dr.ir. susinggih wijana, ms. jurusan teknologi industri...

Download Dr.Ir. Susinggih Wijana, MS. Jurusan Teknologi Industri ...tip.ub.ac.id/wp-content/uploads/2016/08/PBA7a_OilProcessing.pdf · Kelapa sawit . Pohon Industri Kelapa . 5 4 2 ... •

If you can't read please download the document

Upload: lydang

Post on 07-Feb-2018

233 views

Category:

Documents


7 download

TRANSCRIPT

  • REAKSI MINYAK/LEMAK Dr.Ir. Susinggih Wijana, MS.

    Jurusan Teknologi Industri Pertanian

    FAKULTAS TEKNOLOGI PERTANIAN

    UNIVERSITAS BRAWIJAYA

    10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    1

  • Pohon Industri

    Kelapa sawit

  • Pohon Industri

    Kelapa

  • 10

    /23

    /201

    5

    4

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Flowchart Proses

    Minyak Sawit

    Tandan sawit

    segar

    Minyak sawit kasar Inti sawit kering Cairan limbah

  • DIAGRAM PROSES PEMURNIAN MINYAK SAWIT 1

    0/2

    3/2

    01

    5

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Crude Palm Oil

    (minyak kasar)

    Neutralized, Bleached and

    Deodorized Palm Oil

    (minyak murni)

  • 10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    6

  • REAKSI PADA SENYAWA MINYAK

    A. Reaksi selama prosesing ekstraksi

    dan pemurnian

    B. Reaksi penyabunan

    C. Reaksi hidrogenasi

    D. Reaksi trans-esterifikasi

    E. Reaksi akibat proses penggorengan

    10

    /23

    /201

    5

    7

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

  • A. REAKSI PADA PROSES EKSTRAKSI DAN

    PEMURNIAN

    10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    8

    Perlakuan fisis :

    Degumming,

    penghilangan gum

    dengan steam.

    Bleaching, penghilangan

    warna dengan adsorben.

    Deodorising, pengilang-

    an bau dengan panas

    dan tekanan vakum.

    Reaksi khemis :

    Oksidasi

    Penyabunan

  • 10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    9

    Oksidasi .

    Terjadi akibat adanya

    panas dan oksigen udara.

    Panas proses pengolahan

    memacu peristiwa oksi-

    dasi, yaitu terbentuk-nya

    senyawa radikal bebas.

    Radikal bebas dipacu

    juga oleh penggunaan

    alat dari logam berat (Fe

    dan Cu).

    Hasil oksidasi lanjut

    adalah terbentuk

    senyawa malonaldehid

    yang berbau tengik

    Penyabunan/

    netralisasi

    Reaksi ini digunakan

    untuk menghilangkan

    asam lemak bebas

    minyak (bau tengik).

    Dilakukan dengan

    mereaksikan minyak

    dengan NaOH

  • B. REAKSI PENYABUNAN

    10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    10

    Reaksi antara Asam Lemak Bebas dengan basa NaOH (sabun keras) atau KOH (sabun lunak)

    Juga merupakan salah satu bagian proses pemurnian minyak (degumming, netralisasi/ penyabunan, deodorizing)

    Dalam industri pembuatan sabun dibuat dengan mencampur minyak (TG) dengan NaOH/KOH.

    Reaksi :

    R-COOH + NaOH R-COO-Na +

    HOH

  • C. REAKSI HIDROGENASI 1

    0/2

    3/2

    01

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    11

    Tejadi pada minyak yang dijenuhkan

    menjadi margarine dan shortening

    Menggunakan katalis Pt atau Ni

    Jumlah ikatan rangkap mempengaruhi

    kebutuhan H2

    Terdapat penambahan garam dan vit A

    Reaksi :

  • PROSES PENAMBAHAN HIDROGEN PADA IKATAN RANGKAP ASAM LEMAK

    TIDAK JENUH DENGAN BANTUAN KATALISATOR Ni/Pt H2

    CH3 - (CH2)7 - CH = CH - (CH2)7 - COOH CH3 - (CH2)16

    COOH

    Ni/Pt

    Tujuan:

    1. Menurunkan ketidak jenuhan minyak dengan penambahan H2

    Linolenat lenoleat oleat stearat

    2. Merobah bentuk fisik Trigliserida dari cair menjadi semi padat

    atau padat, tergantung tingkat kejenuhan

    3. Menaikkan titik cair

    4. Meningkatkan daya tahan trigliserida dari proses oksidasi

    TEMPERATUR, TEKANAN, KONSENTRASI KATALIS, KONSENTRASi

    HIDROGEN , TINGKAT PENGADUKAN.

    10

    /23

    /201

    5

    12

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

  • D. TRANS-ESTERIFIKASI

    Reaksi Ester Asam Lemak dengan

    Alkohol (Alcoholysis)

    Reaksi dipercepat dengan

    menggunakan katalis basa NaOH

    atau KOH

    Kecepatan reaksi tergantung dari

    suhu, jumlah KOH, jumlah alkohol ,

    Digunakan dalam industri bio-

    diesel dari berbagai jenis minyak

    pangan (goreng) dan non-pangan

    (jarak pagar dll.)

    10

    /23

    /201

    5

    13

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

  • CH2 O COR1 CH2OH

    CH O COR2 + 3 (CH3OH) CHOH + 3 (R-COOCH3)

    CH2 O COR3 CH2OH

    trigliserida metil alkohol gliserol ester asamlemak dg alkohol

    (BIODISEL)

    10

    /23

    /201

    5

    14

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Reaksi Tranesterifikasi

  • E. REAKSI PADA PROSES PENGGORENGAN 1

    0/2

    3/2

    01

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    15

    Deep-fat Frying is a process of immersing food in hot oil.

    A process of cooking and drying produces unique fried foods by simultaneous heat and mass transfer.

    Flavor compounds are formed and retained in a crisp crust of food

  • 10

    /23

    /201

    5

    16

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Physical and Chemical Reactions during

    Deep-Fat Frying

  • 10

    /23

    /201

    5

    17

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Physical Changes of Deep-Fat Frying

    Viscosity Increase

    Thickening of oil

    Decrease of interfacial tension

    Increase of density

    Increase of the specific heat

  • OIL CONTENTS IN DEEP-FAT FRIED FOODS 10

    /23

    /201

    5

    18

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Products Oil Contents (%)

    Potato chips 33-38

    Corn chips 30-38

    Tortilla chips 23-30

    Doughnuts 20-25

    Frozen food 10-15

    French fries 10-15

  • CHEMICAL CHANGES OF DEEP-FAT FRYING 10/23

    /201

    5

    19

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Formation of flavor

    Flavor stability and quality changes

    Color and texture of the fried foods

    changes

    Nutritional changes

  • CHEMICAL REACTIONS IN FRYING OIL

    10

    /23

    /201

    5

    20

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    1. Hydrolysis

    2. Oxidation

    3. Polymerization

    4. Pyrolysis

  • 1. HIDROLISIS MINYAK

    10

    /23

    /201

    5

    21

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Proses hidrolisis terjadi semakin cepat dengan

    semakin tingginya kadar air dari minyak/

    lemak maupun dari produk yang digoreng

  • 2. REAKSI OKSIDASI 1

    0/2

    3/2

    01

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    22

    1. Inisisasi

    2. Propagasi

    3. Terminasi

    Tahapan Oksidasi 1. Tahap Inisisasi

  • 10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    23

    R + O2 ROO

    ROO + RH R + ROOH

    ROOH + Fe2+ OH- +

    RO + Fe3+

    R + R RR

    R + O2 ROO

    ROO + ROO ROOR

    + O2

    Salah satu bentuk ROOR

    adalah asam malonal-dehida

    (MDA) yang beraroma tengik

    2. Tahap Propagasi 3. Tahap Terminasi

  • CHEMICAL REACTIONS IN DEEP-FAT FRYING

    OF FOODS 10/23

    /201

    5

    24

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Volatile Flavor Compounds:

    220 volatile compounds have been identified.

  • DEEP-FAT FRIED FLAVOR 1

    0/2

    3/2

    01

    5

    25

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    4-hydroxy-2-nonenoic acid, lactone

    4- hydroxy-3-nonenoic acid

    2,4-decadienal

    nutty, fried fat notes plus a butter-like note

    Some of volatile compounds formed in deep-fat

    frying condition are known as TOXIC COMPOUNDS.

    Example:

    1,4- Dioxane

    Benzene

    Toluene

    Hexyl-benzene

  • VOLATILE PRODUCTS FROM DEEP-FAT FRYING

    10

    /23

    /201

    5

    26

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Acids -- > - Saturated Acids

    - Unsaturated acids (cis, trans)

    - Hydroxy acids

    Hydrocarbons - Saturated hydrocarbons

    - Unsaturated hydrocarbons

    Alcohols/

    Aldehydes - Saturated

    - Unsaturated

    Ketones

    Esters

    Aromatic Compounds

    Lactones

    Miscellaneous: 2-Pentyl furan

    1,4-Dioxane

  • AROMATIC COMPOUND FORMATION

    10

    /23

    /201

    5

    27

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    C H 3 ( C H 2 ) 3 C H 2 C H C H C H 2 C H C H ( C H 2 ) 7 C O O R

    O 2

    C H 2

    C ( C H 2 ) 7 C O O R

    O

    C H 2 ( C H 2 ) 2 C H 3

    C H 2

    C H 2

    ( C H 2 ) 6 C O O R

    ( C H 2 ) 2

    C H 3

    D - H O 2

  • EFFECT OF METHIONINE ANALOGS ON POTATO CHIP-

    FLAVOR IN DEEP-FAT FRYING.

    10

    /23

    /201

    5

    28

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Compounds

    Structures

    Flavor Characteristics

    D-Methionine

    L-Methionine

    DL-Methionine

    CH3-S-CH2-CH2-CH(NH2)COOH

    Good potato chip-like

    S-Methyl-L-Cysteine

    CH3-S-CH2-CH(NH2)COOH

    Good potato chip-like

    Methionine Hydroxy

    Analog

    CH3-S-CH2-CH2-CH(OH)COOH

    Obnoxious

    (cooked turnip)

    S-Carboxymethyl-L-

    Cysteine

    HOOC-CH2-S-CH2-CH(NH2)COOH

    Obnoxious

    (cooked turnip)

  • 3. POLYMER FORMATION

    10

    /23

    /201

    5

    29

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Carbon-Carbon Bond: A. Vinyl Type

    C

    C C

    C

    C

  • 10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    30

    B. Diels Alder Type

    C C

    H

    C C C

    H H H H

    - .H

    C

    H

    H

    H H H H

    C C C C

    C C

    H H

    C

    H

    H H

    H C C

    C

    H

    C

    H C C

    Intermolecularly or Intramolecularly

    Carbon-Carbon Bond:

  • 10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    31

    Carbon-Oxygen Bond

    Through peroxide group formed by autoxidation.

    This can be formed intermolecularly or intramolecularly.

    Through ether linkage formed at high temperature.

    O

    O

    O

    O

  • POLYMERS FORMED DURING DEEP-FAT FRYING

    10

    /23

    /201

    5

    32

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    The 74 hrs. deep-fat frying conditions

    Trilinolenin 26.3%

    Trilinolein 10.0%

    Triolein 10.8%

    Tristearin 4.2%

  • TYPES OF POLYMERS

    10

    /23

    /201

    5

    33

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Trilinolein Monocyclic, Nonpolar C-C Dimer 4.9%

    Noncyclic, Polar C-C Dimer 2.8%

    Trimers - C-C, 8.4%

    Trimers - 2 C-O, or 1 C-C, 1 C-O 4.9%

    C O O R

    C O O R

    COOR

    COOR

    OH

    OH

  • 10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    34

    C H 2

    C H

    C H 2

    C H 2

    C H

    C H 2

    Dimerization Between Two Acyl Groups in the Same Triglyceride or

    Dimerization Between Two Acyl Groups in Two Triglycerides

    Dimerization

  • COMPOSITION OF OXIDIZED AND POLYMERIZED MATERIALS

    FORMED DURING SIMULATED DEEP-FAT FRYING AT 185C

    FOR 74 HRS.

    10

    /23

    /201

    5

    35

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    TRILINOLEIN

    TRIOLEIN

    TRISTEARIN

    Cyclic Dimers

    Carbon-to-Carbon

    Linkages

    4.9

    0.0

    0.0

    Noncyclic Dimer

    Carbon-to-Carbon

    Linkages

    2.8

    3.4

    0.7

    Trimers

    Two Carbon-to-

    Carbon Linkages

    8.4

    0.3

    0.4

    4.9

    1.2

    Dimers and Trimers

    Carbon-to-Carbon or

    Oxygen Linkages

    6.2

  • 4. PIROLISIS

    10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    36

    Terjadi akibat

    penggorengan

    dengan suhu terlalu

    tinggi.

    Minyak terbakar

    menjadi asap CO2

    dan H2O

    Kehilangan kualitatif

    dan kuantitatif.

    Aroma dan rasa residu

    minyak menjadi pahit

  • BIOLOGICAL EFFECTS OF USED FRYING OIL

    10

    /23

    /201

    5

    37

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    A slight depression in growth to very poor growth

    Diminished feed efficiency

    Increased liver, kidney and heart sizes

    Fatty tissues of liver, kidney and heart organs

    Liver enzymes such as thiokinase and succinyldehydro-

    genase had lower activity

    The evidence of carcinogenicity (in highly abused

    frying oil)

  • SAFETY 10/23

    /201

    5

    38

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Under Good Practice of Deep-Fat Frying:

    Fats are not nutritionally damaged

  • THERMAL OXIDATION EFFECT ON LINOLEIC ACID

    CONCENTRATION

    10

    /23

    /201

    5

    39

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Levels of Linoleic Acid a

    FAT FRESH OXIDIZED

    Corn oil 61.0 1.1

    Olive oil 7.7 Trace

    Lear b

    21.7 1.1

    Lard 10.7 1.4

    a

    Expressed as % of total fatty acids. b

    Lear = Low erucic acid rapeseed oil.

  • TOXICITY SYMPTOMS OF HIGHLY HEAT-ABUSED OILS TO

    LABORATORY ANIMALS

    10

    /23

    /201

    5

    40

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    Irritation of the digestive tract

    Organ enlargement (kidney & liver)

    Growth depression

    Carcinogenic properties

    Good Practice of Deep-Fat Frying

    Fats are not nutritionally damaged.

  • 10

    /23

    /201

    5

    OilB

    rea

    kd

    ow

    n/S

    UG

    /2012

    41

    Terima Kasih