04 molekul fisika nuklir

Post on 14-Dec-2015

249 Views

Category:

Documents

7 Downloads

Preview:

Click to see full reader

DESCRIPTION

2

TRANSCRIPT

MolekulKonduktor, Isolator dan

Semikonduktor

Materi

• Ikatan Molekul

• Konduktor

• Isolator

• Semikonduktor

Jenis ikatan molekul• Ikatan Ion :

– interaksi antara muatan yang berlawanan dari atom yang terionisasi

– NaCl (Sodium Chloride) :

Sodium (Na) dengan mudah melepas elektron (3s) -> ion Na+, butuh energi ionisasi : 5,138 eV

Chloride dapat menarik elektron (3p) -> ion Cl-

• Ikatan kovalen : ikatan molekul antara dua atau lebih atom yang mempunyai pasangan elektron dan saling berbagi di antara atom yang berikatan (CH4)

• Ikatan Van Der Waals : ikatan molekul yang mempunyai energi < 0,1 eV

• Ikatan Hidrogen : ikatan molekul yang lemah karena adanya atom H+

Persamaan Schrodinger

Inti, proton muatan e+

y

x

z

Koordinat (r,θ,)

Elektron,muatan e-

Persamaan shcrodinger Energi potensial

Penyelesaian persamaan ini dengan fungsi gelombang :

(r, θ,) = R(r)(θ)()Substitusi ke persamaan schrodinger diperoleh energi level atom H : (hal 1402)

-

+

θ

r

Orbital Elektron dan Bilangan Kuantum

• Bilangan kuantum utama (n). Bilangan ini hanya mempunyainilai positif dan bilangan bulat bukan nol

n = 1, 2, 3, 4, …

• Bilangan kuantum orbital (azimut), l. yang mungkin bernilainol atau bulat positif. Bilangan ini tidak pernah negatif dantidak lebih besar dari n –1

l = 0, 1, 2, 3, …, n –1

• Bilangan kuantum magnetik (ml). Nilainya dapat positif, negatif, nol dan berkisar dari –l s.d. +l (l bilangan kuantumorbital)

ml = -l, -l + 1, -l + 2, …, 0, 1, 2, … , +l

• Setiap kombinasi tiga bilangan kuantum n, l dan m berkaitan dengan orbital elektron yang berbeda-beda

• Orbital yang memiliki bilangan kuantum n yang sama dikatakan berada dalam kulit elektron atau peringkat utama yang sama

• Sementara elektron yang mempunyai nilai l yang sama dikatakan berada dalam sub kulit atau sub peringkat yang sama

• Nilai bilangan n berhubungan dengan energi elektron dan kemungkinan jaraknya dari inti

• Nilai bilangan kuantum l menentukan bentuk geometris dari awan elektron atau penyebaran peluang elektron

Kulit elektron, orbital dan bilangan kuantum

Kulit

utama

K L M

n = 1 2 2 2 2 3 3 3 3 3 3 3 3 3

l = 0 0 1 1 1 0 0 1 1 1 2 2 2 2

ml = 0 0 -1 0 +1 0 -1 0 +1 -2 -1 0 +1 +2

Tanda

orbital

1s 2s 2p 2p 2p 3s 3p 3p 3p 3d 3d 3d 3d 3d

Jml

orbital pd

subkulit

1 1 3 1 3 5

Jml total

orbital n2

1 4 9

Spin (Rotasi) Elektron – Bilangan Kuantum Keempat• Tahun 1925 Uhlenbeck dan Goudsmit mengajukan sifat

yang tak dapat dijelaskan mengenai garis halus pada spektrum hidrogen, apabila elektron dianggap memiliki bilangan kuantum keempat

• Sifat elektron yang berkaitan dengan bilangan ini adalah spin elektron

• Elektron berotasi menurut sumbunya saat ia mengelilingi inti atom, terdapat dua kemungkinan rotasi elektron

• Bilangan kuantum ini dinyatakan dengan ms bisa bernilai + ½ atau – ½

Konfigurasi Elektron

Ada tiga aturan dalam penentuan konfigurasi

1. Elektron menempati orbital sedemikian rupa untuk meminimumkan energi atom tersebut

2. Tak ada dua elektron dalam sebuah atom yang boleh memiliki keempat bilangan kuantum yang sama (prinsip eksklusi Pauli)

3. Prinsip penggandaan maksimum, jika terdapat orbital –orbital dengan energi yang sama, elektron menempatinya sendiri-sendiri sebelum menempatinya secara berpasangan

Urutan pengisian sub kulit elektron

Momentum orbit angularMagnitude :

Komponen :

Tabel Kuantum Atom H

Distribusi fungsi gelombang ||2

Bilangan Atom

Pita Energi Benda Padat

Conductor

• As the temperature of most conductors increases, the increased motion of particles within the molecular structure makes it increasingly difficult for the “free” carriers to pass through, and the resistance level increases.

Resistance: Circular Wires

• The higher the resistivity of a conductor, the higher its resistance.

• The longer the length of a conductor, the higher its resistance.

• The lower the cross-sectional area of a conductor, the higher its resistance.

• The higher the temperature of a conductor, the higher its resistance.

Resistance: Circular Wires

• Area of a conductor is measured in circular mils (CM).

• The mil is a unit of measurement for length and is related to the inch by

• A wire with a diameter of 1 mil has an area of 1 circular mil (CM).

in. 1000

1 mil 1

Resistance: Circular Wires

• Resistivity is not the only factor used in determining the best conductor. Other factors are:

– Malleability – ability of a material to be shaped

– Ductility – ability of a material to be drawn into long,

– thin wires

– Temperature sensitivity

– Resistance to abuse

– Cost

Resistance: Circular Wires

• Copper is the most widely used material because it is quite malleable, ductile and available.

• Aluminum was tried for general wiring but because of its thermal characteristics created difficulties.

• Silver and gold are used but because of cost, they have been limited to places that justify the cost.

• Tungsten has a resistivity three times that of copper but there are occasions when its physical characteristics (durability and hardness) are the overriding considerations.

Temperature Effects

• Temperature has a significant effect on the resistance of conductors, semiconductors and insulators.– For good conductors, an increase in temperature will result in an

increase in the resistance level. Consequently, conductors have positive temperature coefficients.

– For semiconductor materials, an increase in temperature will result in a decrease in the resistance level. Consequently, semiconductors have negative temperature coefficients.

– As with semiconductors, an increase in temperature will result in a decrease in the resistance of an insulator. The result is a negative temperature coefficient.

Temperature Effects• Inferred absolute temperature

– Resistance increases almost linearly with an increase in temperature to the inferred absolute temperature of ̶ 234.5 C

Superconductors

• Superconductors are conductors of electric charge that, for all practical purposes, have zero resistance.

• The relatively low speed of electrons through conventional conductors is due to collisions with atoms and repulsive forces from other electrons.

• Cooper effect: Electrons travel in pairs and help each other maintain a significantly higher velocity through the medium.

Superconductors

• The goal of superconductivity at room temperature – Before 1986:

• Superconductivity could only be established at temperatures colder than 23 K

– After 1986:

• Physicists Alex Muller and George Bednorz of the IBM Zurich Research Center found a ceramic material, lanthanum barium copper oxide that exhibited superconductivity at 30 K.

• Professors Paul Chu and Man Kven Wu raised the temperature to 95 K using a superconductor of yttrium barium copper oxide, enabling liquid nitrogen (boiling point 77 K) to be used for cooling.

Tiga gambaran orbital 2p

Ketiga orbital p

Kelima orbital d

top related