one or the other. Sometimes we evaluate the system properties of specific, real-world agroecosystems, such as a specific field or village, but other times we evaluate the system properties of agricultural technology systems. Each agricultural technology system corresponds to an array of real or potential agroecosystems whose observed or inferred performance can be summarized in terms of system properties. As shall be seen below, evaluation of the system properties of agricultural technology systems is complicated by the fact that their performance is highly dependent on the environmental and social conditions in which they are applied.

Model struktur agroecosystem yang disederhanakan , menunjuk-kan adanya control lingkungan fisik dan seperangkat pilihan pengelolaan lahan yang dapat diimplementasikan.

Page 8: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

8

Model agroekosistem (Sumber: http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/ojima_dennis/figure2.gif ..... diunduh 27/6/2011)

Keterkaitan antara factor-faktor social, ekonomi, budaya yang mempengaruhi keputusan penggunaan lahan yang memodifikasi proses-proses agroekosistem.

Suatu kerangka-analisis dapat dibuat untuk menyederhanakan interaksi yang kompleks di dalam dan di antara berbagai subsistem dengan pendekatan pemodelan yang meliputi semua komponen utamanya dan mengikatnya bersama secara terpadu spatial. Model ini pada hakekatnya meniru proses-proses pada tingkat ekosistem yang memasukkan pengaruh factor-faktor eksternal seperti iklim dan pengelolaan terhadap produktivitas primer, ketersediaan hara dan air, dan aliran karbon dan nitrogen.

Keterkaitan antara factor-faktor social, ekonomi, budaya yang mempengaruhi keputusan penggunaan lahan (Sumber:

http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/ojima_dennis/figure2.gif ..... diunduh 27/6/2011)

Analisis Agroekosistem

Analisis Agroekosistem merupakan analisis yang menyeluruh tentang suatu lingkungan pertanian yang memperhatikan aspek-aspek ekologi, sosiologi, ekonomi, dan politik dengan bobot yang sama. Ada banyak aspek yang ahrus diperhatikan, sehingga secara harfiah tidak mungkin memperhitungkan semuanya. Ini merupakan salah satu issu

Page 9: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

9

penting pada sata kita mencoba melakukan analisis suatu lingkungan pertanian. Pada masa lalu, pendekatan analisis agroecosystem digunakan untuk menentukan sustainabilitas suatu sistem pertanian. Pengalaman menunjukkan bahwa "sustainability" suatu system sangat tergantung pada definisi “sustainability’ yang dipilih oleh peneliti. Oleh karena itu, analisis agroekosistem digunakan untuk membawa “kekayaan” system pertanian yang kompleks kepada suatu analysis untuk mengidentifikasi rekonfigurasi sistem (atau holon) yang sesuai dengan suatu situasi tertentu.

Agroecosystem analysis is a tool of the multidisciplinary subject known as Agroecology. Agroecology and agroecosystem analysis are not the same as sustainable agriculture, though the use of agroecosystem analysis may help a farming system ensure its viability. Agroecosystem analysis is not a new practice, agriculturalists and farmers have been doing it since societies switched from hunting and gathering (hunter-gatherer) for food to settling in one area. Every time a person involved in agriculture evaluates their situation to identify methods to make the system function in a way that better suits their interests, they are performing an agroecosystem analysis.Agroecosystems are overwhelmingly complex. The numerous ecological processes that tie people, crops, weeds, animals, micro-organisms, soil, and water together into a functioning, on-going ecosystem are so intricate that they can never be fully described, nor can they be fully comprehended. Simplification is a practical necessity of analysis. Simplification is also essential for effectively communicating the results of analysis to agricultural practitioners. The dilemma is how to simplify without losing the essence of key relationships in the agroecosystem as a whole. One approach to simplification is system properties (also called agroecosystem properties in this essay), which combine large numbers of agroecosystem processes into single, highly-aggregated measures of performance that suggest how well an agroecosystem is meeting human objectives.

Lima ciri dari agroekosistem adalah: Produktivitas – jumlah bahan pangan, bahan bakar dan serat

yang dihasilkan oleh agroekosistem untuk dimanfaatkan manusia.

Stabilitas – konsistensi produksi. Sustainabilitas – mempertahankan tingkat produksi tertentu

pada jangka panjang. Equitabilitas – pembagian produksi pertanian secara

berkeadilan Autonomi – kemandirian agroekosistem.

Page 10: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

10

Komponen analisis agroekosistem (Sumber: http://www.fao.org/WAIRDOCS/TAC/Y4847E/y4847e04.gif

….. diunduh 27/6/2011)

We refer to these properties as system properties (or 'emergent' properties) because they derive from the system as a whole rather than from any one of its parts. The productivity of a wet-rice agroecosystem is not determined simply by the yield potential of the particular rice variety that is employed. The yield that actually occurs depends upon the hydrological and nutritional environment the crop experiences at each successive stage of growth, which is, in part, a consequence of how farmers manage the crop. The rice productivity is therefore a consequence of the functioning of the total interactive agricultural-environmental-social system.

Hubungan antara Ciri-ciri Agroekosistem

Persons responsible for cropping systems design and other aspects of agricultural development may be particularly interested in the trade-offs between different agroecosystem properties. Improvements in one system property (e.g. productivity or stability) should not be at the expense of other properties - or at least the cost should not be too great.

It would be convenient to have some simple and general rules to serve as guidelines for how agroecosystems function in this regard, such as 'If productivity increases, sustainability declines', but it is not easy to discern a pattern. Some highly productive agricultural technology systems are quite stable while others are not, and some low-productivity agricultural technology systems are stable while others are not. For example, intensive high-yield rice production has reliable yields in some areas but is not reliable in other areas because of pests such as the brown planthopper.

Page 11: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

11

Consistent relationships between productivity and the other system properties are equally elusive, but exploring those relationships can nonetheless provide some insights into agroecosystem design.

Produktivitas, Stabilitas dan SustainabilitasThere are numerous ways that high levels of productivity can have

a positive impact on stability and sustainability. For example, higher productivity may be attained by increasing the harvests in bad years (i.e. irrigation to reduce the impact of drought, or pesticides to reduce the impact of pest attacks), thereby making harvests more even from year to year, increasing stability. Higher productivity can be associated with higher sustainability when a more productive crop provides a more complete cover for soil protection and contributes more crop residues for the maintenance of soil organik matter. Higher productivity can also be associated with higher stability or sustainability if it leads to household savings that give a household the capacity to deal with periodic problems that threaten production. In general, any attributes that increase 'fallbacks' and other adaptive mechanisms in an agroecosystem can increase both its stability and/or sustainability (Jodha & Mascarenhas, 1983).

There are also many ways that productivity can be negatively associated with stability or sustainability. For example, higher productivity can be associated with lower stability if the higher production is achieved by means of high-yielding varieties that are more vulnerable than local varieties to fluctuating environmental stresses such as droughts and pest attacks - or if high yields lead to a glut on the market that depresses prices. Higher productivity can be associated with lower sustainability if production is at the expense of soil resources (e.g. by generating erosion, reducing soil organik matter or exporting soil nutrients), if the production is due to heavy inputs leading to major alterations in the ecosystem that eventually undercut production (e.g. irrigation leading to salinization or pesticides leading to the loss of natural enemies and the emergence of secondary pests), or if higher production is a consequence of labor inputs that place a strain on social institutions underlying the organization of agricultural production.

Higher stability can reduce sustainability in the face of occasional, severe stresses (i.e. reduce resilience) if, under stable conditions, the agroecosystem (and its inhabitants) cease to exercise their abilities to deal with stress (because there is no need to do so) and consequently lose that ability, even though they may eventually need it. Farmers with a steady supply of irrigation water have more stable yields than rainfed agriculturalists because they are liberated from the negative effects that short periods without rainfall can have on rainfed agriculture. However, they may also lose the agricultural technology they once had for rainfed agriculture, simply because they no longer need it. Drought-resistant varieties may be discarded and cultivation practices to make the most of limited soil moisture supplies may be forgotten. As a consequence, they may not have the means to prevent crop failure if the irrigation system should fail.

There are numerous other examples of this conflict between stability and resilience. Chemical fertilizers help to buffer farmers from spatial variations in soil quality in their fields. Because large amounts of

Page 12: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

12

labor are required to collect and transport animal manure or green manure to maintain organik matter levels, the effort may not seem necessary as long as chemical fertilizers can compensate for diminishing organik matter. However, the impact of an increase in fertilizer prices that forces farmers to reduce fertilizer use can be particularly severe if they have not taken the effort to maintain the organik matter content of their soil. To cite another example, the construction of flood control dams allows farmers to cultivate fertile flood plains without worrying about flood damage, but the 'once in a hundred years' flood that overruns the dams can cause damage on a scale far greater than would occur if the farmers pursued their agriculture and constructed their villages in constant expectation of floods.

In pest control, the use of chemical pesticides can increase stability, providing an opportunity to eliminate even the smallest pest losses. Indigenous pest-resistant crop varieties may be discarded, and the pesticides may eradicate the pests' natural enemies along with the pests. If a pesticide-resistant strain of the pest should suddenly appear, the damage may be more serious than it would have been without pesticides, because natural enemies are no longer present to keep the pest abundance within reasonable bounds. Even if the development of pesticide resistance is gradual, it eventually may be necessary to increase the frequency of pesticide application to a point where the crop must be discontinued due to excessive pesticide costs.

Produktivitas, Equitabilitas dan AutonomiThere are numerous ways that higher productivity can contribute to

greater equitability. Returning to the example of irrigation, an improved water supply increases productivity because it increases yields or provides an opportunity to grow high-value crops. Along with the increase in productivity there is greater stability for everyone if the water is distributed according to needs, and greater stability can lead to greater equitability because crop losses often do not afflict farmers at random. Before, when the agriculture was rainfed, losses were more severe for farmers whose land was poor in moisture retention and therefore vulnerable to drought. With irrigation, their yields can be more equal.

However, greater productivity and stability can also lead to lower equitability. If the overall supply of water is not sufficient to provide reliable irrigation to all farmers in the area, only some of the farmers may receive irrigation service. This will increase overall productivity of the area but will also increase the spread of incomes. To take another example, higher income productivity from cash crops such as temperate vegetables can be associated with severe market fluctuations. Farmers who are lucky enough to harvest when prices are high can make a fortune, but others (who harvest when prices are low) may lose money. Finally, where equitability is based on communal ownership, if productivity is increased by introducing outside technologies or opening up to outside markets, communal land ownership may not be compatible with the new modes of production or marketing. Even outside influences not directly related to the technical side of the agriculture may induce social changes that lead to individual land ownership, which can lead eventually to unequal landholdings.

There are many ways that productivity can lead to greater household autonomy. If productivity is achieved through labor

Page 13: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

13

intensification, such as triple cropping that demands intensive work all year round, people do not have so much time for village social activities (e.g. religious festivals) that are mechanisms for village control over households. If productivity and stability are attained through diversified farming activities, advantages of synchro-nizing village agricultural activities can be correspondingly diminished. If productivity is increased by means of modern agricultural technology or integration with a market economy or national bureaucracy, for which traditional village leaders have no particular knowledge or influence, their authority is correspondingly diminished. If every household is able to meet its own needs on a reliable basis, it may feel no need for dependence on other households or village authority. The same applies to autonomy with respect to the outside world. A village with surplus production has the financial resources to take care of itself (e.g. development and maintenance of its irrigation system) without depending upon the government, middlemen or other outside sources of assistance.

There can also be negative associations between productivity and autonomy. Higher productivity may decrease autonomy if it frees people from an attitude of everyone for himself due to scarcity. Higher production may be at a cost of dependency on the outside world for inputs or markets. At the same time, higher production can generate a surplus to be used for the purchase of outside goods, sales of agricultural products to the outside, or extraction of some of the surplus by outsiders (e.g. by government taxation or unscrupulous business arrangements). Some of the surplus may be used by the local elite or by government to reduce autonomy even further by reinforcing existing authority.

Ciri-ciri Struktural Agroekosistem Agroecosystem structure is a consequence of the particular crops

and other components (weeds, animal pests, soil animals, micro-organisms, etc.) in an agroecosystem, the way those components are structured by farm management practices, and the way those components are related functionally to one another. It could be useful for agro-ecosystem research to identify those structural system properties (at the agroecosystem level of organization) that in fact have strong relationships with the production properties. Such structural properties could prove useful as guidelines for agroecosystem design.

Hubungan antara Struktur Agroecosystem dan Fungsi Agroecosystem:

Struktur Agroecosystem Fungsi Agroecosystem

Intercropping Gizi manusia

Intercropping Gangguan hama

Annual/perennial crop rotation Siklus hara mineral

Perennial/annual strip cropping onslopes

Erosi tanah, Kompetisi tanaman

Page 14: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

14

Institutions in irrigation societies Suplai air irigasi

Double and triple cropping Deplesi hara mikro tanah

Integration of crops and livestock Pemeliharaan kesuburan tanah

Communications between innovative farmers and others

Difusi teknologi baru

Polikultur

Polyculture merupakan pertanian yang menerapkan multi-tanaman pada suatu ruang yang sama, “menirukan” diversitas dari ekosistem alamiah, dan menghindarkan pola monokultur. Polikultur ini meliputi pergiliran tanaman, multi-cropping, intercropping, companion planting, gulma yang bermanfaat dan pertanaman lorong (alley cropping).

Polikultur, meskipun seringkali memerlukan lebih banyak tenaga kerja, namun mempunyai beberapa keuntungan dibandingkan dengan monokultur:

1. Diversitas tanaman dapat membantu menghindarkan kepekaan monokultur terhadap gangguan penyakit. Misalnya, hasil penelitian yang idlakukan di China (reported in Nature) menunjukkan bahwa penanaman beberapa varietas padi pada sebidang lahan yang sama meningkatkan hasil sebesar 89%, terutama karena adanya penurunan gangguan penyakit (94%).

2. Semakin besar ragam pertanaman dapat menyediakan habitat untuk banyak spesies, sehingga meningkatkan biodiversitas lokal. Hal ini merupakan satu contoh rekonsiliasi ekologi, atau mengakomodasi biodiversitas di dalam bentang-lahan manusia. Ini juga merupakan fungsi dari program pengendalian hama secara biologis.

Multiple Cropping

1. Dalam pertanian, multiple cropping merupakan praktek menanam dua jenis tanaman atau lebih pada sebidang lahan yang sama selama satu musim pertumbuhan yang sama. Pola tanam ini merupakan bentuk polikultur. Pola ini dapat berbentuk double-cropping, dimana tanaman ke dua ditanam setelah tanaman pertama dipanen, atau bentuk relay cropping, dimana tanaman ke dua ditanam sebelum panen tanaman pertama. Contoh multi-cropping adalah tomatoes + onions + marigold; tanaman marigolds mampu mengusir sebagian hama tomat.

2. Multiple cropping ditemukan pada beragam tradisi pertanian di dunia. Misalnya di kawasan Pegunungan Himalaya di India, praktek pertanian yang disebut “baranaja” melibatkan penanaman 12 jenis tanaman atau lebih pada sebidang lahan yang sama, termasuk berbagai tipe kacang-kacangan, grams, dan millets; dan memanennya pada waktu yang berbeda.

Page 15: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

15

3. In the cultivation of rice, multiple cropping requires effective irrigation, especially in areas with a dry season. Rain that falls during the wet season permits the cultivation of rice during that period, but during the other half of the year, water cannot be channeled into the rice fields without an irrigation system. The Green Revolution in Asia led to the development of high-yield varieties of rice, which required a substantially shorter growing season of 100 days, as opposed to traditional varieties, which needed 150 to 180 days. Due to this, multiple cropping became more prevalent in Asian countries.

4. Salah satu macam dari multiple-cropping adalah “intercropping”, dimana tanaman tambahan ditanam pada ruang yang tersedia di antara tanaman utama.

Contoh-contoh double cropping dan triple cropping yang lazim dilakukan di Chiangmai Valley disajikan berikut ini. (Figure courtesy of Multiple Cropping Project experiment station at Chiang Mai University, Thailand.)

Page 16: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

16

Sumber: http://www.gerrymarten.com/publicatons/small-scale-Agriculture.html

Pekarangan = Home-garden

Home gardens, also known as forest gardens, are found in humid areas. They use inter-cropping to cultivate trees, crops, and livestock on the same land. In Kerala in South India as well as in northeastern India, they are the most common form of land use; they are also found in Indonesia, One example combines coconut, black pepper, cocoa and pineapple.

In many African countries, for example Zambia, Zimbabwe, Tanzania, gardens are widespread in rural, periurban and urban areas and they play an essential role in establishing food security. Most well known are the Chaga or Chagga gardens on the slopes of Mt. Kilimanjaro in Tanzania. These are an excellent example of an agroforestry system. In many countries, women are the main actors in home gardening and food is mainly produced for subsistence.

Tumpangsari dengan Pohon-pohonTree crops such as coconut, citrus and cinnamon can be planted 6 to 10 m apart. The area in between is good for other crops such as coffee or cocoa, but especially for regular interplanting of annual food crops (e.g. groundnuts, maize, cassava) or vegetables. Monocrop tree crops such as oil palm can be interplanted for the first five to six years, after which they can be underplanted with cover crops.

Page 17: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

17

Tumpangsari tanaman pangan dan pohon (Sumber: http://www.fao.org/docrep/V5290E/v5290e04.htm .....

diunduh 27/6/2011)

In Nepal, the home garden, literally known in Nepali as Ghar Bagaincha, refers to the traditional land use system around a homestead, where several species of plants are grown and maintained by household members and their products are primarily intended for the family consumption. The term “home garden” is often considered synonymous to the kitchen garden. However, they differ in terms of function, size, diversity, composition and features. In Nepal, 72% of households have home gardens of an area 2-11% of the total land holdings (Gautam et al., 2004). Because of their small size, the government has never identified home gardens as an important unit of food production and it thereby remains neglected from research and development. However, at the household level the system is very important as it is the an important source of quality food and nutrition for the rural poor and, therefore, are important contributors to the household food security and livelihoods of farming communities in Nepal. They are typically cultivated with a mixture of annual and perennial plants that can be harvested on a daily or seasonal basis. Biodiversity that has an immediate value is maintained in home gardens as women and children have easy access to preferred food, and for this reason alone we should promote home gardens as a key element for a healthy way of life. Home gardens, with their intensive and multiple uses, provide a safety net for households when food is scarce. These gardens are not only important sources of food, fodder, fuel, medicines, spices, herbs, flowers, construction materials and income in many countries, they are also important for the in situ conservation of a wide range of unique genetic resources for food and agriculture. Many uncultivated, as well as neglected and underutilised species could make an important contribution to the dietary diversity of local communities.

Polatanam Multi-strataStruktur multilayer seperti pada ekosistem hutan alami terbentuk dalam waktu yang lama. Dalam ekosistem seperti ini ada pohon yang tinggi, pohon medium dan perdu, tumbuhan menjalar dan merayap dan tumbuhan bawah yang ternaungi. This layered structure uses all the sun light available for plant growth, thereby reducing weeds, and keeps the soil healthy. In the home garden, the layers can be filled with plants that are of daily use to the household. This system mixes plants with short, medium and long terms before maturity and harvest, similar to multiple cropping.

Page 18: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

18

Sumber: http://www.fao.org/docrep/V5290E/v5290e04.htm .....

diunduh 27/6/2011

In addition to supplementing diet in times of difficulty, home gardens promote whole-family and whole-community involvement in the process of providing food. Children, the elderly, and those caring for them can participate in this infield agriculture, incorporating it with other household tasks and scheduling. This tradition has existed in many cultures around the world for thousands of years.

These gardens exemplify polyculture, and conserve much crop genetic diversity and heirloom plants that are not found in monocultures. There are now efforts to apply a similar concept in temperate climates (forest gardening).

Agroforestry = Forest gardens

1. Forest gardening is a food production and land management system based on woodland ecosystems, but substituting trees (such as fruit or nut trees), bushes, shrubs, herbs and vegetables which have yields directly useful to humans. Making use of companion planting, these

Page 19: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

19

can be intermixed to grow on multiple levels in the same area, as do the plants in a forest.

2. In part based on the model of the Keralan home gardens, temperate-climate forest gardening was pioneered by the late Robert Hart on his one eighth of an acre (500 m²) plot at Wenlock Edge in Shropshire.

3. Robert began the project over thirty years ago with the intention of providing a healthy and therapeutic environment for himself and his brother Lacon, who was born with severe learning disabilities.

4. Starting as relatively conventional smallholders, Robert soon discovered that maintaining large annual vegetable beds, rearing livestock and taking care of an orchard were tasks beyond their strength. However, a small bed of perennial vegetables and herbs they had planted was looking after itself with little intervention. This led him to evolve the concept of the "forest garden". Based on the observation that the natural forest can be divided into distinct layers or "storeys", he used inter-cropping to develop an existing small orchard of apples and pears into an edible polyculture landscape consisting of seven levels.

Agroforestry adalah pola pertanaman yang memanfaatkan sinar matahari dan tanah yang `berlapis-lapis` untuk meningkatkan produktivitas lahan. Ambil contoh berikut ini. Pada sebidang tanah, seorang petani menanam sengon (Paraserianthes falcataria) yang memiliki tajuk (canopy) yang tinggi dan luas. Di bawahnya, sang petani menanam tanaman kopi (Coffea spp) yang memang memerlukan naungan untuk berproduksi. Lapisan terbawah di dekat permukaan tanah dimanfaatkan untuk menanam empon-empon atau ganyong (Canna edulis) yang toleran/tahan terhadap naungan. Bisa dimengerti bahwa dengan menggunakan pola tanam agroforestry ini, dari sebidang lahan bisa dihasilkan beberapa komoditas yang bernilai ekonomi. Akan tetapi sebenarnya pola tanam agroforestry sendiri tidak sekedar untuk meningkatkan produktivitas lahan, tetapi juga melindungi lahan dari kerusakan dan mencegah penurunan kesuburan tanah melalui mekanisme alami.

Tanaman kayu yang berumur panjang diharapkan mampu memompa zat-zar hara (nutrient) di lapisan tanah yang dalam, kemudian ditransfer ke permukaan tanah melalui luruhnya biomasa. Mekanisme ini juga mampu memelihara produktivitas tanaman yang berumur pendek, seperti palawija. Mekanisme alami ini menyerupai ekosistem hutan alam, yakni tanpa input dari luar, ekosistem mampu memelihara kelestarian produksi dalam jangka panjang. Pola tanam agroforestry yang dianggap paling mendekati struktur hutan alam adalah pekarangan atau kebun.

Pada pekarangan/kebun, tanaman-tanaman tumbuh secara acak sehingga menciptakan struktur tajuk dan perakaran yang berlapis. Jadi manfaat ganda dari pola agroforestry (yang ideal dan konsisten) adalah peningkatan produktivitas dan pemeliharaan lingkungan.

Pola pertanaman yang diterapkan pada hutan jati di Jawa adalah tumpangsari, yang merupakan salah satu pola agroforestry. Tumpangsari di hutan jati di Jawa pada dasarnya sama dengan perladangan berpindah, dalam hal: memanfaatkan pembukaan hutan baru yang tanahnya masih subur. Sehingga tumpangsari sering disebut sebagai an improved shifting cultivation. Prinsipnya tumpangsari yang konvensional hanya dilaksanakan

Page 20: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

20

selama tanah masih subur (dan sinar matahari masih cukup untuk palawija), sekitar 2-3 tahun pertama. Jika tidak ada input pemupukan oleh petani maka tumpangsari sudah dilakukan selama lebih dari 3 tahun dipastikan menghasilkan produktivitas yang rendah.

Sumber: http://coretan-elfaheem.blogspot.com/2011_01_01_archive.

html ..... diunduh 27/6/2011)Pada dasarnya pola tanam agroforestry dapat dipisahkan menjadi

dua yakni agroforesrty di dalam dan di luar kawasan hutan. Akhir-akhir ini berkembang wacana bahwa pertanaman kayu di luar kawasan hutan lebih menjanjikan daripada yang di dalam kawasan hutan. Sebagai misal, bahan baku industri ukir Jepara pada saat ini sebagian besar disuplai oleh kayu jati yang dihasilkan dari hutan rakyat di Gunung Kidul, dan bukan dari hutan jati. Gejala ini menunjukkan bahwa potensi dan kualitas hutan menurun setiap waktu, karena kurangnya rasa memiliki hutan sebagai penyangga lingkungan.

Penggunaan lahan secara lestari dapat dilakukan dengan ,emerapkan praktek-praktek agroforestry. Agroforestry merupakan pendekatan pertanian yang memanfaatkan jasa-jasa kombinasi antara pohon, tanaman pangan semusim dan ternak. Therefore, knowledge on selection of species combination and good management of trees and crops are needed to maximize the production and positive effects of trees and to minimize negative competitive

Page 21: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

21

effects on crops. However, empirical assessment of tree crop combinations is laborious, cost expensive and time consuming. Suatu metode untuk mengatasi kekurangan informasi ini adalah melalui pengembangan model yang mengintegrasikan interaksi antara tanah-pohon-tanaman yang menjadi komponen agroforestry.

Model WaNuLCAS dikembangkan untuk mengkaji interaksi pohon-tanah-tanaman semusim dalam beragam system agroforestry dimana pohon dan tanaman pangan semusim ditanam pada sebidang lahan yang sama (simultaneous dan sequential agroforestry).

Model WaNuLCAS (Sumber: http://www.worldagroforestrycentre.org/af2/WaNuLCAS ....

. diunduh 27/6/2011)

Sistem Hutan Rakyat

Pengertian Hutan Rakyat sebagaimana yang termaktub dalam Undang-undang No.41 tahun 1999 dan Surat Keputusan Menteri Kehutanan No.49/kpts-II/1997 adalah hutan yang tumbuh di atas tanah yang dibebani hak milik dengan ketentuan minimal 0,25 ha dan penutupan tajuk tanaman kayu-kayuan minimal 50% dan atau pada tahun pertama jumlah batang minimal 500 batang/ha. Pada intinya hutan rakyat adalah hutan yang dibangun pada lahan milik atau gabungan dari lahan milik yang ditanami pohon dengan pembinaan dan pengelolaannya dilakukan oleh pemiliknya atau suatu badan usaha seperti koperasi, dengan berpedoman kepada kententuan-ketentuan yang berlaku.

Secara fisik hutan rakyat memiliki pola tanam yang beragam dan berbeda di setiap daerah, baik cara memilih jenis yang dikembangkan maupun cara penataannya di lapangana. Pada umumnya pola tanam yang

Page 22: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

22

dikembangkan oleh masyarakat petani dapat diklasifikasikan pada 2 pola tanam yaitu murni (monokultur) dan campuran.

1. Hutan Rakyat Murni Hutan rakyat yang terdiri dari satu jenis tanaman pokok yang ditanam dan diusahakan secara homogen (monokultur), seperti di Pulau Jawa untuk jenis sengon, jati dan di Lampung untuk jenis damar mata kucing. Dari jenis silvikultur pola tanam ini memiliki kelebihan yaitu lebih mudah dalam pembuatan, pengelolaan dan pengawasannya, namun kekurangannya yaitu kurang tahan terhadap serangan hama penyakit dan angin, juga kurang fleksibel karena tidak ada diversifikasi komoditi sehingga ketahanan ekonominya kurang dan penyerapan tenaga kerja bersifat musiman.

2. Hutan Rakyat Campuran

a. Hutan Rakyat Campuran (Polyculture) dengan 2 – 5 jenis tanaman kehutanan yang dikembangkan dan diusahakan, seperti sengon, mahoni, dan suren, yang kombinasinya berbeda pada setiap daerah. Dari segi silvikultur cara ini lebih baik dari pada hutan rakyat murni, daya tahan terhadap hama penyakit dan angin lebih tinggi, perakaran lebih berlapis dan dari segi ekonomi lebih fleksibel, hasil yang diperoleh berkesinambungan dan tenaga kerja yang terserap lebih banyak, namun pelaksanaannya memerlukan perencanaan, pengelolaan dan pengawasan yang lebih baik dan terampil.

b. Hutan Rakyat Campuran dengan sistem agroforestry/wanatani:pola ini merupakan bentuk usaha kombinasi kehutanan dengan cabang usaha lainnya seperti perkebunan, pertanian, peternakan dan lain-lain secara terpadu. Pola ini berorientasi pada optimalisasi pemanfaatan lahan secara rasional, baik dari aspek ekonomis maupun aspek ekologis. Penerapannya di lapangan dilakukan dengan cara pemanfaatan suatu ruang tumbuh baik vertikal maupun horizontal dalam bentuk penanaman campuran lebih dari satu jenis seperti jenis kayu-kayuan (sengon, jati), buah-buahan (petai, nangka), tanaman industri (kopi, melinjo), tanaman pangan (singkong, jagung), hijauan makanan ternak (rumput gajah), tanaman obat-obatan (kapolaga, jahe), lebah madu dan lainnya. Kelebihan pola tanam ini yaitu mempunyai daya tahan yang kuat terhadap serangan hama, penyakit dan angin. Secara ekonomis dapat diperoleh keuntungan ganda yang berkesinambungan melalui panen harian, mingguan, bulanan dan tahunan, serta tenaga kerja yang terserap akan lebih banyak dan berkelanjutan.

Beberapa contoh hutan rakyat campuran yang telah berhasil di usahakan adalah di Klaten dan Wonosobo (Awang, dkk. 2001), dimana komposisi tanaman yang diusahakan adalah :

a. Tanaman Kayu + Tanaman Perkebunana + Tanaman Semusimb. Tanaman Kayu + Tanaman Perkebunana + Tanaman Buahc. Tanaman Kayu + Tanaman Semusim + Tanaman Buah +

Tanaman Perkebunanad. Tanaman Kayu dan Tanaman Perkebunan

Page 23: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

23

Sistem Silvikultur

Beberapa praktek sistem silvikultur yang dilaksanakan di beberapa daerah di Indonesia dalam rangka pengelolaan hutan rakyat adalah (Tinjauan tentang pola tanam hutan rakyat, Nina Windawati, Pusat Litbang Hutan Tanaman; dishut.jabarprov.go.id/... diakses 19/6/2011):

1. Sistem tebang habis dengan trubusan (THT)Sistem tebang habis dengan trubusan biasanya dilakukan pada hutan rakyat murni albizia dan jati yang ditumpangsarikan dengan tanaman semusim sampai pohon albizia berumur ± 2 tahun. Seluruh tanaman albizia pada umur 5-6 tahun ditebang habis, sedangkan tanaman jati biasanya di atas umur 20 tahunan baru ditebang. Untuk membentuk tegakan selanjutnya, dipilih tunas yang tumbuh cukup banyak dari tunggul bekas tebangan. Tunas dipilih 2 – 3 yang tumbuh baik, berbatang lurus dan sehat. Pada umur 3 – 5 tunas-tunas tersebut dapat dipungut lagi hasilnya. Berdasarkan pengalaman untuk tanaman albizia di daerah Sukabumi dan Tasikmalaya (Jawa Barat), tunggul yang diterapkan pertama (pohon induk) cukup baik untuk menghasilkan tiga kali trubusan biasa dilakukan di Desa Gunungsari, Bojolali dan Desa Sumberejo, Wonogiri, Jawa Tengah. Sistem ini menghemat biaya pembuatan tanaman namun kualitas tegakan yang dihasilkan mutunya belum tentu sama dengan tegakan sebelumnya (kurang baik).

2. Sistem tebang habis dengan permudaan buatan (TPHB)Sistem silvikultur tebang habis dengan permudaan buatan dilaksanakan pada hutan rakyat yang sudah dikelola dengan baik. Petani mempunyai lahan yang cukup luas dan modal yang cukup. Sistem seperti ini dilaksanakan pada hutan rakyat murni akan tetapi sistem ini masih jarang dijumpai di lapangan.

3. Sistem tebang pilih dengan permudaan alam (TPPA)Sistem silvukultur tebang pilih dengan permudaan alam dilakukan pada areal hutan rakyat campuran dan wanatani, Yakni setelah menebang sejumlah pohon tertentu yang dianggap sudah cukup umur sebagai pohon pengganti adalah anakan setempat. Sistem ini telah diterapkan di Desa Sumberejo, Bojolali, Wonogiri, Jawa Tengah dimana petani hutan rakyat akan menebang bila tanaman benar-benar telah siap tebang dengan beberapa kriteria (tebang pilih) yaitu batangnya telah cukup untuk membuat tiang rumah atau diperkirakan berdiameter sekitar 30 cm dan petani menebang jika benar-benar membutuhkan. Setelah menebang, petani tidak menanami areal bekas tebangan, cukup mengandalkan permudaan alam yang memang jumlahnya cukup berlimpah, sehingga tidak membuat bibit tanaman buatan. Keadaan sistem silvikultur seperti diatas, biasanya menunjukan bahwa hutan rakyat belum dikelola secara baik karena petani hanya memungut beberapa pohon sesuai kebutuhan dan akibat beragamnya umur dan jenis pada satu lokasi. Kelemahan

Page 24: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

24

sistem silvikultur tersebut adalah tidak didapatkannya jumlah kayu yang cukup pada sautu waktu tertentu dengan kualitas yang baik, karena bibit yang berasal dari kongkoak belum tentu dengan kualitas mempunyai mutu yang baik.

4. Sistem tebang pilih dengan permudaan buatan (TPPB)Sistem silvikultur tebang pilih dengan permudaan buatan, dilakukan diaman pohon-pohon yang akan ditebang dipilih menurut keperluannya dan permudaanya dilakukan dengan menanami kembali bekas tebangan tersebut dengan bibit /anakan yang telah dipersiapkan sebelumnya, akan tetapi seringkali biji yang dipakai bukan berasal dari pohon yang plus, tetapi dari pohon tebangan disekitar lokasi, sehingga kualitas bibit kurang baik. Sistem silvikultur seperti diatas dijumpai pada hutan rakyat yang berbentuk campuran dan hutan agroforestry/ wanatani.

Intercropping = Tumpangsari

Intercropping is the practice of growing two or more crops in close proximity. The most common goal of intercropping is to produce a greater yield on a given piece of land by making use of resources that would otherwise not be utilized by a single crop. Careful planning is required, taking into account the soil, climate, crops, and varieties. It is particularly important not to have crops competing with each other for physical space, nutrients, water, or sunlight. Examples of intercropping strategies are planting a deep-rooted crop with a shallow-rooted crop, or planting a tall crop with a shorter crop that requires partial shade.

When crops are carefully selected, other agronomic benefits are also achieved. Lodging-prone plants, those that are prone to tip over in wind or heavy rain, may be given structural support by their companion crop. Delicate or light sensitive plants may be given shade or protection, or otherwise wasted space can be utilized. An example is the tropical multi-tier system where coconut occupies the upper tier, banana the middle tier, and pineapple, ginger, or leguminous fodder, medicinal or aromatic plants occupy the lowest tier.

Proses Tumpangsari Keberhasilan tumpangsari jagung dan kedelai melibatkan beragam proses agroekosistem. For best ecological results, the corn and soybeans are planted at specific predetermined distances at the same time of year. The corn and soybeans create a microclimate of humidity, as well as a root system and groundcover which effectively resists drought and erosion. Another advantage is use of conservation tillage which is compatible with the ecological longterm advantages of intercropping commercial annual grains and legumes.

Page 25: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

25

Sumber: http://www.freepatentsonline.com/6631585.html ..... diunduh 27/6/2011

Intercropping of compatible plants also encourages biodiversity, by providing a habitat for a variety of insects and soil organisms that would not be present in a single crop environment. This biodiversity can in turn help to limit outbreaks of crop pests (Altieri 1994) by increasing the diversity or abundance of natural enemies, such as spiders or parasitic wasps. Increasing the complexity of the crop environment through intercropping also limits the places where pests can find optimal foraging or reproductive conditions.

Derajat overlapping spatial dan temporer di antara dua jenis tanaman dapat beragam, tetapi persyaratan keduanya harus dipenuhi agar supaya suatu pola tanam menjadi “intercropping”. Berbagai tipe intercropping dapat terjadi dengan derajat overlapping spatial dan temporer yang berbeda-beda.

Beberapa tipe intercropping yang penting adalah: Mixed intercropping, merupakan bentuk tumpang-sari yang

paling mendasar, dimana komponen tanaman pangan semusim dicampur secara total dalam ruang lahan yang tersedia.

Row-cropping melibatkan tanaman-tanaman komponennya yang ditata dalam barisan berselang-seling. Pola seperti ini juga dapat disebut sebagai “pertanaman lorong” atau “alley cropping”. Variasi dari “row cropping” adalah “strip cropping”, dimana barisan-rangkap atau strip suatu tanaman diselang-seling dengan barisan tanaman lainnya.

Intercropping juga menerapkan penanaman jenis tanaman yang tumbuhnya cepat dengan jenis tanaman yang tumbuhnya

Page 26: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

26

lambat, sehingga jenis tanaman yang tumbuhnya cepat dapat dipanen lebih dahulu sebelum jenis tanaman yang tumbuhnya lambat menjadi tua (masak).

Relay cropping, tanaman ke dua ditanam selama masa pertumbuhan tanaman pertama, seringkali mendekati masa reproduktif atau pembuahan tanaman pertama; sehingga tanaman pertama dipanen untuk menyediakan ruangan bagi tanaman ke dua untuk tumbuh sepenuhnya.

Sistem usahatani tumpangsari tanaman pangan semusim dengan tanaman pohon (misalnya kelapa) banyak ditemukan di Asia, pola tanam jangka panjang, tingkat integrasi rendah hingga medium antara tanaman dan ternak. (FAO, 1984a from McDowell and Hildebrand, 1980).

Skematis tata ruang dalam system tumpangsari kelapa dengan tanaman pangan semusim (Sumber:

http://www.fao.org/docrep/005/af298e/af298E01.htm ..... diunduh 27/6/2011)

Tanaman pangan semusim ditanam sebagai tanaman sela di antara tanaman kelapa di Sri Lanka (Liyanage et al., 1986)

Tipe tanaman

Jenis anaman Zone iklim

basah

Intermediate

wet zone

Intermediate dry

zone

1.Tanaman pangan

Ubi-ubian Cassava Manihot esculenta x x Sweet PotatoIpomea batatas x x

Page 27: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

27

Taro Colocasia spp. x x Yams Dioscorea spp. x xSerealia Finger millet Eleusine coracana x Maize Zea mays x SorghumS orghum bicolor xLegume CowpeaVigna unguiculata x x Green gram Vigna radiata x x Groundnut Arachis hygopaea x x Soybean Glycine max x Winged bean Psophocarpus

tegragonolus x x

Buah-buahan

BananaMusa spp. x x x

Citrus Citrus spp. x x Papaya Carica papaya x Passion Fruit Passiflora edulis x x Pineapple Ananas comosus x x Pomegranate Punica granatum 2.Spices dan condiments

Arecanut Areca catechu x x

Betel leaves Piper betel x x Chillies Capsicum spp. x x x Ginger Zingiber officinale x x Turmeric Curcuma longa x x3. Minor export (cash) crops

Black pepper Piper nigrum x x

Cacao Theobroma cacao x x Cinnamon Cinamon zeylanicum x x Clove Syzygium aromaticum x x Coffee Coffea spp. x x Nutmeg Myristica fragrans x x4. Lainnya Pasture grass Brachiaria miliiformis x Sesame (oil seed) Sesamum

indicum x

Model ekonomi rumahtangga pengelola system usahatani tumpangsari tanaman pohon, tanaman pangan semusim dan ternak

Page 28: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

28

Sumber: http://www.fao.org/docrep/005/af298e/af298E01.htm .....

diunduh 27/6/2011

Jasa-jasa yang dihasilkan oleh system tumpangsari (Sumber: http://cropscience.ch/?p=13 ….. diunduh

27/6/2011)

Page 29: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

29

Sistem tumpangsari jagung-kacang-nanas (Sumber: http://didierruef.photoshelter.com/gallery-image/Archives/G0000

i9eq8QB5kx0/I0000fvxRkqx3M18 ..... diunduh 27/6/2011)

Sistem Produksi Tanaman

Cropping system (Pola Tanam) beragam di antara usahatani tergantung pada sumberdaya yang tersedia dan kendala-kendala yang dihadapi; kondisi geography dan agroklimat; kebijakan pemerintah; tekanan social, ekonomi dan politik; dan filosofi serta budaya petani.

Shifting cultivation (or slash and burn) is a system in which forests are burnt, releasing nutrients to support cultivation of annual and then perennial crops for a period of several years. Then the plot is left fallow to regrow forest, and the farmer moves to a new plot, returning after many more years (10-20). This fallow period is shortened if population density grows, requiring the input of nutrients (fertilizer or manure) and some manual pest control. Annual cultivation is the next phase of intensity in which there is no fallow period. This requires even greater nutrient and pest control inputs.

Perkembangan industrialisasi mendorong penerapan system monokultur, dimana satu jenis tanaman ditanam dengan sekala luas. Because of the low biodiversity, nutrient use is uniform and pests tend to build up, necessitating the greater use of pesticides and fertilizers.[48]

Page 30: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

30

Multiple cropping, in which several crops are grown sequentially in one year, and intercropping, when several crops are grown at the same time are other kinds of annual cropping systems known as polycultures.

In tropical environments, all of these cropping systems are practiced. In subtropical and arid environments, the timing and extent of agriculture may be limited by rainfall, either not allowing multiple annual crops in a year, or requiring irrigation. In all of these environments perennial crops are grown (coffee, chocolate) and systems are practiced such as agroforestry. In temperate environments, where ecosystems were predominantly grassland or prairie, highly productive annual cropping is the dominant farming system.

The last century has seen the intensification, concentration and specialization of agriculture, relying upon new technologies of agricultural chemicals (fertilizers and pesticides), mechanization, and plant breeding (hybrids and GMO's). In the past few decades, a move towards sustainability in agriculture has also developed, integrating ideas of socio-economic justice and conservation of resources and the environment within a farming system. This has led to the development of many responses to the conventional agriculture approach, including organik agriculture, urban agriculture, community supported agriculture, ecological or biological agriculture, integrated farming and holistic management, as well as an increased trend towards agricultural diversification.

Praktek-praktek Produksi Pertanian

Pengolahan tanah merupakan praktek membajak tanah untuk mempersiapkan penanaman benih/bibit atau untuk membenamkan pupuk atau mengendalikan gangguan hama-penyakit dan gulma. Intensitas pengolahan tanah sangat beragam, mulai dari cara konvensional hingga tanpa olah tanah. Hal ini dapat menyuburkan tanah karena menghangatkan tanah, memasukkan pupuk dan mengendalikan gulma, tetapi juga menjaga tanah lebih tahan erosi, memacu dekomposisi bahan organik tanah dengan melepaskan CO2, dan mereduksi kelombahan dan diversitas organism tanah.

Pest control includes the management of weeds, insects/mites, and diseases. Chemical (pesticides), biological (biocontrol), mechanical (tillage), and cultural practices are used. Cultural practices include crop rotation, culling, cover crops, intercropping, composting, avoidance, and resistance. Integrated pest management attempts to use all of these methods to keep pest populations below the number which would cause economic loss, and recommends pesticides as a last resort.

Nutrient management includes both the source of nutrient inputs for crop and livestock production, and the method of utilization of manure produced by livestock. Nutrient inputs can be chemical inorganik fertilizers, manure, green manure, compost and mined minerals. Crop nutrient use may also be managed using cultural techniques such as crop rotation or a fallow period. Manure is used either by holding livestock where the feed

Page 31: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

31

crop is growing, such as in managed intensive rotational grazing, or by spreading either dry or liquid formulations of manure on cropland or pastures.

Rencana Pengelolaan Hara (Pupuk)

A nutrient management plan is an accounting of all nutrients present on the farm as well as all of the nutrients coming onto the farm in the form of commercial fertilizers or manure. The plan balances these nutrients with the amount of nutrients required for crop growth.

Komponen-komponen dari rencana pengelolaan hara adalah: Peta tanah dengan intentitas lokasi. Rencana pertanaman. Rencana praktek konservasi tanah dan air. Pengumpulan pupuk kandang dan fasilitas simpanannya. Kandungan hara pupuk kandang. Rencana aplikasi pupuk kandang. Catatan, termasuk uji tanah, rekomendasi pupuk, aplikasi pupuk

kandang, dan estimasi hasil produksi.

Sumber: http://www.ca.uky.edu/agc/pubs/ip/ip71/ip71.htm …..

diunduh 27/6/2011)

An integrated nutrient model developed quite some time ago was a successful programme but it has not been popularized or has not been well adopted by large number of farmers. There should be a follow up study to see the impact on soil fertility management and to look on how best we can promote to wider areas.

Page 32: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

32

Pengelolaan unsur hara tanaman secara terpadu (Sumber: http://www.fao.org/docrep/010/ag120e/AG120E10.htm .....

diunduh 27/6/2011)

Water management is where rainfall is insufficient or variable, which occurs to some degree in most regions of the world. Some farmers use irrigation to supplement rainfall. In other areas, farmers use a fallow year to conserve soil moisture to use for growing a crop in the following year. Agriculture represents 70% of freshwater use worldwide

Jumlah air yang diperlukan untuk mengairi suatu area lahan tergantung beberapa faktor penting, yaitu:

- 1. Sifat Tanaman- 2. Siklus pertumbuhan tanaman - 3. Kondisi iklim- 4. Tipe dan kondisi tanah- 5. Topografi- 6. Efisiensi penyaluran air - 7. Efisiensi aplikasi lapangan- 8. Kualitas air- 9. Efektivitas pengelolaan air

Few of these factors remain constant, so that the quantity of water required will vary from day to day, and particularly from one season to the next. The selection of a small scale irrigation system needs to take all of the above factors into account. The crop takes its water from moisture held in the soil in the root zone. The soil therefore effectively acts as a water storage for the plants, and the soil moisture needs replenishing before the moisture level falls to what is known as the "Permanent Wilting Point"

Page 33: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

33

where irreversible damage to the crop can occur. The maximum capacity of the soil for water is when the soil is "saturated", although certain crops do not tolerate water-logged soil and in any case this can be a wasteful use of water. In all cases there is an optimum soil moisture level at which plant growth is maximized . The art of efficient irrigation is to try to keep the moisture level in the soil as close to the optimum as possible.

Teladan Kacang-tanahAir (lengas) tanah merupakan faktor pembatas penting bagi

pertumbuhan tanaman dalam produksi kacangtanah. Kacangtanah membutuhkan air 600 - 700 mm selama siklus hidupnya untuk mendapatkan hasil yang tinggi. Kebutuhan air ini dipenuhi dari air hujan, irrigation atau simpanan air (lengas) tanah. Akan tetapi yang penting bukan hanya jumlah total air yang diterima oleh tanaman. Waktu turunnya hujan atau irigasi juga sangat berpengaruh terhadap hasil tanaman dan kualitasnya.

Ada tiga periode penting dalam pertumbuhan tanaman untuk dicukupi kebutuhan airnya:

Pada saat tanam untuk menjamin perkecambahan Sekitar 50 - 100 hari setelah tanah ketika ginofor memasuki

tanah dan polong mulai berkembang. Periode ini sangat kritis kebutuhan airnya.

Pengisian polong hingga pemasakan polong.

The water absorbed by the groundnut during the first month after sowing is relatively small. Hence the very early growth phase after seedling emergence is not highly sensitive to moisture stress. The period of 6-8 weeks after sowing when the flowering is vigorous is very sensitive to moisture stress. At the peak of flowering, the root system is less efficient and the demand for water is high. So, this period is most sensitive to any moisture deficiency in the soil. It will be difficult for pegs to penetrate the soil if there is any prolonged dry spell during this stage of the crop. Soil moisture deficit during the vegetative phase generally delays flowering and maturity, reducing the crop growth and yield. Moisture stress during flowering causes flower drop, and also impairs pollination. The early phase of pod setting is especially sensitive to any soil moisture deficit and this reflects on decreased pod weight. Very often rain fed groundnut crop experiences soil moisture stress when rains fail during the monsoon season.

Laju pertumbuhan tanaman biasanya merupakan fungsi dari kandungan lengas-tanah:

Page 34: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

34

Sumber: http://www.fao.org/docrep/010/ah810e/AH810E04.htm .....

diunduh 28/6/2011

Praktek budidaya tanaman seperti kultivasi-kontur pada lahan-lahan yang miring, mulsa permukaan, inter-cultivation, dan pengendalian gulma yang tepat, dapat membantu konservasi lengas tanah untuk mengatasi kekurangan air hujan selama pertumbuhan tanaman. Penyemprotan 2% urea pada saat tanaman mengalami cekaman lengas tanah dapat meringankan dampak cekaman air.

Irigasi kacang tanah:

Hal-hal yang harus diperhatikan adalah: Mengapa hasil kacangtanah seringkali rendah kalau ditanam

pada kondisi tadah hujan? Bagaimana irigasi dapat membantu kacangtanah? What is the advantage of pre-sowing irrigation in groundnut

cultivation? Kapan puncak kebutuhan air selama pertumbuhan

kacangtanah? Mengapa irigasi sangat penting pada fase pemebentukan

polong? Apa yang terjadi kalau air tanah berlebihan pada fase

pemasakan polong kacangtanah?

Groundnut is mainly grown under rain fed situation. Only 19% of groundnut area in India is irrigated. Groundnut crop is exposed to drought conditions very often during its growth and consequently the yields are lower than the potential yield. So, if the farmers want higher groundnut yields, the answer is irrigation if water is available.

Page 35: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

35

Bagaimana irigasi dapat memperbaiki kacangtanah? Memungkinkan pemanfaatan sarana produksi secara efisien Meningkatkan hasil polong Memperbaiki kualitas polong dan biji Mengurangi masalah aflatoxin Memperbaiki reliability dan mengurangi risiko Meningkatkan profitabilitas

Allowing seed to remain in dry soil for several days may result in poor germination and seedling vigor. So, irrigation prior to sowing is recommended. Excessive irrigation during early plant growth stages (first 50 days after planting) may result in excessive vegetative growth and shallow root development. Irrigation during early vegetative growth stages is recommended only to limit severe water stress. Once pegging and pod formation has begun (about 50 days after planting) it is recommended that the pegging zone be kept moist; this facilitates the uptake of calcium by pods - essential for seed development. Peak water use occurs at about 12 to 16 weeks from emergence during pod fill and maturity and can be as high as 75 mm per week. During pod fill it is essential to maintain adequate moisture in the pegging zone to achieve maximum kernel quality through calcium absorption. Cekaman air selama periode pembentukan polong dan awal

pengisian polong dapat mereduksi hasil akhir kacangtanah. Sehingga irigasi pada saat pembentukan polong sangat penting.

Irigasi yang berlebihan salama fase pendewasaan tanaman kacangtanah (100 hari setelah tanam) dapat meningkatkan risiko gangguan penyakit polong dan daun, kerusakan ginofor dan kemasakan polong yang tidak seragam selama panen. Kalau lahan terlalu kering, irigasi ringan dapat membantu / memudahkan panen. Akan tetapi, kontrol dalam praktek irigasi sangat penting dan tanaman harus segera dipanen supaya biji tidak berkecambah di dalam polong.

Fase pertumbuhan Kebutuhan irigasi Germination And Emergence

Kondisi lengas tanah yang bagus sangat diperlukan. Irigasi dapat menjamin kepastian jadwal penanaman.

Vegetative Kacangtanah toleran terhadap cekaman air ringan pada fase vegetative ini. Cekaman air ringan pada fase ini dapat menguntungkan.

Initiasi ginofor Tidak ada cekaman air pada fase ini, sangat sensitif. Irigasi

Pembentukan dan pengisian polong Tidak ada cekaman air. Irigasi

Pemasakan Mengurangi penggunaan air kalau tanaman menjadi

Page 36: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

36

dewasa/ tua Sumber:http://vasatwiki.icrisat.org/index.php/Soil_moisture_relationships_and_irrigation_ in_groundnut ..... diunduh 28/6/2011

Pertanian Modern

Pertanian modern merupakan istilah yang digunakan untuk mendeskripsikan beragam praktek produksi pertanian yang dilakukan oleh petani. Istilah ini mengisyaratkan adanya inovasi, kemitraan dan perbaikan yang dilakukan secara terus menerus oleh petani untuk mencapai keberlanjutan produksi yang lebih baik kualitasnya dengan meminimumkan dampak negative terhadap lingkungan.

Safety = KeamananThe agriculture industry works with government agencies and other

organizations to ensure that farmers have access to the technologies required to support modern agriculture practices. Farmers are supported by education and certification programs that ensure they apply agricultural practices with care and only when required.

Sustainabilitas = KeberlanjutanTechnological advancements help provide farmers with tools and

resources to make farming more sustainable. New technologies have given rise to innovations like conservation tillage, a farming process which helps prevent land loss to erosion, water pollution and enhances carbon sequestration.

Tujuh Dimensi Pertanian Berkelanjutan Pada tingkat rumahtangga petani, dengan profesinya yang

alamiah, mempunyai hubungan langsung dengan alam. Untuk dapat berkelanjutan pada level ini, hubungan dengan alam harus ramah ekologis. Secara konkrit hal ini bermakna sbb:

a) Pengelolaan hama secara ekologis menggantikan penggunaan pestisida;

b) Pengelolaan kesuburan tanah terpadu menggantikan penggunaan pupuk kimia;

c) Memanfaatkan biodiversitas untuk menyusun polikultur, menggantikan monokultur;

d) Strategi pemuliaan tanaman yang menghasilkan spesies yang sesuai dengan praktek budidaya ramah lingkungan, menggantikan benih yang “kecanduan” bahan kimia.

e) Konservasi tanah dan air untuk menanggulangi erosi dan deplesi air;

f) Metode pemeliharaan ternak yang “humanis” untuk menggantikan system produksi masal atau “factory farming of animals”; dan,

Page 37: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

37

g) instead of a fixation on genes and chemical substances, we work in partnership with the living formative energies of Nature through, for instance, the use of bio-dynamic preparations and other bio-dynamic practices.  

Sumber: http://www.cadi.ph/sustainable_agriculture.htm ..... diunduh 28/6/2011

Dimensi dan Tantangan Strategis Pertanian berkelanjutan

Dimension Tantangan Strategis Keramahan ekologis "Safe Pesticides"; chemical fertilizers; monoculture;

chemically addicted seeds; soil erosion and water scarcity; factory farming; methodological materialism (nature as a biological machine)

Associative Economics

WTO. Agreement on Agriculture; "Organik Commercialism;" Lack of integration; Commodity-based polyculture.

Keadilan social Traditional politics of exploitation. Appropriation. Disempowerment.

Kepekaan budaya Neglect and collapse of indigenous knowledge systems and farming culture.

Holistik dan lebih spiritual

Reductionism; Materialism; Fragmentation

Teknologi tepat guna Commodification and molecular reduction of humans and living nature by "environmentally friendly" biotechnology. Non-diffusion of good technologies.

Pengembangan Mencapai "deep sustainability" mengatasi bias gender

Page 38: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

38

potensi sumberdaya manusia Sumber: http://www.cadi.ph/sustainable_agriculture.htm ..... diunduh 28/6/2011

Affordabilitas = KeterjangkauanTujuan praktek pertanian modern adalah membantu petani

menyediakan suplai pangan yang terjangkau untuk memenuhi kebutuhan manusia yang semakin banyak jumlahnya. Dengan system usahatani modern, lebih banyak tanaman dapat ditanam pada sedikit lahan, sehingga memungkinkan petani menyediakan bahan pangan yang terjangkau harganya.

Tipe-tipe sistem usahatani (Farming system):1. Commerical Farming – menanam tanaman / memelihara

ternak untuk mendapatkan profit 2. Subsistence Farming – memproduksi bahan pangan hanya

untuk mencukupi kebutuhan keluarga sendiri3. Arable Farming – melibatkan penanaman tanaman4. Pastoral Farming – melibatkan pemeliharaan ternak5. Intensive Farming – kalau ukuran usahataninya kecil

dibandingkan dengan sejumlah besar tenaga kerja dan input produksi yang dibutuhkan untuk usahatani.

6. Extensive Farming – kalau ukuran usahataninya snagat besar dibandingkan dengan input uang (modal), tenaga kerja dan saprodi lainnya yang dibutuhkan..

Usahatani = FARMING SYSTEMSINPUT - semua material yang masuk ke dalam system usahatani dan dapat dikelompokkan menjadi input fisik (misalnya air hujan/irigasi, lahan / tanah) dan input manusia (mislanya tenagakerja dan uang/modal)PROSES – semua proses yang berlangsung dalam system usahatani untuk mengubah input menjadi output (misalnya menanam benih, penyiangan gulma, pemanenan hasil dll.)OUTPUTS – adalah hasil-hasil dari usahatani (yaitu bahan pangan, hasil ternak dan pakan ternak).

Page 39: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

39

Sumber: http://obsgeogblog.blogspot.com/2009/11/igcse-agricultural-processes.html ….. diunduh 28/6/2011

Keamanan Pangan, Label dan RegulasiFood security issues also coincide with food safety and food

labeling concerns. Currently a global treaty, the BioSafety Protocol, regulates the trade of GMOs. The EU currently requires all GMO foods to be labeled, whereas the US does not require transparent labeling of GMO foods. Since there are still questions regarding the safety and risks associated with GMO foods, some believe the public should have the freedom to choose and know what they are eating and require all GMO products to be labeled.

GM foods have been the subject of much controversy. Advocates feel that GM foods will help provide food to the world’s continually expanding population. Since the number of people on earth keeps increasing (over 6 billion, and expected to double within 50 years), and the amount of land suitable for farming remains constant, more food must be grown in the same amount of space. Genetic engineering can make plants that will give farmers better yields through several different methods.Crops can be harmed or destroyed by many different factors. Insects, weeds, disease, cold temperatures and drought can all adversely affect plants resulting in lower yields for the farmer. Genetic engineering techniques can be used to introduce genes, creating plants that are resistant or tolerant to these factors. Bt corn is an example of the introduction of a pest resistance gene. Monsanto has created strains of soybeans, corn, canola

Page 40: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

40

and cotton that are resistant to the weed-killer Roundup®. The weed-killer can be sprayed over the entire crop, killing all plants except the transgenic crop intended to be grown. Scientists have also taken a gene from a cold-water fish and introduced it into potatoes to protect the seedlings against sudden frost. These methods all create plants that are more likely to survive and be healthy, thereby increasing the production of farmer’s fields.Genetic modification can also be used to change the properties of the crop, adding nutrients, making them taste better, or reducing the growing time. A good example of adding nutrients to food is the development of “golden” rice. Many countries in the world rely on rice as their primary food source. Unfortunately, rice is missing many essential vitamins and minerals, so people whose diet is based on rice are often malnourished. One of the most severe consequences of this is blindness caused by vitamin A deficiency. Researchers at the Swiss Federal Institute of Technology Institute for Plant Sciences genetically engineered rice, making it high in vitamin A. The group hoped to distribute the rice for free to any third world country requesting it.

Sumber: http://www.scq.ubc.ca/genetically-modified-foods/ ….. diunduh 28/6/2011

Page 41: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

41

Dampak LIngkungan

Pertanian menimbulkan biaya eksternal bagi masyarakat, melalui penggunaan pestisida, runoff dan pencucian hara, penggunaan air yang berlebihan, dan lainnya.

Pengaruh utama system produksi pertanian terhadap lingkungan alam.

Sumber: Anderson and Strutt 1996, p. 156 (http://www4.agr.gc.ca/AAFC-AAC/display-afficher.do?

id=1179248421010 ….. diunduh 27/6/2011)

Kegiatan pertanian dapat menimbulkan berbagai dampak lingkungan, di antaranya adalah berikut ini.

Dampak akibat Penyiapan lahan pertanian

Dampak terhadap Lingkungan Alami Perubahan sumberdaya yang kritis bagi kehidupan – kualitas

air, aliran air tawar, pasang-surut, kualitas udara ambient, siklus hara, dll.

Page 42: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

42

Reduksi jumlah, diversitas dan productivitas spesies tanaman dan ternak

Loss of natural services (eg waste absorbtion capacity, erosion control, and groundwater recharge)

Reduction in social benefits and services (eg recreation, aesthetic enjoyment, conservation education, medical research)

Secondary impacts resulting from improved access to wilderness areas (e.g. tourism, poaching, disturbance to wildlife, illegal conversion to other land" use, illegal harvesting)

Dampak terhadap Wetlands Wetland clearing leading to salinity intrusion, loss of functional

goods and services produced by wetland, reduced habitat for aquatic and migratory birds

Drainage of wetland causing reduced freshwater fisheries production, reduced river baseflows and water supplies

Mangroves clearing causing adverse impact on estuarine fisheries, reduction in wildlife habitats, loss of a natural barrier against flooding and erosion

Dampak terhadap Hutan Destruction of wildlife habitats and loss of bio-diversity Destabilisation of the local hydrology, both for surface and

groundwater (e.g. increased flooding and flood frequency, dry streams, reduced/increased base flows)

Logging operations and access roads causing increased runoff, sedimentation of surface watercourses, reduced water supply and quality

Increased sediment in aquatic environments causing temporary or permanent covering of benthic organisms increased Biological Oxygen Demand (BOD), placing fish and aquatic flora under oxygen stress sediment of high nutrient content carried to still waterbodies (e.g. lakes, lagoons) resulting in a high BOD

Siltation of reservoirs causing a reduction in capacity, reduction in power generation and shortening of project's life span

Physical damage to historical artifacts and landforms Changes to the micro-climate (e.g. humidity, precipitation)

Dampak terhadap Lahan Arid dan Semi-arid Many projects in drylands are intended to ameliorate a

progressive decrease in environmental quality and agricultural productivity, e.g. soil and water conservation projects, forest and rangelands management projects, flood control and irrigation. These free-standing agricultural projects can have a positive impact on the environment, though they may sometimes yield negative impacts as described for land conversion above and farming operations below

Page 43: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

43

Dampak lingkungan selama operasi pertanian

Dampak Sosial-ekonomi Dampak positif social-ekonomi

o Peningkatan kesempatan kerja o Pendapatan lebih tinggio Status gizi lebih baiko Perbaikan ketahanan pangano Penguatan ekonomi local dan keterkaitannyao Ketahanan penguasaan lahan.

Dampak negative social-ekonomi o loss of traditional forest productso loss of farm labour to cash crop agricultureo social conflict of local population with agricultural settlerso social conflicts within local population due to increasing

wealth differentialso secondary land clearing for agriculture may open access

to nearby forests not targeted for developmento increased land values and rentso shifts in ownership patterns away from the pooro dependence on cash crops to the exclusion of

subsistence cropso spread of pests and diseases, loss of local resistant

varietieso women's livelihoods and status adversely affected (e.g.

agricultural projects increasing women's burdens without providing additional assets or income

o increased incidence of waterborne diseases with irrigated agriculture, both for humans and livestock

Pengelolaan Lahan yang Jelek change in the type of vegetation cover reducing soil quality over

the medium or long-term increased soil erosion from wind and rain erosion effects increased leaching of nutrients fertiliser runoff contaminating surface water-bodies by

increasing BOD levels which cause stress to fish which are conservation-worthy, commercially significant, or depended upon locally

pesticide runoff contaminating surface or ground-water" - contamination of public potable water supplies

contamination of surface water-bodies leading to stress for conservation-worthy, commercially significant, or locally valued fish

Page 44: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

44

Sumberdaya Air water quality locally and downstream adversely affected by

siltation following increased erosion from new crops aquatic benthic communities harmed due to silt deposition quality of potable water supplies reduced if organik based, silt

can cause stress to aquatic flora and fauna due to increased BOD levels

water quality adversely affected by human and agricultural wastes

direct increases in BOD and Chemical Oxygen Demand levels, increasing stress on aquatic flora and fauna

indirect increases in BOD due to feeding of aquatic flora

Kualitas Udara methyl bromide, yang digunakan sebagai fumigasi untuk

gudang hasil tanaman, merupakan substansi yang dapat merusak ozon.

Pentingnya Dampak Lingkungan

Pentingnya dampak lingkungan tertentu dapat divaluasi dengan jalan membandingkan besaran dampak terduga (misalnya lokasi, volume, konsentrasi) dengan baku mutu lingkungan yang relevan. Pentingya dampak juga harus dinilai dengan mempertimbangkan prioritas dan preferensi masyarakat terhadap lingkungan, yang mana hal ini belum ada baku mutu kuantitatifnya.

Baku mutu lingkungan Regulasi Bahan Agrokimia

o fertilisers (apply country regulations)o pesticides (apply country regulations)

Baku mutu kualitas air o potable water supplies (apply country standards)o wastewater discharge (apply country standards for

wastewaters, fisheries, and bathing) National and local planning regulations

o legislation concerning change in landuseo regional/local strategic landuse planso strategic watershed planso landuse suitability recommendations/plans

National legislation to protect certain areas o national parkso forest reserveso nature reserves

International agreements to protect certain areas o World Heritage Conventiono Ramsar Convention on wetlands

Conservation/preservation of species

Page 45: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

45

o national legislationo international conventionso CITES Convention on trade in endangered species

Prioritas dan Preferensi Lingkungan Government policies for environmental protection (including,

where appropriate, incorporation of objectives from Country Environmental Studies/Environmental Action Plans etc.)

Environmental priorities of international, national and/or local Non- Governmental Organisations

Environmental priorities of trade associations representing agricultural developers

Participation of affected people in project planning to determine priorities for environmental protection, including:

o public healtho revered areas, flora and fauna (e.g. cultural/medicinal

value, visual landscape)o skills training to undertake environmental mitigation

measureso potable water supplyo conserving hunted wildlife or fish stockso issues of sustainable income generation and

employment (including significance of gender Conflicts of interest between current and future users of those

resources affected by the project (e.g. developed land, potable water supply, waste absorbing capacities of water-bodies, skilled labour, credit availability, extension services, recreational areas)

Sarana Mitigasi In order to protect the environment from the adverse effects of agricultural programmes and projects there are a number of mitigation and management options that can be implemented. Some key options are given below. These may be undertaken individually or combined into an action plan. To achieve the best results, mitigation options should be determined through the close participation of those for whom the project is intended and those likely to be adversely affected.

Sarana untuk melindungi Lingkungan yang Sensitif

Wilderness Areas (termasuk hutan) Alternative project siting (or routing of access roads if

applicable) Include wilderness area features in project design (e.g. fish

ladders, wildlife passages or crossings) Establish buffer zones around wilderness or forest areas Rehabilitate or create ecosystems to offset wilderness or forest

conversion or add to existing stock

Page 46: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

46

Strengthen wilderness and forest area management institutions, both governmental and non-governmental, with staff, equipment, training, and support of enforcement activities

Establish environmental and conservation education programmes at local schools

Wetlands = rawa-rawa Selection of alternative sites to avoid wetland Design features to prevent disturbance of the flow patterns and

hydrologic regimes critical to conservation of the wetland (e.g. flow regulating works, road crossings on trestles or pilings, rather than on embankments)

Enhancement and/or protection of other wetland in substandard conditions to offset losses at project site

Artificial construction of wetland to replace areas lost (e.g. where experience has shown that the wetland type in question can, in fact be constructed)

Strengthen institutions to manage and protect wetland Include NGOs in the institutional arrangements for wetland

conservation Promote development of national wetland incentives and

management strategies Require wetland concerns to be considered in national and

local planning and law and incorporated into decision-making processes

Environmental education programmes to disseminate knowledge on the importance of wetland

Sarana-sarana untuk Penyiapan Lahan Memilih lokasi yang tidak membahayakan lingkungan Adopsi alternative sarana pembukaan lahan retain certain vegetation such as tree stumps and shrubs to

help preserve soil structure and prevent soil erosion leave residual vegetation to be returned to the soil for

nutrient/organik matter value market removed products to offset clearing costs identify low lying areas that could best be used for pond

aquaculture require a clearing method/cover crop/cropping plan before

clearing approved plant the cleared area immediately following clearance with an

appropriate vegetation cover consider mitigation measures for road construction associated

with agricultural projects soil suitability assessments should state what land clearing

methods are assumed declare surrounding forests as wildlife preserves or forest

reserves Where land management systems are shown to be in transition

by a socio-economic analysis, monitoring and evaluation should

Page 47: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

47

be built into agricultural activities to mitigate future impacts that may affect the population or resource base

Sustain the capability of the land under a given land use to return to its initial productivity

Identifikasi dan mendukung kesejahteraan dan identitas budaya masyarakat local yang terpengaruh.

Menyediakan sarana penyuluhan yang memadai.

Sarana / Tindakan untuk Operasi Pertanian

Mitigasi dampak pengelolaan lahan Biological conservation techniques (both on-farm and off-farm

options) Water conservation techniques (both on-farm and off-farm

options) Soil conservation measures (eg terracing, bunding, contour

ploughing) Judicious use and efficient application of agro-chemicals

Sarana Kelembagaan Kebijakan sektoral yang mendukung pelestarian lingkungan Fiscal and economic policies that support settled agricultural

development (e.g. subsidies) Land tenure modifications in support of permanent agriculture Environmentally responsive land use planning - with legal basis

and resources for enforcement Buffer zones between forest and agriculture Incorporation of 'planning gains' into land allocation and

'change of landuse' to encourage

Isu-isu Peternakan

A senior UN official and co-author of a UN report detailing this problem, Henning Steinfeld, said "Livestock are one of the most significant contributors to today's most serious environmental problems". Livestock production occupies 70% of all land used for agriculture, or 30% of the land surface of the planet. It is one of the largest sources of greenhouse gases, responsible for 18% of the world's greenhouse gas emissions as measured in CO2 equivalents. By comparison, all transportation emits 13.5% of the CO2. It produces 65% of human-related nitrous oxide (which has 296 times the global warming potential of CO2,) and 37% of all human-induced methane (which is 23 times as warming as CO2. It also generates 64% of the ammonia, which contributes to acid rain and acidification of ecosystems. Livestock expansion is cited as a key factor driving deforestation, in the Amazon basin 70% of previously forested area is now occupied by pastures and the remainder used for feedcrops. Through deforestation and land degradation, livestock is also driving reductions in biodiversity.

Page 48: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

48

Transformasi, Konversi dan Degradasi LahanLand transformation, the use of land to yield goods and services, is

the most substantial way humans alter the Earth's ecosystems, and is considered the driving force in the loss of biodiversity. Estimates of the amount of land transformed by humans vary from 39–50%. Land degradation, the long-term decline in ecosystem function and productivity, is estimated to be occurring on 24% of land worldwide, with cropland overrepresented. The UN-FAO report cites land management as the driving factor behind degradation and reports that 1.5 billion people rely upon the degrading land. Degradation can be deforestation, desertification, soil erosion, mineral depletion, or chemical degradation (acidification and salinization).

The Land Transformation Model (LTM) contains three general categories of Driving Variables: Management Authority, Socioeconomics and Environmental. Management Authority includes the institutional components and policies of land use. Land ownership is an important component in this module of the model since state and federally-owned lands (e.g., state and federal forests, parks and preserves) need to be excluded from development. Socioeconomic driving variables include population change, economics of land ownership, transportation, agricultural economics and locations of employment. Environmental driving variables of land transformation are: (1) abiotic, such as the distribution of soil types and elevation; and, (2) biotic, such as the locations of endangered and threatened species, or the attractiveness of certain types of vegetation patterns in the landscape for development. Driving variables may contain intercorrelated subcomponents; hence the model can be hierarchical. For example, the farming socioeconomic system in the Saginaw Bay Watershed application of the pilot model is composed of farm-size dependent economics, farmer demographics and environmental influences on farm productivity. Land Transformation is characterized by change in land use and land cover. Land use describes the anthropogenic uses of land as its affects ecological processes and land value (Veldkamp and Fresco 1996). Land uses that we consider at the most general level are: urban, agriculture/pasture, forest, wetlands, open water, barren and non-forested vegetation. Land cover characterizes the plant cover of associated land use and is thus not mutually exclusive of land use. Land cover types that are considered include: types of agriculture (row crops versus non-row crops), deciduous and coniferous forests, and non-forested vegetation.Within each land use, we consider Intensity Of Use such as land management practices, resource use and human

Page 49: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

49

activities. Intensity of use can be measured as chemical inputs to the land to increase its productivity (e.g., herbicides), chemical inputs as it results from human activities (e.g., salting of roads), and natural resource use (e.g, subsurface water for irrigation, per unit area energy consumption and forest harvesting). Socioeconomics, policy and environmental factors will also drive the intensity of use as well. Changes in land use and cover, and intensity of use, alter Processes (e.g., hydrogeologic and geochemical) and Distributions of plants and animals in ecosystems. Processes that we are interested in characterizing include groundwater and surface water flows, chemical and sediment transport across land and through rivers and streams, geochemical interactions and fluxes such as nutrients (nitrogen and phosphorus). Land use and land cover will affect the types and numbers of animals inhabiting areas.Assessment endpoints are indicators of ecological integrity and economic sustainability. These assessment endpoints are used to quantify the nature of changes in landscapes. It is important that assessment endpoints be: 1) relatively easy to quantify, 2) unambiguous, 3) correlated with changes to land use; and, 4) reflect qualitative aspects of landscapes. These assessment endpoints provide input to the decision making process by watershed stakeholders.

Page 50: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

50

Model transformasi lahan dan dampaknya (Sumber: http://www.ncgia.ucsb.edu/conf/landuse97/papers/pijanows

ki_bryan/paper.html ..... diunduh 28/6/2011)

Konversi LahanProses alih fungsi lahan secara langsung dan tidak langsung

ditentukan oleh dua faktor, yaitu: (i) sistem kelembagaan yang dikembangkan oleh masyarakat dan pemerintah, dan (ii) sistem non-kelembagaan yang berkembang secara alamiah dalam masyarakat. Sistem kelembagaan yang dikembangkan oleh masyarakat dan pemerintah antara lain direpresentasikan dalam bentuk terbitnya beberapa peraturan mengenai konversi lahan.

Secara ekonomi alih fungsi lahan yang dilakukan petani baik melalui transaksi penjualan ke pihak lain ataupun mengganti pada usaha non padi merupakan keputusan yang rasional. Sebab dengan keputusan tersebut petani berekspektasi pendapatan totalnya, baik dalam jangka pendek maupun dalam jangka panjang akan meningkat. Penelitian yang dilakukan oleh beberapa peneliti, menunjukkan bahwa penggunaan lahan sawah untuk penanaman padi sangat inferior dibanding penggunaan untuk turisme, perumahan dan industri. Penelitian Syafa’at et al. (2001) pada sentra produksi padi utama di Jawa dan Luar Jawa, menunjukkan bahwa selain faktor teknis dan kelembagaan, faktor ekonomi yang menetukan alih fungsi lahan sawah ke pertanian dan non pertanian adalah : (1) nilai kompetitif padi terhadap komoditas lain menurun; (2) respon petani terhadap dinamika pasar, lingkungan, dan daya saing usahatani meningkat.

Dampak konversi lahan sawah dapat dipandang dari dua sisi. Pertama, dari fungsinya, lahan sawah diperuntukan untuk memproduksi padi. Dengan demikian adanya konversi lahan sawah ke fungsi lain akan menurunkan produksi padi nasional. Ke dua, dari bentuknya perubahan lahan sawah ke pemukiman, perkantoran, prasarana jalan dan lainnya berimplikasi besarnya kerugian akibat sudah diinvestasikannya dana untuk mencetak sawah, membangun waduk dan sistem irigasi.

Volume produksi yang hilang akibat konversi lahan sawah ditentukan oleh: pola tanam yang diterapkan di lahan sawah yang belum dikonversi; produktivitas usahatani dari masing-masing komoditi dari pola tanam yang diterapkan; dan luas lahan sawah yang terkonversi. Irawan dan Friyatno (2002), memformulasikan rumus dasar kehilangan produksi akibat konversi pada tahun t di wilayah tertentu sebagai berikut:

Qti = Lti · Iti · Yti

dimana:Qti = produksi padi pada tahun t di wilayah iLti = luas baku sawah pada tahun t di wilayah iIti = intensitas panen padi per tahun pada tahun t di wilayah iYti = Produktivitas padi per musim per hektar pada tahun t di

wilayah I

Page 51: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

51

Persamaan di atas akan lebih kompleks namun lebih akurat dilakukan per musim tanam padi. Perhitungan berdasarkan musim tanam akan menghasilkan perkiraan yang lebih akurat, dengan formulasi sebagai berikut:

dimana: Ltim = luas baku sawah pada tahun t di wilayah i yang ditanami padi pada musim tanam m

Ytim = produksi padi pada tahun t di wilayah i pada musim tanam mm = musim tanam padi, dimana m =1 adalah MH-I, m = 2 adalah MH-II,

dan m =3 adalah MK.

Dengan menggunakan persamaan di atas ini dapat dihitung berapa ton produksi padi potensial yang hilang akibat adanya konversi lahan sawah. Sumaryanto, Hermanto, dan Pasandaran (1996) memperkirakan rata-rata produksi padi yang hilang akibat konversi lahan sawah di Jawa tak kurang dari 8,2 ton/Ha/tahun. Penelitian terbaru Pusat Penelitian dan Pengembangan Sosial Ekonomi Pertanian Bogor yang dilaporkan Irawan dan Friyatno (2002), dampak konversi lahan sawah terhadap produksi padi di Jawa selama 18 tahun (1981-1999) diperkirakan secara akumulasi mencapai 50,9 juta ton atau sekitar 2,82 juta ton per tahun. Kehilangan tersebut tidak mampu ditutup oleh pencetakan lahan sawah yang dilakukan di luar Jawa. Karena menurut Irawan dan Friyatno (2002), kehilangan produksi padi dari areal lahan sawah di Jawa tersebut setara dengan 1,7 juta ton beras per tahun yang jumlahnya sebanding dengan impor beras Indonesia pada periode 1984 – 1997 yang berkisar antara 1,5 – 2,5 juta ton beras per tahun. Ketidakmampuan sawah baru menggantikan sawah yang terkonversi di Jawa disebabkan rata-rata sawah di Jawa tingkat produktivitasnya lebih tinggi dibandingkan produktivitas lahan sawah di Luar Jawa, apalagi sawah-sawah yang baru dicetak. Namun demikian jika tidak ada upaya pencetakan lahan sawah di Luar Jawa tentunya impor yang dibutuhkan akan lebih besar lagi. Di samping itu hendaknya perbaikan teknologi budidaya padi lahan sawah dan lahan kering serta upaya-upaya penyuluhan yang akhir-akhir ini menurun, sebaiknya ditingkatkan lagi secara terus menerus. Di sisi permintaan, upaya diversifikasi pangan pokok dengan bahan local yang masih tersendat perlu diupayakan terus.

Menurut Nasoetion dan Winoto (1996), alih fungsi lahan sawah ke non pertanian merupakan suatu proses yang mahal. Biaya investasi untuk pencetakan dan pengembangan sistem pertanian sawah sangat besar, baik kaitannya dengan pembangunan waduk, sistem irigasi, maupun pemantapan ekosistem sawah yang umumnya butuh waktu lebih dari 10 tahun. Sumaryanto, Hermanto, dan Pasandaran, (1996) memperkirakan investasi membangun lahan sawah irigasi membutuhkan biaya sekitar Rp 4,9 juta/ha pada tahun 1989. Menurut Departemen Pekerjaan Umum, pada tahun 1996, untuk membangun lahan sawah beririgasi teknis

Page 52: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

52

dibutuhkan biaya mencapai Rp 9 juta/ha. Dengan menggunakan perkiraan tersebut pada nilai kini maka kerugian akibat investasi lahan sawah yang hilang disebabkan adanya konversi lahan sawah cukup besar.

Dampak social-ekonomi lain dari alih fungsi lahan pertanian adalah: kesempatan kerja pertanian menurun sejalan dengan menurunnya lahan pertanian yang tersedia, kesempatan kerja yang terkait secara langsung maupun tidak langsung dengan kegiatan produksi padi, dan degradasi lingkungan.

Degradasi lahanSebagian lahan pertanian telah mengalami kerusakan, baik oleh

proses alam maupun aktivitas manusia dalam budidaya pertanian. Kerusakan yang sangat hebat pada lahan terutama disebabkan oleh manusia. Kebutuhan manusia terhadap sumber daya yang ada pada lahan seperti hasil-hasil pertanian dan peternakan yang semakin meningkat memungkinkan eksploitasi terhadap lahan dilakukan secara besar – besaran. Degradasi lahan berarti hilangnya fungsi lahan atau berubahnya kualitas dan manfaat dari suatu lahan. Jadi, kerusakan lahan tidak hanya menyangkut kerusakan pada tanah, tetapi juga sumber daya berupa organisme yang ada di atas tanah. Gaya-gaya eksogen yang bersifat mengikis muka bumi digolongkan sebagai tenaga eksogen degradasi. Tenaga eksogen degradasi ini dapat dibedakan menjadi 3 jenis, yaitu pelapukan, gerakan massa dan erosi. Ketiganya sangat berpengaruh terhadap degradasi lahan.

Dampak yang dapat ditimbulkan akibat degradasi lahan sebagai berikut:

a) Terjadi perubahan kondisi iklim. Tumbuhan berfungsi meningkatkan penguapan melalui dedaunan (transpirasi) dan menyerap panas. Jika tumbuhan banyak ditebang, suhu udara meningkat dan penguapan berkurang

b) Spesies tertentu dalam ekosistem hutan dapat hilang atau punah karena hutan sebagai habitatnya mengalami kerusakan. Sebagian hewan terpaksa masuk ke pemukiman penduduk, merusak kebun atau mengganggu aktivitas manusia.

c) Hilangnya berbagai jenis spesies makhluk hidup karena rusaknya lahan menimbulkan kerugian yang tak ternilai harganya.

d) Banjir dan kekeringan semakin sering terjadi karena berkurangnya infiltrasi dan meningkatkan limpasan permukaan

e) Berkembangnya masalah kemiskinan di kalangan petani karena produktivitas lahannya terus menurun

f) Terbukanya lahan kerana kerusakan hutan memungkinkan terjadinya erosi yang sangat intensif pada lahan sehingga tanah menjadi tidak subur

g) Nilai estetika (keindahan) dari keanekaragaman tumbuhan dan hewan yang hidup di suatu lahan menjadi hilang

h) Hasil – hasil hutan yang secara ekonomi dapat memberikan keuntungan seperti kayu, buah – buahan dan tanaman obat menjadi hilang

i) Tanah menjadi tandus dan tidak dapat ditanami lagi

Page 53: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

53

j) Erosi yang terjadi pada lahan kritis dapat menimbulkan tanah longsor

Untuk mencegah degradasi lahan, diperlukan upaya yang dilakukan agar keberadaan lahan dapat terus dimanfaatkan dengan memperhatikan kelestarian lingkungan. Upaya – upaya yang dilakukan adalah:

1. Lahan – lahan yang tdiak cocok untuk pertanian sebaiknya dijadikan sebagai hutan, seperti lereng gunung yang curam atau daerah tanah berkapur yang mudah longsor

2. Lahan – lahan kering tadah hujan sebaiknya dibuat teras agar dapat mengurangi aliran permukaan (runoff)

3. Daerah yang memiliki curah hujan tinggi seperti Jawa Barat, lahan yang miring tidak hanya dibuat sangkedan, saluran pelepas air perlu dibuat memanjang lereng. Terjunan air perlu diperkuat bambu, batu dan rumput yang akarnya kuat

4. Hindari penyiangan yang bersih di antara tanaman pepohonan. Jika tidak ada pupuk hijau penutup tanah, dapat pula dengan rumput yang tidak berbahaya bagi tanaman pokok. Keberadaan tanaman penutup tanah juga meminimumkan erosi tanah

5. Melakukan reboisasi terhadap lahan yang sudah kritis6. Tidak membakar lahan pertanian dan hutan pada musim

kemarau. Selain dapat menyebabkan degradasi lahan, asap dari kebakaran tersebut juga menimbulkan polusi udara.

EutrofikasiEutrophikasi, kelebihan hara dalam ekosistem akuatik

mengakibatkan blooming algae dan anoxia , mengakibatkan kematian ikan , kehilangan biodiversity, dan mengakibatkan kualitas air tidak cocok untuk air minum dan untuk penggunaan industry lainnya. Penggunaan pupuk dan rabuk yang berlebihan dapat mengakibatkan pencucian dan runoff N dan P dari lahan pertanian. Unsur hara ini merupakan penyebab eutrofikasi pada ekosistem akuatik.

Eutrofikasi adalah pencemaran air yang disebabkan oleh munculnya nutrient yang berlebihan ke dalam ekosistem air. Eutrofikasi merupakan problem lingkungan hidup yang diakibatkan oleh limbah fosfat (PO3-), khususnya dalam ekosistem air tawar. Air dikatakan eutrofik jika konsentrasi total phosphorus (TP) dalam air berada dalam rentang 35-100 µg/L. Eutrofikasi merupakan proses alamiah di mana danau mengalami penuaan secara bertahap dan menjadi lebih produktif bagi tumbuhnya biomassa. Diperlukan proses ribuan tahun untuk sampai pada kondisi eutrofik. Proses alamiah ini, oleh manusia dengan segala aktivitas modernnya, secara tidak disadari dipercepat menjadi dalam hitungan beberapa dekade atau bahkan beberapa tahun saja.

Eutrofikasi mempunyai dampak yang buruk bagi ekosistem air, diantaranya:

Anoxia (tidak tersedianya oksigen) yang dapat membunuh ikan dan invertrebata lain yang juga dapat memicu terlepasnya gas-gas berbahaya yang tidak diinginkan

Page 54: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

54

Algal blooms dan tidak terkontrolnya pertumbuhan dari tumbuhan akutik yang lain

Produksi substansi beracun oleh beberapa spesies blue-green algae

Konsentrasi tinggi bahan-bahan organik yang jika dicegah dengan menggunakan klorin akan dapat menyebabkan terciptanya bahan-bahan karsinogen yang dapat menyebabkan kanker

Pengurangan nilai keindahan dari danau atau waduk karena berkurangnya kejernihan air

Terbatasnya akses untuk memancing dan aktivitas rekreasi disebabkan terakumulasinya tumbuhan air di danau atau waduk

Berkurangnya jumlah spesies dan keanekaragaman tumbuhan dan hewan (biodiversity)

Berubahnya komposisi dari banyaknya spesies ikan yang ada menjadi sedikit spesies ikan (dalam hubungannnya dengan ekonomi dan kandungan protein)

Deplesi oksigen larut dalam air (DO) terutama di lapisan yang lebih dalam dari danau atau waduk

Berkurangnya hasil perikanan dikarenakan deplesi oksigen (DO) yang signifikan di badan air.

PestisidaPenggunaan pestisida tingkat dunia meningkat sejak 1950 hingga

2.5 juta ton setahun, namunkehilangan tanaman akibat gangguan hama-penyakit relative masih tetap saja. The World Health Organization estimated in 1992 that 3 million pesticide poisonings occur annually, causing 220,000 deaths. Pesticides select for pesticide resistance in the pest population, leading to a condition termed the 'pesticide treadmill' in which pest resistance warrants the development of a new pesticide.

An alternative argument is that the way to 'save the environment' and prevent famine is by using pesticides and intensive high yield farming, a view exemplified by a quote heading the Center for Global Food Issues website: 'Growing more per acre leaves more land for nature'. However, critics argue that a trade-off between the environment and a need for food is not inevitable, and that pesticides simply replace good agronomic practices such as crop rotation.

Perubahan IklimPerubahan iklim berpotensi mempengaruhi kinerja pertanian

melalui perubahan temperature, curah hujan ( waktu dan jumlah hujan), CO2, radiasi matahari dan interaksinya.

Agriculture can both mitigate or worsen global warming. Some of the increase in CO2 in the atmosphere comes from the decomposition of organik matter in the soil, and much of the methane emitted into the atmosphere is caused by the decomposition of organik matter in wet

Page 55: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

55

soils such as rice paddies. Further, wet or anaerobic soils also lose nitrogen through denitrification, releasing the greenhouse gases nitric oxide and nitrous oxide. Changes in management can reduce the release of these greenhouse gases, and soil can further be used to sequester some of the CO2 in the atmosphere.Dalam jangka panjang, perubahan iklim dapat mempengaruhi

pertanian dalam beberapa cara : Produktivitas, ditinjau dari kuantitas dan kualitas tanaman Praktek budidaya pertanian, melalui perubahan penggunaan air

(irigasi) dan input pertanian seperti herbicida, insecticides dan pupuk

Pengaruh Lingkungan, terutama dalam hubungannya dengan frekuensi dan intensitas drainage tanah (yang dpaat menyebabkan pencucian nitrogen), erosi tanah, reduksi keaneka-ragaman tanaman

Ruang pedesaan, melalui konversi lahan budidaya, spekulasi lahan, renunsiasi lahan, dan kenyamanan hydraulik.

Adaptasi, organism dapat lebih atau kurang kompetitif, seperti halnya manusia dapat mengembangkan urgensi untuk menjadi organism yang lebih kompetitif, misalnya varietas padi yang tahan genangan atau tahan garam.

Pengaruh Temperatur terhadap Periode Pertumbuhan

Durasi siklus pertumbuhan tanaman sangat penting, terutama berkaitan dengan temperatur. Peningkatan temperature akan mempercepat perkembangan organisme. Dalam hal tanaman musiman, durasi antara tebar benih dan panen akan diperpendek (misalnya, durasi untuk panen jagung dapat diperpendek antara satu dan empat minggu). Pemendekan siklus hidup tanaman seperti itu dapat berdampak buruk terhadap produktivitasnya, karena senescence akan terjadi lebih cepat.

Pengaruh Peningkatan konsentrasi CO2 terhadap tanamanCO2 sangat esensial bagi pertumbuhan tanaman. Peningkatan

konsentrasi CO2 di atmosfer dapat berdampak positif dan negative. Peningkatan CO2 diharapkan berdampak positif secara fisiologis melalui peningkatan laju fotosintesis. Pada saat ini, jumlah CO2 di atmosfer sebesar 380 ppm, sedangkan jumlah oksigen 210,000 ppm. Hal ini berarti bahwa tanaman dapat mengalami kekurangan CO2, karena ensim yang mengikat CO2, (yaitu rubisco) juga mengikat oksigen dalam proses fotorespirasi. Dampak peningkatan konsentrasi CO2 akan lebih besar pada tanaman tipe C3 (seperti gandum) dibandingkan dengan tanaman tipe C4 (seperti jagung), karena tanaman C3 lebih peka terhadap kekurangan CO2. Hasil-hasil penelitian menunjukkan bahwa peningkatan CO2 mengakibatkan lebih sedikit stomata yang berkembang pada tanaman yang selanjutnya mengakibatkan reduksi kebutuhan air. Pada kondisi optimum suhu dan kelembaban udara, hasil tanaman meningkat mencapai 36%, kalau konsentrasi CO2 udara meningkat dua-kali.

Page 56: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

56

Further, few studies have looked at the impact of elevated carbon dioxide concentrations on whole farming systems. Most models study the relationship between CO2 and productivity in isolation from other factors associated with climate change, such as an increased frequency of extreme weather events, seasonal shifts, and so on.

Fungsi Ekosistem dan Jasa-jasanya

Sistem ekologi atau ecosystem merupakan daerah alamiah yang melingkupi organism hidup dan benda mati yang berinteraksi menghasilkan pertukaran material di antara organism hidup dan benda mati. Sebagaimana system lainnya, ekosistem ini juga merupakan kombinasi dari bagian-bagian yang saling berinteraksi dan berinterelasi membentuk satu kesatuan utuh.

Economic theory identifies four kinds of capital: human, financial, manufactured and natural. Developed economies have focused primarily on using the first three (which were considered limiting factors to development) to transform natural capital (which was considered ‘free’ and abundant) into consumer products and services. Ecosystem services are the equivalent of ‘natural capital’. The concept of ecosystem services refers to the set of ecosystem functions that are useful to humans. It encompasses the delivery, provision, production, protection or maintenance of a set of goods and services that people perceive to be important. These services impart to society a variety of benefits, many of which are critical to the survival of the society. The list of services is long, and includes benefits such as the purification of our water by forest ecosystems, control of flooding by wetland ecosystems, crop pollination, and aesthetic and cultural benefits.

Jasa-jasa ekosistem dapat didefinisikan berdasarkan pada sekala dan perspektifnya. Klasifikasi fungsi ekosistem dan deskripsi jasa-jasa yang dihasilkan oleh fungsi-fungsi ekosistem tersebut dipublikasikan oleh De Groot, et al. (2002).

Tabel 1. Klasifikasi Fungsi Ekosistem

Fungsi Ekosistem Deskripsi

1. Fungsi Regulasi This group of functions relates to the capacity of natural and semi-natural ecosystems to regulate essential ecological processes and life support systems through bio-geochemical cycles and other biospheric processes. In addition to maintaining ecosystem (and biosphere) health, these

Page 57: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

57

regulation functions provide many services that have direct and indirect benefits to humans (such as clean air, water and soil, and biological control services). Natural ecosystems play an essential role in the regulation and maintenance of ecological processes and life support systems on earth.

2. Fungsi Habitat Natural ecosystems provide refuge and reproduction habitat to wild plants and animals and thereby contribute to the (in situ) conservation of biological and genetic diversity and evolutionary processes.

3. Fungsi Produksi

Photosynthesis and nutrient uptake by autotrophs converts energy, carbon dioxide, water and nutrients into a wide variety of carbohydrate structures which are then used by secondary producers to create an even larger variety of living biomass. This broad diversity in carbohydrate structures provides many ecosystem goods for human consumption, ranging from food and raw materials to energy resources and genetic material.

4. Fungsi Informasi Because most of human evolution took place within the context of undomesticated habitat, natural ecosystems provide an essential ‘reference function’ and contribute to the maintenance of human health by providing opportunities for reflection, spiritual enrichment, cognitive development, recreation and aesthetic experience.

Page 58: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

58

Ekonomi Jasa-jasa Agroekosistem

Nilai-nilai Agroekosistem dalam memproduksi pangan, energy dan jasa-jasa ekosistemnya

Ekosistem pertanian menghasilkan bahan pangan, bahan serat dan jasa-jasa ekosistem non-pasar (ES). Pertanian juga melibatkan biaya eksternal negative yang sangat tinggi yang berhubungan dengan, misalnya penggunaan bahan bakar fosil. Kita mengestimasi, dengan menggunakan metode pemantauan ekologis lapangan dan valuasi ekonomi metode “value-transfer”, nilai-nilai ES pasar dan non-pasar dari Kombinasi Bahan-Pangan dan Energy (CFE) agro-ecosystem yang secara simultan menghasilkan bahan pangan, pakan, dan bioenergi.

Such novel CFE agro-ecosystems can provide a significantly increased net crop, energy, and nonmarketed ES compared with conventional agriculture, and require markedly less fossil-based inputs. Extrapolated to the regional scale, the value of nonmarket ES from the CFE system exceeds current farm subsidy payments. Such integrated food and bioenergy systems can thus provide environmental value for money for farming and nonfarming communities.

Jasa-jasa ekosistem , Ecosystem services (ES), merupakan manfaat bagi manusia yang dihasilkan oleh proses-proses ekologis dan fungsi ekosistem. Dengan mengenali nilai-nilai ES, kita akan paham bahwa kesejahteraan ekologis kita yang bersifat non-pasar mendukung kesejahteraan ekonomis kita yang bersifat pasar. ES dari pertanian biasanya mempunyai nilai relative rendah dibandingkan dnegan jasa-jasa ekosistem lainnya, mungkin karena kurangnya data pendukung. Akan tetapi, masih diperlukan estimasi yang lebih akurat untuk ES dari pertanian, karena agro-ecosystems meliputi sekitar 28% - 37% dari luas muka bumi, dengan perbandingan sekitar 70 : 30 antara pastures dan tanaman pertanian.

Although agricultural ecosystems may have low ES values per unit area when compared with other ecosystems, such as estuaries and wetlands, they offer the best chance of increasing global ES via definition of appropriate goals for agriculture and the use of landmanagement regimes that favor the ES provision. Agriculture can be considered the largest ecological experiment on Earth, with a large potential to damage global ES but also to promote them via ecologically informed approaches to the design of agro-ecosystems that value both marketed and nonmarketed ES. It is difficult to see how global ES can increase without significant improvements in ES from farming, given the proportion of the Earth’s land devoted to agriculture and because its ES provision has been

Page 59: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

59

driven to a low level that improvements can readily be achieved.

Page 60: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

60

Pendekatan dan Metode untuk Valuasi Ekonomi

Pendekatan Valuasi

Metode Valuasi

Deskripsi

Sisi Biaya Biaya Penggantian

Biaya-biaya untuk menggantikan asset-aset lingkungan, barang dan jasa lingkungan (misalnya pengganti kesuburan tanah akibat kontaminasi tanah)

Biaya Pemulihan

Costs of restoring environmental assets and related goods and services (e.g. restore soil fertility through soil decontamination)

Boaya Relokasi

Costs of relocating environmental assets and related goods and services (e.g. moving existing habitats to alternative sites)

Pembayaran pemerintah

Government payments for the provision of environmental goods and services (e.g. agri-environmental measures)

Metode-metode sisi permintaan yang mencerminkan preferensi

Metode Biaya Perjalanan = Travel cost method (TCM)

Estimasi permintaan lokasi / obyek wisata dengan menggunakan biaya perjalanan sebagai proksi harga individual untuk mengujungi obyek wisata

Metode harga hedonik = Hedonic Price Method (HPM)

Estimates the implicit price for environmental attributes through the individuals choices for market goods which incorporate such attributes (e.g. estimate implicit price for air quality in the price of a house)

Averting Behavior (AB)

Estimates the monetary value for an environmental good or service observing the costs individuals incur to avoid its loss (e.g. buying water filters to assure safe drinking water)

Demand-side

Contingent Valuation (CVM)

Pasar hipotetik dibangun untuk memungkinkan individu-individu menyatakan kesediaannya-untuk membayar (willingness to pay) atas perubahan kuantitas dan kualitas barang dan jasa lingkungan

Stated Preference Methods

Conjoint Analysis

Pasar hipotetik dibangun untuk memungkinkan individu-individu menyatakan preferensinya atas atribut-atribut yang melekat pada barang dan jasa yang disajikan kepadanya

Choice Experiments

Pasar hipotetik dibangun untuk memungkinkan individu-individu memilih pilihan yang paling disukainya dari sekumpulan banyak pilihan, yang didefinisikan sebagai seperangkat atribut yang diberi harga.

Contingent Ranking

Pasar hipotetik dibangun untuk memungkinkan individu-individu meranking pilihan-pilihan dari sekumpulan banyak alternative, yang didefinisikan sebagai seperangkat atribut yang diberi harga

Contingent Rating

Pasar hipotetik dibangun untuk memungkinkan individu-individu menilai pilihan-pilihan alternative dengan menggunakan sekala “rating”; alternative-alternatif didefinisikan sebagai seperangkat atribut

Page 61: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

61

yang diberi harga.

Materi Tata-kelola

Manfaat bagi manusia yang berasal dari sumberdaya, produk dan proses yang disediakan oleh ekosistem alamiah, lazim disebut dengan jasa-jasa ekosistem. Jasa-jasa ini meliputi:

1. provisioning services (bahan pangan; air; bahan farmasi, bahan biokimia, dan produk industry; energi; sumberdaya genetik),

2. regulating services (carbon sequestration dan regulasi iklim; dekomposisi limbah dan detoksifikasi; purifikasi air dan udara; pollination tanaman; control hama dan penyakit; mitigasi banjir dan kekeringan),

3. supporting services (genesis tanah; daur ulang hara; penyebaran biji; produksi primer),

4. generation and maintenance of biodiversity, dan 5. cultural services (Inspirasi budaya, intellektual dan spiritual,

pengalaman rekreasional, temuan-temuan ilmiah).

The amount of these services depends on natural evolution of ecosystems and development of human society. Unprecedented progress in science and technologies has augmented enormously human capability to benefit from diverse services of nature. At the same time, growing demand for natural resources and increased pressure on environment have been associated with immense degradation of ecosystems (overuse, pollution, destruction, reengineering) and reduction of related services (MEA). That leads to increased individuals and public concerns about the state of environment and enhanced actions for environmental conservation. What is more, traditional goals of socio-economic development have been expended incorporating environmental sustainability as an essential part.

Page 62: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

62

Mekanisme Tata-kelola untuk jasa-jasa ekosistem

Governing mechanisms for ecosystem servicesSumber:

http://mpra.ub.uni-muenchen.de/15492/1/MPRA_paper_15492.pdf ..... diunduh 26/6/2011)

Achieving sustainable development and assuring effective supply of ecosystem services require appropriate behavior of individuals and coordinated actions at local, regional, national, transnational and global levels. According to (awareness, symmetry, strength, harmonization costs of) interests of agents associated with ecosystem services (consumers, contributors, transmitters, interest groups) there are different needs for governing of actions. Various governance needs for effective supply of agro-ecosystem services are presented in the following .

Page 63: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

63

Governance needs for effective supply of agro-ecosystem services (Sumber: http://mpra.ub.uni-muenchen.de/15492/1/MPRA_paper_15492.pdf .....

diunduh 26/6/2011)

Individu-individu dapat mengurus relasi-relasinya dengan free market (mengadopsi pergerakan harga pasar), contracting (negosiasi “private order”), coalition (keputusan kolektif, koperasi), di dalam internal organization (“hand of manager”); dengan model organisasi public atau hybrid. “Rational” agents tend to select or design the most effective form for governing of their relations maximizing benefits and minimizing costs of transactions (Williamson). In some cases, choice of governance is imposed by dominating institutional environment. For instance, market and private mode could be illegitimate for certain natural resources (e.g. managing national parks and reserves). Mode of governance also depends on personal characteristics of agents – individuals preferences, ideology, ethical and religious believes, bounded rationality, training, managerial skills, risk aversion, trust, tendency for opportunism. For example, there are increasing number of voluntary and cooperative initiatives of producers and consumers (“codes of eco-behavior”, “sustainability movements”, “green alliances”) being an important part of eco-governance.

Pilihan Model Pengaturan = Choice of governing mode

Dalam kasus-kasus tertentu, hanya ada satu bentuk yang praktis untuk mengelola aktivitas jasa ekosistem. Pada umumnya, ada banyak ragam model-model alternative untuk mengelola aktivitas lingkungan. For instance, supply of environmental conservation service could be governed as: voluntary activity of farmer; though private contracts of farmer with interested (affected) agents; though interlinked contract between farmer

Page 64: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

64

and supplier (processor); though cooperation (collective action) with other farmers and stakeholders; though (free)market or assisted by third-party (certifying, controlling agent) trade with special (eco, protected origin, fair-trade) products; though public contract specifying farmer’s obligations and compensation; though public order (regulation, taxation, quota); within hierarchical public agency or hybrid form.

Individual governing forms have distinct advantages and disadvantages to protect rights, and coordinate and stimulate socially desirable activities. Free market has big coordination and incentive features (“invisible hand of market”, “power of competition”), and provides “unlimited” opportunities to benefit from specialization and exchange. However, market governance could be associated with high uncertainty, risk, and costs due to lack of information, price instability, great possibility for facing opportunism, “missing market” situation. Special contract form permits better coordination, intensification, and safeguard transactions. However, it may require large costs for specifying provisions, adjustments with changes in conditions, enforcement and disputing of negotiated terms.

Internal (ownership) organization allows greater flexibility and control on transactions (direct coordination, adaptation, enforcement, dispute resolution by fiat). However, extension of internal mode beyond family and small-partnership boundaries may command significant costs for making coalition (finding partners, design, registration, restructuring), and current management (coordination, decision-making, control of coalition members opportunism).

Separation of ownership from management (cooperative, corporation) gives enormous opportunities for growth in productivity and transacting efficiency – internal division and specialization of labor; exploration of economies of scale/scope; introduction of innovation; diversification; risk sharing; investing in product promotion, brand names, relations with customers, counterparts and authorities). However, it could be connected with huge transaction costs for decreasing information asymmetry between management and shareholders, decision-making, controlling opportunism, adaptation. Cooperative and non-for profit form also suffers from low capability for internal long-term investment due to non-for profit goals and non-tradable character of shares (“horizon problem”).

Efficiency of governance also depends on “critical dimensions” of transactions – factors responsible for variation of transaction costs. When recurrence of transactions between same partners is high, then both (all) sides are interested in sustaining and minimizing costs of relations (avoiding opportunism, building reputation, setting up adjustment mechanisms). Besides, costs for developing special private mode for facilitating bilateral (multilateral) exchange could be effectively recovered by frequent transactions.

Kalau ketidak-pastian (environmental, behavioral, institutional) di sekeliling transaksi meningkat, maka biaya-biaya untuk mengamankan transaksi sangat mahal – untuk mengatasi defisiensi informasi, pengamanan risiko dll.. Sementara itu, risiko-risiko tertentu yang dapat diminimumkan dengan model pasar tertentu (asuransi) memerlukan bentuk-bentuk khusus - kontrak, cooperation, integration.

Page 65: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

65

Transaction costs get very high when specific assets for relations with a particular partner are to be deployed. Relation specific investments are "locked" in transactions with particular buyer (seller), and cannot be recovered through "faceless" market trade or redeployment to another uses. Therefore, dependant investment have to be safeguarded by special form such as long-term contract, interlinks, hostage taking, joint investment, ownership integration. Nevertheless, when symmetrical (capacity, site, origin, branding, time of delivery) inter-dependency of investments or welfare of agents exist, then costs of governance are not significant (mutual interests for cooperation).

Transaksi sangat sukar kalau kepantasan hak-hak (atas produk, jasa-jasa, dan sumberdaya) rendah. Dalam hal ini, kemungkinan terjadinya perubahan yang tidak diinginkan (pasar, privat) sangat besar, dan biaya-biaya perlindungan (safeguard, detection of cheating, disputing) hak-hak privat sangat besar. Agen-agen akan over-produk (negative externalities) atau under-organize (positive externalities) kecuali jika mereka ditata dan dikelola oleh privat yang efisien atau model hibrida (cooperation, aliansi strategis, kontrak jangka panjang, trade secrets, public order).

Kita harus menempatkan transaksi individual dalam “pusat analisis”, dan menilai efisiensi komparatif dari bentuk-bentuk yang mungkin dilakukan untuk mengendalikan transaksi tersebut.

Discrete structural analysis is suggested which “align transactions (differing in attributes) with governance structures (differing in costs and competence) in discriminating (transaction cost economizing) way” (Williamson). According to combination of specific characteristics of each transaction, there will be different most effective form for governing of ecosystem service activity.

Transactions with good appropriability, high certainty, and universal character of investments could be effectively carried across free market through spotlight or classical contracts. There are widespread market modes for selling pure “ecosystem services” (eco-visits, hunting, fishing, harvesting wild plants, animals) or “ecosystem services” interlinked with other products and services (organik, fair-trade, special origins, on-farm sale, self-pick, education, eco-tourism, horse-riding, eco-restaurants).

Recurrent transactions with low specificity, high uncertainty and appropriability, could be effectively governed through special contract. Relational contract is applied when detailed terms of transacting are not known at outset (high uncertainty), and framework (mutual expectations) rather than specification of obligations is practiced19. Special contract forms is also efficient for rare transactions with low uncertainty, high specificity and appropriability.

Here dependent investment could be successfully safeguarded through contract provisions since it is easy to define and enforce relevant obligations of partners in all possible contingencies (no uncertainty). For example, eco-contracts and cooperative agreements between farmers and interested businesses or communities are widely used including payment for ecosystem services, and lead to production methods (enhanced pasture management, reduce use of agrochemicals, wetland preservation) protecting water from pollution, mitigating floods and wild fires.

Page 66: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

66

Page 67: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

67

Tabel 3. Model-model untuk mengatur transaksi jasa ekosistem

Transaksi dengan frekuensi tinggi, ketidak-pastian yang besar, asset yang sangat spesifik, dan kesesuaian yang tinggi, harus ditata di dalam organisasi internal. Very often effective scale of specific investment in agro-ecosystem services exceeds borders of traditional agrarian organizations. If specific capital (knowledge, technology, equipment, funding) cannot be effectively organized within singe organization , then effective external form(s) is to be used – joint ownership, interlinks, cooperative, lobbying for public intervention.

Namun demikian, biaya-biaya untuk inisiasi dan memelihara organisasi kolektif untuk mengatasi ketergantungan-unilateral biasanya sangat besar (banyak koalisi, beragam kepentingan anggota, opportunism dari “free-rider” ) dan ini tidak berkelanjutan atau tidak terlibat sama sekali.

Model intervensi publik yang efektif

Analysis dan perbaikan tata-kelola publik untuk jasa-jasa agro-ekosistem harus melibatkan tahapan berikut:

Pertama, kita harus mengidentifikasi kecenderungan (trends), factor-faktor dan risiko yang berhubungan dengan jasa-jasa agroekosistem.

Modern science offers precise methods to classify diverse agro-ecosystem services (their spatial and temporal scales), evaluate trends and risks in their evolution, and identify driving ecological and social factors for their progression (MEA). What is more, it suggests effective methods to improve farming, business and consumption practices in order to mitigate environmental and social hazards on ecosystem services.

Page 68: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

68

Gambar 4: Tahapan dalam perbaikan tata-kelola publik untuk jasa-jasa agro-ecosystem

Ke dua, we have to access efficiency and potential of existing mechanisms of governance (institutions, market, private, public) to deal with problems and risks for sustainable flow of agro-ecosystem services. It will be based on analysis of structure and dynamics of (individuals, groups, public) interests in each agro-ecosystem and transaction costs for their communication, protection and reconciliation.

Ke tiga, kita harus mengidentifikasi deficiensi (kegagalan) yang mendominasi pasar, privat dan model-mode publik untuk menata secara efektif perilaku agen-agen yang berhubungan dengan jasa-jasa agro-ecosystem (consumers, contributors, transmitters, interest groups, authorities). Existing and emerging transacting difficulties are to be specified - undefined or badly defined and enforced private rights, bounded rationality and opportunisms of agents; low appropriability and frequency, and high dependency and uncertainty of transactions. That help define needs and types for new public interventions in agro-ecosystem services.

Akhirnya, kita harus mengidentifikasi model-model alternative intervensi public yang mampu mengoreksi pasar. Kegagalan privat dan publik; menilai efisiensi komparatifnya, dan memilih alternative yang paling efisien.

It is essential to compare practically (technically, socially) possible forms of governance which correspond to social preferences for benefits, instruments, and costs. Comparative efficiency is to be evaluated in terms of coordination, incentive, conflict resolution and (transaction) costs minimization potential. Public modes not only facilitate (market, private) transactions but also command significant (public and private) costs. That is why assessment is to comprise all implementation and

Page 69: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

69

transaction costs – direct (tax payer, assistance agency) expenses, and transacting costs (for coordination, stimulation, information, control of opportunism, mismanagement) of bureaucracy, and costs for individuals’ participation in public modes (adaptation, information, paper works, fees, bribes), and costs for community control over and reorganization (modernization, liquidation) of public forms, and (opportunity) “costs” of public inaction .

Organik Agro-Ecosystem Management (The Social Sciences Year: 2010 Vol. 5 Issue: 6 Page No.: 532-537)

Penelitian ini mengkaji pengelolaan agroekosistem organik dan men-sintesis proses pembelajaran petani organik yang dilakukan oleh Mr. Kampan Laowongsri. Periode penelitian dilakukan antara November 2007 hingga September 2009. Mr. Kampan merupakan prototype petani organik, yaitu system pertanian terpadu di propinsi Mahasarakarm. Sistem pertanian organik ini secara structural sesuai dengan kaidah pengelolaan yang mutualistik antara sumberdaya fisik dan biologis serta system pengelolaan limbahnya. Limbah pertanian dirombak dan dikonversi menjadi bahan-bahan yang bermanfaat dan digunakan dalam proses usahatani.

The results showed that the accomplishment of his integrated organik farm has been arose from his self-learning process, local wisdom principle and advice which have been passed from generation to generation, trial and error, government and private advise, community discussion and in and out information. Mr. Kampan’s integrated organik farm structural is initiated not only the optimization performance in the farm but also provided sustainable, economically viable, address his farmers’ livelihoods, environmentally friendly and the agricultural products is safe to consumers. Moreover, the remaining agricultural products after his family consumption are making a sale and provide the income for his family lives.

Pertanian organik merupakan system produksi pertanian yang menghasilkan bahan pangan dan serat yang berkelanjutan secara social, ekonomi dan ramah lingkungan. Sistem pertanian organik mengkonsentrasikan pada kesuburan alamiah tanah, dan kemampuan alamiah tanaman , ternak dan agroekosistem. Pertanian organik mengurangi factor produksi eksternal dan meninggalkan penggunaan bahan-bahan kimia sintetik. Pertanian organic mengutamakan penggunaan sisa-sisa residu tanaman, rabuk kandang, tanaman legume, pupuk hijau, dan residu organic lainnya untuk sirkulasi hara dan energy dalam system pertanian.

Page 70: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

70

This farming includes creating the environmental sustainability by maintaining natural balance and biological diversity that the organik agro-ecosystem management is similar to the nature and accompanies with using local wisdoms. Therefore, the organik farming is an agricultural process relying on the nature with mainly using biological processes to increase products and prevent pests and accompanies with the circulation of resources using in farms for maximum benefit. Hence, the organik farming principle will conform to the local conditions in terms of economy, society, weather and culture.

Pengelolaan agroekositem organik merupakan factor penting dalam menentukan pengembangan pertanian berkelanjutan. Dengan mempertimbangkan pengelolana ini, para petani harus “rajin, tekun dan sabar” dalam budidaya tanaman dalam menerapkan metode-medote budidaya tanaman seperti: pengelolaan kesuburan tanah dengan mengutamakan aplikasi bahan organik, sirkulasi budidaya tanaman dengan mengutamakan jensi-jenis tanaman local, tidak menggunakan mesin-mesin pertanian untuk memelihara dan menyembuhkan sifat struktur tanah, tidak menggunakan pestisida , herbisida, dan bahan kimia lainnya, serta menanam tanaman penutup tanah untuk menggantikan penggunaan bahan agrokimia.

Page 71: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

71

Relationship of organik agro-ecosystem management from the prototyped organik farmer learning processes.

Sumber: http://www.medwelljournals.com/fulltext/?doi=sscience.2010.532.537 ….. diunduh 26/6/2011)Operasional pengelolaan agroekosistem pertanian oerganik

menekankan pada hubungan antara sumberdaya fisik dan biologi dengan memperhatikan pengelolaan ekologis secara interdisipliner. Semua limbah yang ada telah diubah menjadi sumberdaya yang bermanfaat untuk mendukung proses produksi untuk meningkatkan produknya.

This farm has generated circulating products that are sufficient for consumption and sale in local community throughout a year. All resources in the farm have mutualism relationship and are effectively circulated from one resource to the other. This management then is mostly suitable for agricultural ways of life in local areas. However, the succession of the organik agro-ecosystem management relies on the diligent and patience of farmer performance.

Page 72: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

72

Pengelolaan ini tergantung pada praktek-praktek ageroekosistem dan proses pembelajaran yang terus-menerus kearifan local yang diturunkan dari nenek-moyang dan pengetahuan baru yang diperoleh dengan beragam cara seperti studi-lapangan, percobaan dan ujicoba, rekomendasi pemerintah dan lembaga suasta, serta diskusi di antara petani. Ini semuanya telah menciptakan system pertanian yang tepat dan spesifik lokasi. Kemudian pengelolaan telah berhasil dilakukan untuk menghasilkan produk yang bagus dan layak untuk konsumsi dan income bagi keluarga petani.

Page 73: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

73

DAFTAR PUSTAKA 

Abdoellah, O. S. dan G.G. Marten. 1986. The complementary roles of homegardens, upland fields, and rice fields for meeting nutritional needs in West Java. In: Traditional agriculture in Southeast Asia. (Marten, G. G. (Ed)), Westview Press, Boulder, Colorado, 293-315.

Adams, D.M., R. Alig, J.M.Callaway, dan B.A. McCarl. 1994. Forest and Agricultural Sector Optimization Model: A Description. RCG/Hagler, Bailly, Inc. PO Drawer O, Boulder Colorado 80306-1906. p54- 59.

Agee, J.K., dan D.R. Johnson. 1987. Ecosystem management for parks and wilderness. University of Washington Press, Seattle.

Ahl, V. dan T.F.H. Allen. 1996. Hierarchy Theory: A Vision, Vocabulary, and Epistemology. Columbia University Press, New York.

Allen, T. F. H. dan T.B. Starr. 1982. Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press, Chicago.

Altieri, M.A. 1991. Traditional farming in Latin America. The Ecologist 21: 93-96.

Altieri, M.A. 1994. Biodiversity and Pest Management in Agroecosystems. Food Products Press, New York.

Andrews, D.J., A.H. Kassam. 1976. The importance of multiple cropping in increasing world food supplies. pp. 1–10 in R.I. Papendick, A. Sanchez, G.B. Triplett (Eds.), Multiple Cropping. ASA Special Publication 27. American Society of Agronomy, Madison, WI.

Antle, J. 2007. Modeling Agro-ecosystem Services for Policy Analysis, paper for the Workshop on “California Agro-ecosystem Services: Assessment, Valuation and Policy Perspectives”, University of California at Davis, September, 2007

Bachev, H. 2006. Governing of Bulgarian Farms – Modes, Efficiency, Impact of EU Accession, in J.Curtiss, A.Balmann, K.Dautzenberg and K.Happe (editors), Agriculture in the Face of Changing Markets, Institutions and Policies: Challenges and Strategies” (133-149). Halle (Saale): IAMO.

Bachev, H. 2007. Governing of Agrarian Sustainability, ICFAI Journal of Environmental Law, Vol.VI, No 2, Hyderabad: ICFAI University, 7-25.

Bachev, H. 2009. Mechanisms of Governance of Agrarian Sustainability, in F. Columbus (editor), Sustainable Agriculture: Technology, Planning and Management. New York: Nova Science.

Bachev, H. dan M. Labonne. 2000. About Agrarian Innovations, Montpellier: INRA.

Bergstrom. J. C., dan R. M. Carson. 2003. “A Review of Ecosystem Valuation Techniques”. Department of Agricultural and Applied Economics, University of Georgia, Athens, GA.

Bergstrom. J. C., P. De Civita. 1999. “Status of Benefits Transfer in the United States and Canada: A Review” Canadian Journal of Agricultural Economics 47, pp 79–87.

Bolens, L. 1997. "Agriculture" in Selin, Helaine (ed.), Encyclopedia of the history of Science, technology, and Medicine in Non Western

Page 74: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

74

Cultures. Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 20–22.

Bolin, B., Doos, B.R., Jager, J. dan R.A. Warrick. 1986. The Greenhouse Effect, Climate Changes and Ecosystems. A Synthesis of Present Knowledge. John Wiley and Sons, Chichester, London, 541 pages.

Boyce, S.G. 1995. Landscape forestry. John Wiley and Sons, New York. 239 pp.

Boyd, J. dan S. Banzhaf. 2007. What Are Ecosystem Services? The Need for Standardized Environmental Accounting Units, Resources for the future, Elsevier B.V.

Boyd. J. dan L. Wainger. 2003. Measuring Ecosystem Service Benefits: The Use of Landscape Analysis to Evaluate Environmental Trades and Compensation. Resources for the Future, Discussion Paper 02-63.

Boyd. J., dan S. Banzhaf. 2007 “What Are Ecosystem Services? The Need for Standardized Environmental Accounting Units” Ecological Economics 63 pp: 616–62.

Brown, B. J. dan G.G. Marten. 1986. The ecology of traditional pest management in Southeast Asia. In: Traditional agriculture in Southeast Asia. (Marten, G. G. (Ed.)), Westview Press, Boulder, Colorado, 241-72.

Brunstad. R. J., I. Gaasland., E. Vardal. 2005 “Multifunctionality of Agriculture: An Inquiry Into the Complementarity Between Landscape Preservation and Food Security”. European Review of Agricultural Economics, Vol 32 (4) pp. 469–488

Canham, C.D., and O. Loucks. 1984. Catastrophic windthrow in the presettlement forests of Wisconsin. Ecology 65: 803-809.

Carey, A.B., B.R. Lippke, dan J. Sessions. 1999. Intentional systems management: Managing forests for biodiversity. Journal of Sustainable Forestry 9: 83-125.

Checkland, P. dan J. Scholes. 1999. Soft Systems Methodology in Action, Including Soft Systems Methodology: A 30-Year Retrospective. Wiley, New York.

Checkland, P. 1999. Systems thinking, systems practice. John Wiley and Sons. New York. 330 pp.

Chee. Y. E. 2004. An Ecological Perspective on the Valuation of Ecosystem Services. Biological Conservation 120: pp 549–565.

Christensen, N.L. 1996. The report of the Ecological Society of America committee on the scientific basis for ecosystem management. Ecological Applications 6: 665-691.

Clark, J.S. 1990. Fire and climate change during the last 750 yr in northwestern Minnesota. Ecological Monographs 60: 135-159.

Coase, R. 1960. The Problem of Social Costs, Journal of Law and Economics 3, 1-44.

Collinson, M. (ed.). 2000. A History of Farming Systems Research. CABI Publishing, 2000. ISBN 978-0-85199-405-5

Colombo, S., J. Calatrava-Requena, and N. Hanley. 2007. Testing Choice Experiment for Benefit Transfer with Preference Heterogeneity. Amer. J. Agr. Econ. 89(1): pp 135–151.

Conway, G. 1985. Agroecosystem analysis. Agricultural Administration, 20, 31-55.

Page 75: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

75

Conway, G. 1990. Concepts. In Agroecosystem analysis for research and concepts. Winrock Int. Inst. for Agriculture. Morrilton, AK.

Costanza. R., M. Wilson., A. Troy., A. Voinov., S. Liu., J. D’Agostino. 2006 “The Value of New Jersey’s Ecosystem Services and Natural Capital”. Gund Institute for Ecological Economics, Rubenstein School of Environment and Natural Resources, University of Vermont.

Cronon, W. 1992. A Place for Stories: Nature, History and Narrative. Journal of American History 78, 1347-1376.

Crosby, Alfred W. 2003. The Columbian Exchange: Biological and Cultural Consequences of 1492. Praeger Publishers, 2003 (30th Anniversary Edition). ISBN 978-0-275-98073-3

Daily, G. 2000. Management objectives for the protection of ecosystem services. Environmental Science and Policy 3, 333-339.

Daily, G. (editor) 1997. Nature's Services: Societal Dependence on Natural Ecosystems. Island Press, Washington, D.C.

Daily, G., Söderqvist, T., Aniyar, S., Arrow, K., Dasgupta, P., Ehrlich, P., Folke, C., Jansson, A.,

Dale. V H., S. Polasky. 2007 “Measures of the Effects of Agricultural Practices on Ecosystem Services”. Ecological Economics: http://dx.doi.org/10.1016/j.ecolecon.2007.05.009

Darwin, R., M. Tsigas, M., Lewandrowski, J., Raneses, A. (1995) World Agriculture and Climate Change: Economic Adaptations. ERS Agricultural Economic Report No. 703. United States Department of Agriculture, Washington, D.C.

Davis, D. R. dan R.D. Hugh. 2004. "Changes in USDA Food Composition Data for 43 Garden Crops, 1950 to 1999". Journal of the American College of Nutrition, Vol. 23, No. 6, 669-682.

Donigian, A.S., Jr, A.S.Patwardham , R.B.Jackson, T.O.Barnwell, Jr., K.B.Weinrich dan A.L. Rowell. 1995. Modeling the impacts of agricultural management practices on soil C in the Central US. P.121- 145. In R. Lal, J. Kimble, E. Levine, and B.A. Stewart (eds.), Soil Management and Greenhouse Effect. Advances in Soil Science. CRC Press. Boca Raton, FL.

Dupraz, P., K.Latouch, dan F. Bonnieux . 2004. Economic Implications of Scale and Threshold Effects in Agri-environmental Processes, paper presented at the 90 EAAE Seminar, 27-29 October 2004, Rennes.

Duraiappah, A. 2007. Markets for Ecosystem Services, A Potential Tool for Multilateral Environmental Agreements, International Institute for Sustainable Development, Winnipeg.

EC. 2005. Agri-environment Measures, Overview on General Principles, Types of Measures, and Application. Evaluation of Measures applied to Agriculture Studies. European Commission, Directorate General for Agriculture and Rural Development.

ECOTEC. 2001. Study on the Economic and Environmental Implications of the Use of Environmental Taxes and Charges in the EU and its Member Sates. Brussels: ECOTEC Research and Consulting.

EEA. 2007. Annual State of the Environment Report. Sofia: Executive Environment Agency.

Page 76: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

76

Farber, S., R. Costanza dan M. Wilson. 2002. Economic and ecological concepts for valuing ecosystem services. Ecological Economics 41, 375-392.

Foster, D.R. 1988. Disturbance history, community organization, and vegetation dynamics of the old-growth Pisgah Forest, southwestern New Hampshire, USA. Journal of Ecology 76: 105-134.

Francis, C. 2005. Cobweb polygons (spider diagrams) for visual display of sustainability

Freeman, A.M., The Measurement of Environmental and Resource Values: Theory and Methods, 2nd edition, Resources for the Future, 2003.

Friedland, William H.; Barton, Amy. 1975. Destalking the Wily Tomato: A Case Study of Social Consequences in California Agricultural Research". Univ. California at Sta. Cruz, Research Monograph 15.

Furuboth, E. dan R. Richter. 1998. Institutions and Economic Theory: The Contribution of the New Institutional Economics. Ann Arbor: The University of Michigan Press.

Gatzweiler, F., Hagedorn, K. dan T. Sikor. 2002. People, Institutions and Agroecosystems in Transition, paper resented at "The Commons in an Age of Globalization", 9th Conference of International Association for Study of Common Property, Victoria Falls, June 17-21, 2002.

Gell-Mann, M. 1995. Complex Adaptive Systems. In: H. Morowitz & J. Singer (eds.) The Mind, the Brain, and Complex Adaptive Systems, pp. 11–23. Addison-Wesley, New York, NY.

Gliessman, S. R. 2004 Agroecology and Agroecosystems. In: D. Rickerl & C. Francis (eds.) Agroecosystem Analysis, pp. 19–29. American Society of Agronomy, Madison, WI.

Grigorova, Y. dan Y. Kazakova. 2008. High Nature Value farmlands: Recognizing the importance of South East European landscapes, Case study report, Western Stara Planina, WWF Danube-Carpathian Programme and European Forum on Nature Conservation and Pastoralism (EFNCP).

Groothuis, P. A. 2005 “Benefit Transfer: A Comparison of Approaches”. Growth and Change, Vol. 36 No. 4, pp. 551–564.

Grumbine, R.E. 1994. What is ecosystem management? Conservation Biology 8: 27-38.

Gympmantasiri, P., Wiboonpongse, A., Rerkasem, B., Craig, I,, Rerkasem, K., Ganjanapan, L., Titayawan, M., Seetisarn, M., Thani, P., Rapeepan Jaisaard, Ongprasert, S., Radanachaless, T. and Conway, G. 1980. An interdisciplinary perspective of cropping systems in the Chiang Mai Valley: Key questions for research. Faculty of Agriculture, University of Chiang Mai, Chiangmai, Thailand.

Hagedorn, K. (editor). 2002. Environmental Cooperation and Institutional Change. Cheltenham: Edward Edgar.

Hanson, C, Ranganathan, J., Iceland, C. & Finisdore, J. (2008) The Corporate Ecosystem Services Review. Guidelines for Identifying Business Risks and Opportunities Arising from Ecosystem Change, World Resources Institute.

Page 77: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

77

Hardin, G. 1968. The Tragedy of the Commons, Science Vol. 162. no. 3859, 1243 - 1248.

Hemstrom, M.A., and J.F. Franklin. 1982. Fire and other disturbances of the forest in Mount Rainier National Park. Quaternary Research 18: 32-51.

Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1-24.

Holling, C. S. (1978). Adaptive environmental assessment and management, Wiley, New York.

Houghton, J.T., Jenkins, G.J. and Ephraums, J.J. (eds.) (1990) Climate Change. The IPCC Scientific Assessment. World Meteorlogical Organization (WMO), Cambridge University Press, Cambridge.

Huguenin., M.T., C.G. Leggett, R.W. Paterson. 2006 “Economic Valuation of Soil Fauna”. European Journal of Soil Biology”. 42 pp: S16–S22.

Iovannaa, R., Ch. Griffiths. (2006) “Clean Water, Ecological Benefits, and Benefits Transfer: A Work in Progress at the U.S. EPA” Ecological Economics 60, pp 473-482.

Irawan, B. dan S. Friyatno. 2002. Dampak Konversi Lahan Sawah di Jawa Terhadap Produksi Beras dan Kebijakan Pengendaliannya. Jurnal Sosial-Ekonomi Pertanian dan Agribisnis SOCA: Vol.2 No.2 : 79 – 95. Fakultas Pertanian Universitas Udayana. Denpasar.

Jansson, B., Kautsky, N., Levin, S., Lubchenco, J., Mäler, K., Simpson, D., Starrett, D., Tilman, D. & Walker, B. (2000). The value of nature and the nature of value. Science 289, 395-396.

Jodha, N. S. & Mascarenhas, A. C. (1983). Adjustment to climatic variability in self provisioning societies. Some evidence from India and Tanzania. Patancheru, India: International Crops Research Institute for the Semi-Arid Tropics.

KEPAS (1985). The critical uplands of Eastern Java: An agroecosystem analysis. Indonesia: Kelompok Penelitian Agro-Ekosistem, Agency for Agricultural Research and Development.

Lippke, B.R., and C.D. Oliver. 1993. A proposal for the Pacific Northwest: Managing for multiple values. Journal of Forestry 91: 14-18.

Lorimer, C.G. 1980. Age structure and disturbance history of a southern Appalachian virgin forest. Ecology 61: 1169-1184.

Marten, G. G. & Rambo, A. T. (1988). Guidelines for writing case studies of Southeast Asian rural ecosystems. In: Proc. Third SUAN/EAPI Research Symposium (Rerkasem, K. & Rambo, A. T. (Eds)), Multiple Cropping Centre, Chiangmai University, Chiangmai, Thailand.

Marten, G. G. & Saltman, D. M. (1986). The human ecology perspective. In: Traditional agriculture in Southeast Asia. (Marten, G. G. (Ed.)), Westview Press, Boulder, Colorado, 20-53.

Marten, G. G. (1984). The tropical rainforest as an ecosystem. In: An introduction to human ecology research on agricultural systems in Southeast Asia. (Rambo, A. T. & Sajise, P. E. (Eds)), University of the Philippines, Los Banos, 61-74.

Marten, G. G. (1986a). Productivity, efficiency, stability, and sustainability as properties for agroecosystem assessment. Paper presented to the 'SUAN Workshop on Agroecosystem Analysis'. Khon Kaen, Thailand, January 6, 1986.

Page 78: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

78

Marten, G. G. (1986b). Traditional agriculture and agricultural research in Southeast Asia. In: Traditional agriculture in Southeast Asia. (Marten, G. G. (Ed.)), Westview Press, Boulder, Colorado, 326-40.

Mazoyer, Marcel; Roudart, Laurence (2006). A history of world agriculture : from the Neolithic Age to the current crisis. Monthly Review Press, New York. ISBN 978-1-58367-121-4

McCarter, J.B. 1997. Integrating forest inventory, growth and yield, and computer visualization into a landscape management system. In: Teck, R., M. Moeur, and J. Adams (comps.), Proceedings of the Forest Vegetation Simulator conference. Gen. Tech. Rep. INT-GTR-373. Ogden, UT. USDA Forest Service, Intermountain Research Station. p. 159-167.

McCarter, J.B., J.S. Wilson, P.J. Baker, J. Moffett, and C.D. Oliver. 1998. Landscape management through integration of existing tools and emerging technologies. Journal of Forestry 96: 17-23.

McClachlan, J.S., D.R. Foster, and F. Menallad. 2000. Anthropogenic ties to late-successional structure and composition in four New England hemlock stands. Ecology 81: 717-733.

Millennium Ecosystem Assessment (MEA). 2005. Ecosystems and Human Well-Being: Synthesis. Island Press, Washington.

Morgan, M.G., and M. Henrion. 1990. Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy and analysis. Cambridge University Press. 332 pp.

Nasoetion, L. dan J. Winoto. 1996. Masalah Alih Fungsi Lahan Pertanian dan Dampaknya terhadap Keberlangsungan Swasembada Pangan. Dalam Prosiding Lokakarya “ Persaingan Dalam Pemanfaatan Sumberdaya Lahan dan Air”: Dampaknya terhadap Keberlanjutan Swasembada Beras: 64 - 82. Hasil Kerja sama Pusat Penelitian Sosial Ekonomi Pertanian dengan Ford Foundation. Bogor.

Ojima, D.S., Galvin, K.A. and Turner II., B.L. (1994) The global impact of land-use change. BioScience 44:300-304.

Ojima, D.S., Schimel, D.S., Parton, W.J. and Owensby, C. (1994) Short- and long-term effects of fire on N cycling in tallgrass prairie. Biogeochemistry 24:67-84.

Oliver, C.D. 1992. A landscape approach: Achieving and maintaining biodiversity and economic productivity. Journal of Forestry 90: 20-25.

Oliver, C.D. 1999. The future of the forest management industry: Highly mechanized plantations and reserves or a knowledge-intensive integrated approach? Forestry Chronicle 75: 229-245.

Oliver, C.D., and B.C. Larson. 1996. Forest stand dynamics. John Wiley and Sons. 520 pp.

Oliver, C.D., and E.P. Stephens. 1977. Reconstruction of a mixed species forest in central New England. Ecology 58: 562-572.

Oliver, C.D., and M.J. Twery. 2000. Decision support systems: Models and analyses. In Ecological Stewardship: A Common Reference for Ecosystem Management. Elsevier Science Ltd. pp. 661-685.

Olson, M. (1969). The Logic of Collective Actions: Public Goods and the Theory of Groups. Cambridge: Harvard University Press.

Page 79: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

79

Parton, W.J., Ojima, D.S., and Schimel, D.S. (1995) Models to evaluate soil organik matter storage and dynamics. In M.R. Carter and B.A. Stewart (eds.) Structure and Organik Matter Storage in Agricultural Soils. Advances in Soil Science. CRC Press. Boca Raton, FL.

Parton, W.J., Schimel, D.S., Cole, C.V., and Ojima, D.S. (1987) Analysis of factors controlling soil organik matter levels in Great Plains grasslands. Soil Science Society of America Journal 5:1137-1179. 465

Peart, R. M. & Shoup, W. D. (2004) Agricultural Systems Management: Optimizing Efficiency and Performance. Marcel Dekker, New York.

Raman, S. (2006). Agricultural Sustainability. Principles, Processes and Prospect., New York: The Haworth Press Inc.

Rambo, A. T. & Sajise, P. E. (1985). Developing a regional network for interdisciplinary research on rural ecology: The Southeast Asian Universities Agroecosystem Network (SUAN) experience. The Environmental Professional, 7, 289-98.

Rambo, A. T. (1982). Human ecology research on tropical agroecosystems in Southeast Asia. Singapore J. Tropical Geography, 3, 86-99.

Rerkasem, B. & Rerkasem, K. (1984). The agroecological niche and farmer selection of rice varieties in Chiang Mai Valley, Thailand. In: Introduction to human ecology research on agricultural systems in Southeast Asia. (Rambo, A. T. &Sajise, P. E. (Eds)), University of the Philippines, Los Banos, 303-11.

Rerkasem, K. & Rambo, A. T. (1988). Third SUAN/EAPI Regional Research Symposium. Multiple Cropping Centre, Chiangmai University, Chiangmai, Thailand.

Rosen, R. (1991) Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Foundation of Life. Columbia University Press, New York.

Rosen, R. (2000) Essays on Life Itself. Columbia University Press, New York.

Rosenzweig, C. (1985) Potential CO2-Induced effects on North American Wheat Producing Regions. Climatic Change 7:367-89.

Rosenzweig, C., dan M.Parry. 1994. Potential Impact of Climate Change on World Food Supply. Nature 367: 133-138.

Sajise, P. E. dan A.T. Rambo. (Eds) 1985. Agroecosystem Research in Rural Resource Management and Development. Proc. Second SUAN/EAPI Symposium on agroecosystem research. University of the Philippines, Los Banos, 183pp.

Schimel, D.S., Kittel, T.G.F. and Parton, W.J. (1991) Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology. Tellus 43AB:188-203.

Soemarwoto, O. dan A.T.Rambo. (Eds). 1987. Impact of Development on Human Activity Systems in Southeast Asia. Proc. First SUAN/EAPI Regional Research Symposium. Institute of Ecology, Padjadjaran University, Bandung, Indonesia.

Spedding, C. R. W. 1988. An Introduction to Agricultural Systems. Elsevier Applied Science, New York.

Sumaryanto, Hermanto, dan E. Pasandaran. 1996. Dampak Alih Fungsi Lahan Sawah Terhadap Pelestarian Swasembada Beras dan

Page 80: Hubungan antara Ciri-ciri · Web viewdan memproses informasi tersebut dapat dikembangkan atau diadopsi dari teknologi yang tersedia. Kemudia baru dimungkinkan untuk membahas pengelolaan

80

Sosial Ekonomi Petani. Dalam Prosiding Lokakarya “ Persaingan Dalam Pemanfaatan Sumberdaya Lahan dan Air”: Dampaknya terhadap Keberlanjutan Swasembada Beras: 92 - 112. Hasil Kerja sama Pusat Penelitian Sosial Ekonomi Pertanian dengan Ford Foundation. Bogor.

Syafa’at, N., W. Sudana, N. Ilham, H. Supriyadi dan R. Hendayana. 2001. Kajian Penyebab Penurunan Produksi Padi Tahun 2001 di Indonesia. Laporan Hasil Penelitian: Analisis Kebijaksanaan Pembangunan Pertanian Respon terhadap Issu Aktual. Pusat Penelitian dan Pengembangan Sosial Ekonomi Pertanian, Badan Penelitian Pertanian, Departemen Pertanian. Bogor.

Trenbath, B.R. 1976. Plant interactions in mixed cropping communities. pp. 129–169 in R.I. Papendick, A. Sanchez, G.B. Triplett (Eds.), Multiple Cropping. ASA Special Publication 27. American Society of Agronomy, Madison, WI.

Turner, II, B.L. and Meyer, W.B. (1991) Land use and land cover in global environmental change: considerations for study. ISSJ 130:669-679.

Turner, II, B.L., Moss, R. and Skole, D. (1993) Relating land use and global land-cover change. Stockholm. International Geosphere-Biosphere Program. IGBP Report #24/HDP Report #5.

VanLoon, G., Patil, S., & Hugar, L. (2005). Agricultural Sustainability: Strategies for Assessment. London: SAGE Publications.

Vayda, A. P. 1986. Holism and Individualism in Ecological Anthropology. Reviews in Anthropology 13, 295-313.

Wojtkowski, P.A. 2008. Agroecological Economics: Sustainability and Biodiversity. Elsevier Publishing, NY.