bab ii tinjauan pustaka 1.1 penelitian...

26
4 BAB II TINJAUAN PUSTAKA 1.1 Penelitian Terdahulu Damoerin, dkk (2011), menguji pengaruh cerucuk dalam skala laboratorium dengan media tanah komposit. Tujuan penelitian ini adalah untuk mengetahui perkuatan tanah dengan cerucuk pada tanah komposit. Penelitian ini menitikberatkan pada pengaruh panjang dan diameter cerucuk terhadap tegangan deviator (deviator stress) terhadap regangan (strain). Hasil penelitian disimpulkan, penambahan cerucuk memberikan pengaruh pada peningkatan nilai kohesi (c’) dan penurunan nilai sudut geser ( ). Penggunaan cerucuk panjang menghasilkan nilai kohesi terbesar pada tanah komposit. Yudiawati dan Marzuki (2011), melakukan pengujian lapangan dengan menggunakan pondasi bujursangkar lebar (B) = 1 m dan diameter cerucuk 5 cm. Pengujian ini bertujuan mengetahui pengaruh variasi jarak, variasi panjang cerucuk, dan variasi luas area cerucuk terhadap penurunan. Hasil pemberian cerucuk di sekitar area pondasi meningkatkan daya dukung pondasi dan mengurangi penurunan yang terjadi. Hadi, 1990 dalam Muhrozi 2011 melakukan penelitian studi daya dukung tiang cerucuk pada model skala kecil difokuskan pada daya dukung pondasi telapak bercerucuk dengan ukuran 20 x 20 cm 2 . Penelitian ini menggunakan alat vane shear test untuk mengukur kohesi tanah akibat pemasangan cerucuk. Hasil penelitian menunjukkan bahwa jarak tiang cerucuk yang lebih dekat/pendek serta jumlah cerucuk yang semakin banyak akan menyebabkan terjadinya peningkatan daya dukung pondasi telapak yang cukup besar (https://www.box.com/s, 31 Oktober 2012). Putra, dkk (2009), melakukan penelitian laboratorium dengan menggunakan cerucuk bambu diameter 0,3 cm dan panjang 7,5 cm – 15 cm. Penelitian ini didasarkan pada variasi panjang dan diameter cerucuk serta pengaruh model pemasangan cerucuk, yaitu secara horisontal dan vertikal dan dimasukkan dalam

Upload: trinhnhu

Post on 02-Mar-2019

219 views

Category:

Documents


0 download

TRANSCRIPT

4

BAB II

TINJAUAN PUSTAKA

1.1 Penelitian Terdahulu

Damoerin, dkk (2011), menguji pengaruh cerucuk dalam skala laboratorium

dengan media tanah komposit. Tujuan penelitian ini adalah untuk mengetahui

perkuatan tanah dengan cerucuk pada tanah komposit. Penelitian ini

menitikberatkan pada pengaruh panjang dan diameter cerucuk terhadap tegangan

deviator (deviator stress) terhadap regangan (strain). Hasil penelitian

disimpulkan, penambahan cerucuk memberikan pengaruh pada peningkatan nilai

kohesi (c’) dan penurunan nilai sudut geser ( ). Penggunaan cerucuk panjang

menghasilkan nilai kohesi terbesar pada tanah komposit.

Yudiawati dan Marzuki (2011), melakukan pengujian lapangan dengan

menggunakan pondasi bujursangkar lebar (B) = 1 m dan diameter cerucuk 5 cm.

Pengujian ini bertujuan mengetahui pengaruh variasi jarak, variasi panjang

cerucuk, dan variasi luas area cerucuk terhadap penurunan. Hasil pemberian

cerucuk di sekitar area pondasi meningkatkan daya dukung pondasi dan

mengurangi penurunan yang terjadi.

Hadi, 1990 dalam Muhrozi 2011 melakukan penelitian studi daya dukung

tiang cerucuk pada model skala kecil difokuskan pada daya dukung pondasi

telapak bercerucuk dengan ukuran 20 x 20 cm2. Penelitian ini menggunakan alat

vane shear test untuk mengukur kohesi tanah akibat pemasangan cerucuk. Hasil

penelitian menunjukkan bahwa jarak tiang cerucuk yang lebih dekat/pendek serta

jumlah cerucuk yang semakin banyak akan menyebabkan terjadinya peningkatan

daya dukung pondasi telapak yang cukup besar (https://www.box.com/s, 31

Oktober 2012).

Putra, dkk (2009), melakukan penelitian laboratorium dengan menggunakan

cerucuk bambu diameter 0,3 cm dan panjang 7,5 cm – 15 cm. Penelitian ini

didasarkan pada variasi panjang dan diameter cerucuk serta pengaruh model

pemasangan cerucuk, yaitu secara horisontal dan vertikal dan dimasukkan dalam

5

alat kuat tekan bebas (unconfined strength test). Berdasarkan hasil penelitian

kekuatan cerucuk vertikal lebih baik dari horisontal, makin panjang dan rapat

cerucuk maka kekuatan makin tinggi, serta kadar air makin rendah

(http://www.websipil.com/url, diakses 6 Juli 2013).

Tjandra (2009), melakukan penelitian perkuatan pondasi lama akibat

pembangunan pondasi baru. Penelitian ini didasarkan pada pengaruh galian yang

dilakukan dekat bangunan lama. Pondasi lama pada penelitian ini berupa pondasi

telapak dan pondasi tiang. Perkuatan yang dipakai adalah Cylinder Type Sheet

Pile (CTSP). Berdasarkan hasil penelitian pemasangan CTSP pada pondasi

bangunan lama akan secara signifikan mengurangi penurunan yang terjadi pada

pondasi footing dan pondasi tiang (http://repository.petra.ac.id, 18 Juli 2013).

Prawono, dkk (1999), melakukan penelitian sudut penyebaran beban pada

tanah lempung. Penelitian dimodelkan dalam skala laboratorium, dimana tanah

lempung diisi dalam sebuah drum dan dilapisi pasir urug di atasnya. Penelitian ini

menunjukkan bahwa sudut penyebaran beban tergantung dari pasir urug yang

dipakai, semakin padat pasir urug semakin besar sudut penyebaran yang terjadi

(http://cpanel.petra.ac.id/ejournal, 18 Juli 2013).

1.2 Tanah

Tanah adalah himpunan mineral, bahan organik, dan endapan-endapan yang

relatif lepas (loose), yang terletak di atas batuan dasar (bedrock). Ikatan antara

butiran yang relatif lemah dapat disebabkan oleh karbonat, zat organik, atau

oksida-oksida yang mengendap diantara partikel-partikel. Ruang diantara partikel-

partikel dapat berisi air, udara ataupun keduanya. Proses pelapukan batuan atau

proses geologi lainnya yang terjadi di dekat permukaan bumi membentuk

terjadinya tanah.

Wesley (2012) membagi dua jenis tanah, yaitu:

1. Tanah residu (residual soil)

Tanah yang terbentuk langsung oleh pelapukan kimiawi pada tempat

pembentukannya di atas batuan asal.

6

2. Tanah yang terangkut (transported soil)

Tanah yang dibawa oleh air sungai karena tererosi dan kemudian mengendap

lapisan demi lapisan.

Istilah pasir, lempung, lanau atau lumpur digunakan untuk menggambarkan

ukuran partikel pada batas ukuran butiran yang telah ditentukan dan untuk

menggambarkan sifat tanah yang khusus. Kebanyakan jenis tanah terdiri dari

banyak campuran, atau lebih dari satu macam partikel. Tanah lempung belum

tentu terdiri dari partikel lempung saja, akan tetapi dapat bercampur dengan

butiran-butiran ukuran lanau maupun pasir, dan mungkin terdapat campuran

bahan organik. Ukuran partikel tanah bervariasi dari lebih besar 100 mm sampai

dengan lebih kecil dari 0,001 mm (Hardiyatmo, 2011).

1.2.1 Penyelidikan Tanah

Tujuan penyelidikan tanah di lapangan adalah memperoleh informasi tentang

kondisi bawah permukaan dan sifat-sifat mekanis atau keteknikan dan sifat-sifat

fisik termasuk kemampuan memikul beban dari material alam yang digunakan

untuk struktur suatu bangunan teknik sipil (Hendarsin, 2003). Salah satu cara dari

penyelidikan tanah, yaitu cara pengeboran. Pengeboran dilakukan untuk

mendapatkan contoh dari tanah yang dapat diperiksa secara visual maupun

diamati pada laboratorium.

Salah satu metode pengeboran yang lazim digunakan adalah metode bor

tangan (hand bor). Menurut Wesley (2012), bor tangan mempergunakan berbagai

macam “auger” pada ujung bagian bawah dari serangkaian stang-stang (rods) bor.

Alat ini tidak dapat digunakan pada pasir yang terendam air. Bor tangan dapat

menembus sampai 10 m tapi umumnya kedalaman bor maksimum 6 sampai 8 m.

Pada tanah yang lunak sampai sedang, bor tangan dapat mencapai kedalaman

sekitar 5 m tanpa kesulitan.

Menurut Hendarsin (2003), ada berbagai macam bentuk mata bor salah

satunya mata bor bentuk Iwan. Bentuk mata bor Iwan terdiri dari dua keping plat

baja lengkung, pada bagian atasnya disambung membentuk tabung, tetapi dengan

bukaan yang berlawanan sama sekali. Pada bagian bawah terdiri dari dua pisau

7

menyerupai jari-jari tangan renggang yang berfungsi sebagai pemotong dan juga

penahan keluarnya tanah dari auger. Pengikat pegangan atau tambahan dipasang

pada bagian atas penyambung. Bentuk dari bor tangan ditunjukkan dalam Gambar

2.1.

Gambar 2.1 Bor Tangan Bentuk Iwan (Hendarsin, 2003).

1.2.2 Klasifikasi Tanah

Sifat-sifat tanah menjadi suatu hal yang penting karena berhubungan dengan

kekuatan tanah, usaha mengkorelasikan hasil-hasil uji klasifikasi sederhana

dengan tetapan-tetapan tanah diperlukan guna menyelesaikan masalah-masalah

perencanaan secara praktis. Masalah-masalah ini antara lain penentuan penurunan

bangunan, penentuan kecepatan air dalam uji koefisien permeabilitas, dan

menentukan kuat geser tanah.

Terdapat dua sistem klasifikasi yang sering digunakan, yaitu Unified Soil

Classification System dan AASHTO (American Association of State Highway and

Transportation Officials). Sistem-sistem ini menggunakan sifat-sifat indeks tanah

yang sederhana seperti distribusi ukuran butiran, batas cair dan indeks plastisitas.

Klasifikasi unified biasa dipakai dalam perencanaan bangunan sedangkan

AASHTO lebih banyak digunakan pada jalan raya. Pada sistem unified, tanah

diklasifikasikan ke dalam tanah berbutir kasar (kerikil dan pasir) jika kurang dari

50% lolos saringan nomor 200, dan sebagai tanah berbutir halus (lanau/lempung)

jika lebih dari 50% lolos saringan nomor 200. Dalam Tabel 2.2 ditunjukkan nilai-

nilai tipikal porositas (n), angka pori (e), kadar air (w), berat kering ( d ), dan

berat basah ( b ) untuk tanah asli (Terzaghi, 1943 dalam Hardiyatmo 2010).

8

Tabel 2.1 Nilai-nilai Tipikal n, e, w, d , dan b untuk Tanah Asli (Terzaghi, 1943 dalam Hardiyatmo 2010)

Macam Tanah

n

(%)

E w (%)

d kN/m3

b kN/m3

Pasir seragam, tidak padat Pasir seragam, padat Pasir berbutir campuran, tidak padat Pasir berbutir campuran, padat Lempung lunak sedikit organik Lempung lunak sangat organik

46 34

40 30 66 75

0,85 0,51 0,67 0,43 1,90 3,00

32 19 25 16 70 110

14,3 17,5

15,9 18,6

- -

18,9 20,9 19,9 21,6 15,8 14,3

1.3 Cerucuk Bambu Bambu merupakan jenis tanaman yang tumbuh di daerah tropis dan sub tropis.

Bambu biasanya dapat hidup dan tersebar di daerah Asia Pasifik, Afrika dan Amerika

(pada garis 46 º LU sampai 47º LS). Bambu dapat tumbuh dengan baik di daerah

yang beriklim lembab dan panas (www.sain-teknologi.co.id, 3 Agustus 2012).

Data teknis mengenai sifat fisik bambu adalah sebagai berikut:

1. Penyusutan bambu yang ditebang pada musim hujan sampai keadaan kering

udara adalah pada arah longitudinal sebesar 0,2 – 0,5 %, arah tangensial

sebesar 10 – 20 % dan arah radial sebesar 15 – 30 %.

2. Berat jenis bambu kering udara adalah 0,60 – 1.

3. Kuat lekat antara bambu kering dengan beton berkisar antara 2 – 4 kg/cm2.

Sifat-sifat mekanik bambu adalah sebagai berikut:

1. Tegangan tarik 600 – 4000 kg/cm2.

2. Tegangan tekan 250 – 600 kg/cm2.

3. Tegangan lentur 700 – 3000 kg/cm2.

4. Modulus elastisitas 100.000 – 300.000 kg/cm2.

Masyarakat di daerah pantai, rawa dan daerah pasang surut sering

menggunakan cerucuk bambu/dolken sebagai pondasi atau perkuatan tanah untuk

bangunan rumah atau gedung, bangunan jalan, bangunan drainase/irigasi, dan

bangunan lainnya.

9

Menurut Yudiawati dan Marzuki (2011), bangunan-bangunan yang ada di

Banjarmasin banyak menggunakan kayu galam sebagai cerucuk. Penggunaan ini

karena Kalimantan Selatan mempunyai deposit tanah lunak yang besar hingga

ketebalan 25 m.

Cerucuk bambu merupakan bambu yang dipotong dengan panjang tertentu

dan dipancang (tidak menggunakan alat berat) ke dalam tanah lunak dengan

maksud agar kapasitas dukung tanah bertambah. Perilaku cerucuk bambu yang

memotong bidang geser tanah di bawah pondasi merupakan salah satu fungsi dari

pondasi tiang yang selain menahan gaya guling juga meneruskan beban ke dalam

tanah.

Departemen Pekerjaan Umum telah menerbitkan pedoman teknis mengenai

syarat cerucuk yang digunakan untuk mendukung pondasi. Syarat ini dijelaskan

dalam Tabel 2.2 Persyaratan Cerucuk Kayu ( Departemen Pekerjaan Umum,

1999).

Tabel 2.2 Persyaratan Cerucuk Kayu (http://binamarga.pu.go.id/referensi, 31

Oktober 2012)

1.4 Kapasitas Dukung Pondasi Dangkal

Pondasi dangkal adalah pondasi yang dalam mendukung beban bangunan

hanya mengandalkan tahanan ujungnya saja, karena tahanan gesek dindingnya

kecil. Dalam perencanaan pondasi tanah akan mengalami keruntuhan. Keruntuhan

tanah adalah suatu fase dimana kekuatan tanah terlampaui seiring dengan

bertambahnya deformasi akibat penambahan beban. Berdasarkan hasil uji model,

(Vesic, 1963 dalam Hardiyatmo, 2011) membagi mekanisme keruntuhan pondasi

menjadi tiga macam seperti ditunjukkan dalam Gambar 2.2, yaitu:

Uraian Persyaratan Diameter Minimum 8 cm, maksimum 15 cm Panjang Minimum 3,5 m, maksimum 6 in

Kelurusan Cukup lurus, tidak belok dan bercabang Kekuatan Minimum kelas kuat II PKKI 1973 Tegangan Minimum kelas kuat III untuk mutu A PKKI 1973

10

Gambar 2.2 Pola Keruntuhan Pondasi (Hardiyatmo, 2011).

1. Keruntuhan geser umum

Keruntuhan geser umum adalah keruntuhan pondasi terjadi menurut

bidang runtuh yang dapat diidentifikasi dengan jelas. Keruntuhan ini (Gambar

2.2 a) terjadi dalam waktu yang relatif mendadak, diikuti dengan penggulingan

pondasi.

2. Keruntuhan geser lokal

Tipe keruntuhan ini (Gambar 2.2 b) hampir sama dengan tipe keruntuhan

geser, namun bidang runtuh yang terbentuk tidak sampai mencapai permukaan

tanah. Dalam tipe keruntuhan geser lokal, terdapat sedikit penggembungan

tanah di sekitar pondasi, namun tidak terjadi penggulingan pondasi.

11

3. Keruntuhan penetrasi

Pada keruntuhan ini (Gambar 2.2 c), dapat dikatakan keruntuhan geser

tanah tidak terjadi. Akibat beban dan kondisi tanah yang lunak, pondasi

menembus tanah ke bawah. Baji tanah yang terbentuk di bawah dasar pondasi

hanya menyebabkan tanah menyisih dan bidang runtuh tidak terjadi sama

sekali.

1.4.1 Analisis Terzaghi

Analisis kapasitas dukung (Terzaghi, 1943 dalam Hardiyatmo, 2011)

didasarkan pada anggapan-anggapan, sebagai berikut:

1. Pondasi berbentuk memanjang tak terhingga,

2. Tanah di bawah dasar pondasi homogen,

3. Berat tanah di atas dasar pondasi digantikan dengan beban terbagi rata sebesar

po= Df ,

4. Tahanan geser tanah di atas dasar pondasi diabaikan,

5. Dasar pondasi kasar,

6. Bidang keruntuhan terdiri dari lengkung spiral logaritmis dan linier,

7. Baji tanah yang terbentuk di dasar pondasi dalam kedudukan elastis dan

bergerak bersama-sama dengan dasar pondasi,

8. Pertemuan antara sisi baji dan dasar fondasi membentuk sudut sebesar sudut

gesek dalam tanah ( ),

9. Berlaku prinsip superposisi.

Analisis kapasitas dukung menurut Terzaghi ditunjukkan seperti dalam

Gambar 2.3.

Gambar 2.3 Analisis Kapasitas Dukung Menurut Terzaghi (Hardiyatmo, 2011).

12

Kapasitas dukung ultimit (ultimit bearing capacity) (qu) didefinisikan sebagai

beban maksimum per satuan luas di mana masih dapat mendukung beban tanpa

mengalami keruntuhan. Kapasitas dukung ultimit dinyatakan dalam Persamaan

2.1.

qu A

Pu ..............................................................................................................(2.1)

dengan:

qu : kapasitas dukung ujung ultimit (kN/m²),

Pu : beban ultimit (kN),

A : luas pondasi (m²).

Persamaan umum kapasitas dukung Terzaghi seperti dalam Persamaan 2.2.

qu = c2Nc + Df 1 Nq + 0,5 2 BN ....................................................................(2.2)

dengan:

qu : kapasitas dukung ultimit (kN/m2),

c2 : kohesi tanah di bawah dasar pondasi (kN/m2),

1 : berat volume tanah di atas dasar pondasi (kN/m2),

2 : berat volume tanah di bawah dasar pondasi (kN/m3), Df : kedalaman pondasi (m),

B : lebar atau diameter pondasi (m),

Nc,Nq,Nγ : faktor kapasitas dukung.

a. Pengaruh bentuk pondasi

Pengaruh bentuk-bentuk pondasi yang lain Terzaghi memberikan

pengaruh faktor bentuk terhadap kapasitas dukung ultimit yang didasarkan

pada analisis pondasi memanjang sebagai berikut:

1. Pondasi bujur sangkar:

qu = 1,3cNc + poNq + 0,4 BN ..........................................................(2.3)

2. Pondasi lingkaran:

qu = 1,3cNc + poNq + 0,3 B N .........................................................(2.4)

13

3. Pondasi empat persegi panjanag:

qu = cNc (1+0,3B/L) + poNq + 0,5 B N (1-0,2 B/L).........................(2.5)

dengan:

qu : kapasitas dukung ultimit (kN/m2),

c : kohesi tanah (kN/m2),

po : tekanan overburden pada dasar pondasi (kN/m2),

: berat volume tanah yang dipertimbangkan terhadap kedudukan

muka air tanah (kN/m3),

Df : kedalaman pondasi (m),

B : lebar atau diameter pondasi (m),

L : panjang pondasi (m).

Faktor kapasitas dukung Nc, Nq, dan N bergantung pada sudut

gesek dalam ( ) tanah di bawah dasar pondasi. Nilai-nilai faktor

kapasitas dukung Nc, Nq,dan N dijelaskan dalam Tabel 2.3.

Tabel 2.3 Faktor Kapasitas Dukung Nc, Nq,dan Nγ (Hardiyatmo, 2011)

Keruntuhan geser umum Keruntuhan geser lokal Nc Nq Nγ Nc’ Nq’ Nγ’

0 5

10 15 20 25 30 34 35 40 45 48 50

5,7 7,3 9,6 12,9 17,7 25,1 37,2 52,6 57,8 95,7

172,3 258,3 347,6

1,0 1,6 2,7 4,4 7,4 12,7 22,5 36,5 41,4 81,3 173,3 287,9 415,1

0,0 0,5 1,2 2,5 5,0 9,7 19,7 35,0 42,4

100,4 297,5 780,1 1153,2

5,7 6,7 8,0 9,7

11,8 14,8 19,0 23,7 25,2 34,9 51,2 66,8 81,3

1,0 1,4 1,9 2,7 3,9 5,6 8,3 11,7 12,6 20,5 35,1 50,5 65,6

0,0 0,2 0,5 0,9 1,7 3,2 5,7 9,0 10,1 18,8 37,7 60,4 87,1

14

b. Pengaruh muka air tanah

Berat volume tanah sangat dipengaruhi oleh kadar air dan kedudukan air

tanah, Terzaghi juga memperhitungkan pengaruh muka air tanah. Beberapa

kondisi muka air tanah ditunjukkan dalam Gambar 2.4.

Gambar 2.4 Pengaruh Muka Air Tanah pada Pondasi (Hardiyatmo, 2011).

1. Gambar 2.4a, menunjukkan muka air tanah terletak sangat dalam jika

dibandingkan dengan lebar pondasi atau z ˃ B. Untuk kondisi ini, nilai

dalam suku ke-2 dan ke-3 dari persamaan umum kapasitas dukung pondasi

dipakai b atau d . Parameter kuat geser yang digunakan dalam hitungan

adalah parameter kuat geser dalam tinjauan tegangan efektif (c’ dan ’).

2. Bila muka air tanah terletak di atas atau sama dengan dasar pondasi

(Gambar 2.4b), maka yang dipakai dalam suku persamaan ke-3 harus

γ’, karena zona geser terletak di bawah pondasi sepenuhnya terendam air.

Pada kondisi ini, nilai po pada suku persamaan ke-2, menjadi:

po= γ’ + (Df – dw) + b dw....................................................................(2.6)

dengan, γ’ = γ sat - γ w dan dw = kedalaman muka air tanah.

Jika muka air tanah berada di permukaan atau kedalaman muka air

tanah=0, maka pada suku persamaan ke-2 dan ke-3 dipakai berat volume

apung (γ’).

3. Gambar 2.4c, terlihat bahwa muka air tanah terletak pada kedalaman z di

bawah dasar pondasi (z ˂ B), nilai pada suku persamaan ke-2 digantikan

dengan b bila tanahnya basah, dan d bila tanahnya kering. Oleh karena

massa tanah dalam zona geser sebagian terendam air, yang diterapkan

dalam persamaan kapasitas dukung suku ke-3 dapat didekati dengan,

15

rt = ' + (z/B)( b - ' )......................................................................(2.7)

dengan, rt = berat volume tanah rata-rata.

Untuk tanah yang berpermeabilitas rendah, analisis kapasitas dukung kritis

terjadi pada kondisi jangka pendek atau segera sesudah selesai pelaksanaan.

Untuk itu, analisis harus didasarkan pada kondisi tak terdrainase dengan

menggunakan parameter-parameter tegangan total (cu dan u). Untuk tanah yang

berpermeabilitas tinggi, karena air dapat terdrainase, maka kedudukan kritisnya

harus didasarkan pada kondisi terdrainase, yaitu dipakai parameter-parameter

tegangan efektif (c’ dan ’).

1.4.2 Analisis Skempton untuk Pondasi pada Tanah Lempung

Menurut Skempton (1951) dalam Hardiyatmo (2011) mengusulkan

persamaan kapasitas dukung ultimit pondasi yang terletak pada lempung jenuh

dengan memperhatikan faktor bentuk dan kedalaman pondasi. Pada sembarang

kedalaman pondasi empat persegi panjang yang terletak pada tanah lempung,

Skempton menyarankan pemakaian faktor pengaruh bentuk pondasi (Sc) yang

ditunjukkan dalam Persamaan 2.8.

Sc = (1 + 0,2B/L).................................................................................................(2.8)

dengan B : lebar, dan L : panjang pondasi.

Faktor kapasitas dukung Nc untuk bentuk pondasi tertentu diperoleh dengan

mengalikan faktor bentuk Sc dengan Nc pada pondasi memanjang yang besarnya

dipengaruhi pula oleh kedalaman pondasi (Df).

Pondasi di permukaan (Df = 0)

Nc(permukaan) = 5,14 untuk pondasi memanjang...................................................(2.9)

Nc (permukaan) = 6,20 untuk pondasi lingkaran dan bujur sangkar......................(2.10)

Pondasi pada kedalaman 0 ˂ Df ˂ 2,5 B

Nc =

BDf2,01 Nc(permukaan)............................................................................(2.11)

16

Pondasi pada kedalaman Df ˃ 2,5B

Nc = 1,5 Nc (permukaan)..........................................................................................(2.12)

Faktor kapasitas dukung Skempton (1951) merupakan nilai fungsi dari Df /B

dan bentuk pondasi. Untuk pondasi empat persegi panjang dengan panjang L dan

lebar B, kapasitas dukung dihitung dengan mengalikan Nc pondasi bujur sangkar

dengan faktor:

0,84 + 0,16 B/L.................................................................................................(2.13)

Pondasi empat persegi panjang, kapasitas dukung ultimit dinyatakan dengan

Persamaan 2.14 dan Persamaan 2.15 untuk kapasitas dukung ultimit netto:

qu = (0,84 + 0,16 B/L)cuNc(bs) + Df ..............................................................(2.14)

Kapasitas dukung ultimit netto:

qun = (0,84 + 0,16 B/L)cuNc(bs)..........................................................................(2.15)

dengan: qu : kapasitas dukung ultimit (kN/m2),

qun : kapasitas dukung ultimit netto (kN/m2),

cu : kohesi tanah pada kondisi undrained (kN/m2),

Nc : faktor kapasitas dukung Skempton,

Nc(bs) : faktor kapasitas dukung Nc untuk pondasi bujur sangkar.

Tanah yang berpermeabilitas rendah, untuk tinjauan stabilitas jangka pendek,

air akan selalu berada di dalam rongga butiran tanah saat geseran berlangsung.

Karena itu, untuk tanah kohesif yang terletak di bawah muka air tanah, yang

digunakan dalam perencanaan kapasitas dukung selalu dipakai sat , serta tidak

terdapat gaya angkat ke atas akibat tekanan air di dasar pondasi (Giroud et al.,

1973 dalam Hardiyatmo, 2011).

1.4.3 Faktor Aman

Faktor aman didefinisikan sebagai perbandingan antara besarnya kapasitas

dukung tanah terhadap beban struktur yang terjadi di atasnya. Faktor aman sering

dipakai sebagai kriteria dalam perencanaan pondasi, terutama untuk melihat

apakah pondasi aman terhadap bahaya keruntuhan tanah. Faktor aman yang

17

digunakan sebagai acuan adalah F=3. Penentuan besarnya faktor aman seperti

dalam Persamaan 2.16.

qq

F u ......................................................................................................(2.16)

dengan:

F : faktor aman,

qu : kapasitas dukung ultimit netto (kN/m2),

q : beban struktur (kN/m2).

1.5 Kapasitas Dukung Pondasi Tiang dalam Tanah Kohesif

1.5.1 Kapasitas Dukung Tiang dalam Tanah Kohesif

Kapasitas dukung kelompok tiang tidak selalu sama dengan kapasitas dukung

pondasi tiang tunggal yang berada dalam kelompoknya. Hal ini terjadi jika tiang

dipancang dalam lapisan pendukung yang mudah mampat atau dipancang pada

lapisan tanah yang tidak mudah mampat, namun di bawahnya terdapat lapisan

lunak. Kondisi ini, stabilitas kelompok tiang tergantung dari dua hal, yaitu

kapasitas dukung tanah di sekitar dan di bawah kelompok tiang dan pengaruh

penurunan konsolidasi tanah yang terletak di bawah kelompok tiang. Kapasitas

dukung kelompok tiang dinyatakan dalam Persamaan 2.17.

Qg = 2D(B + L)c + 1,3 cb Nc BL................................................................(2.17)

dengan,

Qg : kapasitas ultimit kelompok tiang (kN),

c : kohesi tanah di sekeliling kelompok tiang (kN/m2),

D : kedalaman tiang di bawah permukaan tanah (m),

cb : kohesi tanah di bawah kelompok tiang (kN/m2),

L : panjang kelompok tiang (m),

Nc : faktor kapasitas dukung.

Kapasitas ultimit tiang yang dipancang dalam tanah kohesif, adalah jumlah

tahanan gesek sisi tiang dan tahanan ujungnya. Besar tahanan gesek tiang

tergantung dari bahan dan bentuk tiang.

18

Tahanan ujung ultimit dinyatakan dalam Persamaan 2.18.

Qb = Ab cu Nc..............................................................................................(2.18)

dengan,

Qb : tahanan ujung bawah ultimit (kN),

Ab : luas penampang ujung bawah tiang (m2),

cu : kohesi tak terdrainasi (kN/m2),

Nc : faktor kapasitas dukung.

Tahanan gesek ultimit dinyatakan dalam Persamaan 2.19.

Qs = α cu As................................................................................................(2.19)

dengan,

Qs : tahanan gesek bawah ultimit (kN),

: faktor adhesi,

As : luas selimut tiang (m2),

cu : kohesi tak terdrainasi (kN/m2).

Untuk menentukan tahanan gesek tiang yang dipancang di dalam tanah

lempung digunakan faktor adhesi ( ) tiang pancang menurut McClelland, 1974

dalam Hardiyatmo, 2011. Faktor adhesi tiang pancang ditunjukkan dalam Gambar

2.5.

Gambar 2.5 Faktor Adhesi Tiang Pancang (McClelland, 1974, dalam Hardiyatmo 2011).

19

1.5.2 Efisiensi Tiang dalam Tanah Kohesif

Kapasitas dukung tiang gesek (friction pile) dalam tanah lempung akan

berkurang jika jarak tiang semakin dekat. Beberapa pengamatan menunjukkan,

kapasitas dukung total dari kelompok tiang gesek, khususnya tiang dalam tanah

lempung, sering lebih kecil daripada hasil kali kapasitas dukung tiang tunggal

dikalikan jumlah tiang dalam kelompoknya. Besarnya kapasitas dukung total

menjadi tereduksi dengan nilai reduksi yang tergantung dari ukuran, bentuk

kelompok, jarak, dan panjang tiang. Nilai pengali terhadap kapasitas dukung

ultimit tiang tunggal dengan memperhatikan pengaruh kelompok tiang, disebut

efisiensi tiang (Eg) (Hardiyatmo (2011).

Persamaan efisiensi tiang menurut Converse-Labare formula dapat dilihat

dalam Persamaan 2.20 :

Eg= mn

nmmn90

)1()1'(1

.............................................................................(2.20)

dengan,

Eg : efisiensi kelompok tiang,

m : jumlah baris tiang,

n’ : jumlah tiang dalam satu baris,

θ : arc tg d/s, dalam derajat,

s : jarak pusat ke pusat tiang (m),

d : diameter tiang (m).

Kapasitas dukung ultimit kelompok tiang:

Qg = Eg n Qu..............................................................................................(2.21)

dengan,

Eg : efisiensi kelompok tiang,

Qg : beban maksimum kelompok tiang yang menyebabkan keruntuhan (kN),

Qu : beban maksimum tiang tunggal yang menyebabkan keruntuhan (kN),

n : jumlah tiang dalam kelompok.

20

1.6 Analisis Beban

Analisis beban dalam pondasi dangkal digunakan anggapan bahwa pelat

pondasi merupakan struktur yang kaku sempurna, berarti pelat pondasi tidak

mengalami deformasi akibat beban yang bekerja. Struktur tanah merupakan bahan

bergradasi, sehingga tanah dianggap tidak mampu menahan gaya tarik (menerima

tegangan tarik). Tanah hanya mampu menerima tegangan desak, sedangkan

besarnya tegangan di masing-masing titik pada pelat pondasi, sebanding dengan

penurunan yang terjadi pada pelat pondasinya (Suryolelono, 2004). Berikut

dijelaskan beban-beban yang harus ditopang dalam analisis pondasi, yaitu:

1. Beban titik Sentris (P)

Jenis beban ini berupa beban kolom, atap, lantai dan dinding yang disalurkan

atau didukung oleh kolom bawah dari suatu bangunan. Beban titik sentris

merupakan resultan gaya-gaya vertikal yang bekerja pada bangunan tersebut.

2. Beban terbagi rata

Beban ini dapat berupa beban di atas lantai bawah, beban pelat pondasi itu

sendiri atau beban tanah yang ada di atas pelat pondasi.

3. Kombinasi Beban

Jumlah keseluruhan beban dari beban titik sentris ditambah dengan beban

terbagi rata.

1.7 Analisis Tegangan Regangan

Tegangan (stress) didefinisikan sebagai perbandingan antara tekanan yang

bekerja (P) pada benda dengan luas penampang benda (A). Regangan (strain)

didefinisikan sebagai perbandingan antara tegangan ( ) dengan modulus

elastisitas (E). Persamaan tegangan-regangan ditunjukkan dalam Persamaan 2.22

dan Persamaan 2.23.

=AP ........................................................................................................(2.22)

dengan: σ : tegangan (kN/m2),

P : tekanan (kN),

21

A : luas penampang (m2).

=E .........................................................................................................(2.23)

dengan:

: regangan (%),

E : modulus elastisitas tanah (kN/m2),

: tegangan (kN/m2).

Kurva hubungan tegangan-regangan ditunjukkan dalam Gambar 2.6

Gambar 2.6. Kurva Hubungan Tegangan-Regangan (www.google.com/imgres, 21 November 2013).

Menurut Nasution (2009), terdapat tiga daerah pada kurva tegangan-

regangan:

1. Daerah Elastis

Dimulai dari titik 0 (nol) pada kurva, yang berarti pertambahan panjang adalah

nol pada saat beban nol, dan dibatasi dengan batas proposional. Material pada

daerah ini mengikuti hukum Hooke sampai tegangan mencapai batas

proposional.

2. Daerah Strain Hardening

Daerah strain-hardening (penguatan regangan) ditandai dengan adanya

peningkatan tegangan pada kurva tegangan-regangan, yang berarti diperlukan

22

adanya peningkatan tegangan untuk tiap pertambahan regangan.Tegangan

maksimum pada kurva disebut dengan regangan tarik batas atau kuat batas

(ultimate strength).

3. Daerah Rupture

Daerah Rupture (runtuh) merupakan daerah dimana perpanjangan terjadi

dengan beban yang berkurang, sampai akhirnya material putus.

Modulus elastisitas tanah berhubungan dengan kemampuan membentuk

kembali susunan tanah akibat regangan yang disebabkan beban di permukaan

tanah. Modulus elastisitas tanah ditunjukkan dalam Tabel 2.4.

Tabel 2.4 Modulus Elastisitas Tanah (Hardiyatmo, 2011)

Macam Tanah E (kN/m2)

Lempung Sangat lunak 300-3000 Lunak 2000-4000 Sedang 4500-9000 Keras 7000-20000 Berpasir 30000-42500 Pasir Berlanau 5000-20000 Tidak padat 10000-25000 Padat 50000-100000 Pasir dan kerikil Padat 80000-200000 Tidak padat 50000-140000 Lanau 2000-20000 Loess 15000-60000 Serpih 140000-1400000

1.7.1 Penyebaran Tambahan Tegangan Metode Boussinesq

Menurut Boussinesq (1885) dalam Hardiyatmo (2011), menyatakan tambahan

tegangan vertikal akibat beban titik dianalisis dengan meninjau sistem tegangan

pada koordinat silinder. Tambahan tegangan menurut Boussinesq ditunjukkan

dalam Gambar 2.7. Anggapan-anggapan yang dipakai dalam teori Boussinesq

adalah:

23

1. Tanah merupakan bahan yang bersifat elastis, homogen, isotropis, dan semi tak

terhingga.

2. Tanah tidak mempunyai berat.

3. Hubungan tegangan-regangan mengikuti hukum hooke.

4. Distribusi tegangan akibat beban yang bekerja tidak bergantung pada jenis

tanah.

5. Distribus tegangan simetri terhadap sumbu vertikal (z).

6. Perubahan volume tanah diabaikan.

7. Tanah tidak sedang mengalami tegangan sebelum beban diterapkan.

Gambar 2.7 Tambahan Tegangan Menurut Boussinesq (Hardiyatmo, 2007).

Tambahan tegangan dan faktor pengaruh IB ditunjukkan dalam Persaman 2.24

dan Persamanan 2.25:

z = 2zQ IB......................................................................................................(2.25)

dengan:

z : tambahan tegangan vertikal pada kedalaman z (kN/m2),

Q : beban total (kN),

r : jarak titik tinjauan beban (m),

z : kedalaman (m).

24

IB=2/5

2)/(11

23

zr

.....................................................................................(2.26)

dengan; IB: faktor pengaruh beban titik Boussinesq.

1.7.2 Analisis Tegangan-Regangan pada Pondasi Menggunakan Plaxis 8.2

Plaxis 8.2 merupakan program yang berbasis pada analisis dengan

menggunakan metode elemen hingga (finite element method). Program ini

dimaksudkan sebagai alat bantu analisis dalam menyelesaikan masalah yang

berhubungan dengan ilmu geoteknik. Plaxis 8.2 dapat memodelkan masalah

geoteknik dalam bentuk digitalisasi sehingga dapat memberikan alternatif desain

serta penerapan teknologi tepat guna.

Plaxis 8.2 memungkinkan pengguna memasukkan data yang berhubungan

dengan analisis dengan menyediakan prosedur input serta output sebagai hasil dari

data yang dimasukkan. Output data antara lain dapat berupa perpindahan total,

tegangan-regangan, serta deformasi tanah yang kesemuanya dapat dijelaskan

dengan gambar berikut nilai output maupun kurva dari analisis data. Tampilan

utama dari Plaxis 8.2 ditunjukkan seperti dalam Gambar 2.8.

Gambar 2.8. Tampilan Utama Plaxis 8.2.

25

Analisis tegangan-regangan dua dimensi menggunakan Plaxis 8.2 terdiri dari

4 (empat) tahapan pelaksanaan sebagai berikut:

1. Plaxis input, berisikan semua fasilitas untuk meng-input hal atau interface

yang diperlukan pada saat melakukan pemodelan.

a. Pemodelan geometri

Pertama-tama dilakukan pengaturan global dengan lingkaran (axy-

simetri) dengan jenis elemen segitiga dengan 15 nodal. Model axy-simetri

digunakan untuk sruktur berbentuk lingkaran dengan penampang radial

yang kurang lebih seragam dan kondisi pembebanan mengelilingi sumbu

aksial, dimana deformasi dan kondisi tegangan diasumsikan sama disetiap

arah radial.

Dilakukan penggambaran batasan geometri lapisan tanah. Batasan

penggambaran geometri horisontal berjarak 5b (lebar pondasi) dari titik

pusat pondasi. Untuk batasan vertikalnya adalah 8b (lebar pondasi) dari

dasar pondasi. Penggambaran model geometri diterapkan kondisi batas

standar, arah sumbu y adalah perletakan rol sedangkan pada arah sumbu x

adalah perletakan sendi. Pemodelan geometri ditunjukkan seperti dalam

Gambar 2.9.

Gambar 2.9. Pemodelan Geometri Pondasi Sumuran-Telapak Cerucuk Bambu.

26

b. Material

Model material tanah yang digunakan adalah Mohr-Coulomb, yaitu

model elastis-plastis sempurna dengan menggunakan 5 (lima) buah

parameter dasar berupa modulus Young (E), angka Poisson (v), kohesi (c),

sudut geser ( ) dan sudut dilatansi ( ). Jenis perilaku material yang

dipilih adalah perilaku takterdrainase sehingga tekanan air pori berlebih

akan terbentuk. Untuk material pondasi menggunakan model material

linear elastis dengan tipe material non porous. Jendela input parameter

material tanah ditunjukkan dalam Gambar 2.10. Kumpulan data material

yang digunakan dapat di pindahkan (drag) ke bidang gambar dan

dilepaskan pada komponen geometri yang diinginkan.

Gambar 2.10. Jendela Kumpulan Data Material

a. Penyusunan jaring elemen

Setelah model geometri telah didefinisikan secara lengkap dan sifat-

sifat material telah diaplikasikan keseluruh klaster dan obyek sruktur,

maka geometri harus dibagi menjadi elemen-elemen untuk melakukan

perhitungan. Penggunaan warna berbeda pada tiap lapisan merupakan cara

agar material tanah dapat diidentifikasikan secara jelas. Hasil penggunaan

jaring elemen hingga ditunjukkan dalam Gambar 2.11.

27

Gambar 2.11. Hasil Generated Mesh Elemen Hingga.

d. Kondisi awal

Kondisi awal terdiri dari dua buah modus, yaitu modus untuk

menghitung tekanan air dan modus untuk spesifikasi dari konfigurasi

geometri awal. Secara pra-pilih, garis phreatik global diletakkan pada

dasar model geometri, dan akan segera digantikan jika garis phreatik yang

baru diaplikasikan. Kondisi tegangan awal sebelum diberi pembebanan

merupakan tegangan efektif awal sebelum dikalkulasi seperti dalam

Gambar 2.12.

Gambar 2.12. Hasil Initial Stress sebelum dikalkulasi.

Pasir sangat padat

Pasir padat

Pasir

Lempung

Pasir sedang berlanau

Pasir padat berlanau

28

2. Plaxis Calculation, berisikan semua fasilitas pengoperasian program kalkulasi.

Dalam analisis tegangan-regangan elastis plastis digunakan tipe kalkulasi

plastis, namun untuk mendapatkan hasil yang lebih akurat dapat digunakan

analisis update mesh yang membutuhkan waktu yang lama dalam me-running

perangkat lunak Plaxis. Plaxis Calculation ditunjukkan dalam Gambar 2.13.

Gambar 2.13. Jendela Perhitungan.

3. Plaxis Output, berisikan semua fasilitas untuk mengetahui hasil dari input data

dan perhitungan elemen hingga.

Palxis Output berupa tegangan, ditampilkan jaring elemen yang mengalami

tegangan dalam bentuk shading (warna). Menu tegangan memuat tampilan

kondisi tegangan secara visual dalam model elemen hingga, tampilannya

berupa tegangan arah aksial atau arah lateral. Vertical total stresses merupakan

tegangan yang terjadi pada arah aksial beban terhadap pondasi. Vertical total

stresses yang merupakan output dari Plaxis ditunjukkan dalam Gambar 2.14.

Untuk memperoleh gambaran mengenai distribusi nilai-nilai tertentu dalam

tanah ditampilkan keluaran berupa suatu potongan. Potongan ini berupa Cross

Section (A-A). Cross Section ditunjukkan seperti dalam Gambar 2.15.

29

Gambar 2.14 Vertical Total Stresses dari Palxis Output

Gambar 2.15 Titik Cross Section (A-A)

A

B B

A

Tegangan besar

Tegangan sedang

Tegangan kecil