turbo pump

100
Oleh: HERU MIRMANTO JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2011 MESIN-MESIN TURBO

Upload: fhabry-rs

Post on 17-Dec-2015

126 views

Category:

Documents


19 download

DESCRIPTION

pompa

TRANSCRIPT

  • Oleh:HERU MIRMANTOJURUSAN TEKNIK MESINFAKULTAS TEKNOLOGI INDUSTRIINSTITUT TEKNOLOGI SEPULUH NOPEMBERSURABAYA2011MESIN-MESIN TURBO

  • Reference :Dietzel Fritz. (1992),Turbin Pompa dan Kompresor Diterjemahkan oleh Ir. Dakso Sriyono, Jakarta : Penerbit Erlangga. Igor Karassik,J ( 2001) Pump Handbook. 3th, McGraw Hill, New York.Lazarkiewicz, Stephen and Troskolanski, A.T. (1965), Impeller Pump. New York, Pergamon Press.M. Khetagurov (1954), Marine Auxiliary Machinery and Systems, Peace Publishers Moscow.Robert, W Fox & Alan T. McDonald (2010),Introduction to Fluid Mechanics 7th, John Wiley & Sons, Inc, Asia. S L Dixon (1998): Fluid Mechanics, Thermodynamics of Turbo Machinery, 4th edition, Pergamon Press Ltd.Obert L. Sanks,1998,Pumping Station Design,Second Edition, Butterworth-Heinemann, Boston

  • TURBOMACHINES Aplikasi dalam kehidupan : Rumah tangga Transportasi kendaraan Industri Instalasi Pembangkit Daya Suatu pesawat yang mengkonversi energi mekanis (torsi poros yang berputar) ke atau dari energi aliran fluida sebagai akibat efek dinamik dari satu atau barisan sudu-sudu.1/3 energi USA untuk Industri, 50% digunakan untuk turbomachinery

  • Classification of Turbomachines : 1. According to Geometry of the Flow Path : Radial Flow Machines lintasan aliran fluida masuk secara aksial (sejajar poros), kemudian seiring dengan perubahan radius, aliran berubah kearah radial. Axial Flow arah aliran masuk dan keluar secara aksial (sejajar poros). Mixed Flow adalah kombinasi dari keduanya.

  • Classification of Turbomachines : Apabila fluida yang dilayani liquid atau slurry. a. Pump

  • Classification of Turbomachines : Apabila fluida yang dilayani gas atau uap dan tergantung pada kenaikan tekanan yang dihasilkan. b. Fan, Blower, Compressor

  • Classification of Turbomachines : a. Water Turbine3. Extract Energy From a Fluid Stream :b. Steam Turbinec. Gas Turbine

  • Classification of Turbomachines : 4. According to change of pressure :

  • Classification of Turbomachines : 5. According to Impeller Construction :

  • POMPAPompa adalah suatu alat/ pesawat yang digunakan untuk memindahkan fluida cair (liquid) dari suatu tempat yang berenergi rendah ke tempat lain yang yang berenergi lebih tingi melalui suatu sistem perpipaan.Definisi :

  • POMPAPrinsip Kerja Pompa :Memberikan perbedaan tekanan antara bagian suction dan bagian discharge dengan mentransfer energi mekanis dari suatu sumber energi luar (motor listrik, motor bensin/diesel ataupun turbin dll.) untuk dipindahkan ke fluida kerja yang dilayani.

  • Prinsip Kerja Pompa Centrifugal :Pompa centrifugal akan bekerja normal bila ruang di dalam casing hingga saluran suction terisi oleh cairan.Apabila impeller berputar, akibat gaya centrifugal maka cairan di antara sudu2 akan bergerak ke arah radial. Sehingga fluida pada diameter luar impeller mempunyai tekanan relatif kuat.Tekanan fluida semakin bertambah saat melalui volute chamber, dimana sebagian energi kinetik menjadi energi potential berupa kenaikan tekanan.

  • Prinsip Kerja Pompa Centrifugal :Apabila tekanan lebih besar dari tekanan discharge nya maka cairan akan kelur pompaKetika fluida meninggalkan inlet impeller, maka ruang tsb mengalami ke vacuman, sehingga cairan pada suction akan naik ke inlet akibat perbedaab tekanan.

  • Centrifugal Pumps are Classified : a. Low capacity pumps- up to 20 cu m per hb. Medium capacity pumpsfrom 20 to 60 cu m per hc. High capacity pumpsover to 60 cu m per h1. According to their capacity :a. Low pressure pumps- up to 5 kg per sq cmb. Medium pressure pumpsfrom 5 to 50 kg per sq cmc. High pressure pumpsover to 50 kg per sq cm2. According to the pressure developed :Pumps speeds are characterized by the specific rotational speed, or speed factor, of the impeller.3. According to their specific speed :

  • Specific Velocity4. Specific Velocity ns1 : a. Low speed impellerfrom 40 to 80 rpmb. Moderat speed impellerfrom 80 to 150 rpmc. High speed impellerfrom 150 to 300 rpmd. Mixed Flow impellerfrom 300 to 600 rpme. Axial Flow impellerfrom 600 to 2000 rpmSpecific velocity is a value that links together the capacity, head and power consumption of pump, all of which depend upon the principal dimensions and velocity of liquid flow in impeller.

  • a. Single admission b. Double admission6. The intake to the impeller : a. Single impeller pumpsb. Multistage pumpsc. Multi impeller pumpsd. Multi impeller Multistage pumps 5. The number of impeller and stage: a. Single casing b. Sectional pumps 7. The design of the casing :

  • a. Water pump.b. Petroleum pump, etc9. The kind of liquid handled : a. Vertical shaft pumpsb. Horizontal shaft pumps8. The disposition of the impeller axis : a. Power pump.b. Direct coupled pump11. The suction lift capacity :a. Self priming pumps.b. Non priming pump10. The method of drive :

  • The specific velocity Where :n= pump impeller speed, rpmQs= capacity of the pump, cu m per secH= head developed by the pump, mH2Og= specific weigh.Specific velocity, or specific factor, is defined as the impeller speed of a model pump which, being geometrically similar to the given pump, develops a head of one meter water column at a discharge of 75 lt/sec having a power consumption of one metric hp at highest efficiency.

  • Ref 7

  • A Selection Of The Number Of Stage RequiredCentrifugal pumps are usually designed with one impeller if the latter is sufficient to provide the required head and output. If the required head cannot be generated by a single impeller, several impeller are arrange to operate in series (multistage pumps). If the required capacity cannot be provided at the head developed by one impeller, several impellers are arranged to operate in parallel (multi-impeller pump) or double admission pumps are used.A combination of high head and high capacity may be achieved by arranging the impellers for combine series and parallel operation.

  • The specific velocity of one stage of a multistage pumpWhere :i= number of stages of pressure H1= head developed by one impeller, mH2O H= head developed by the pump, mH2O

  • The specific velocity for one impeller of a multi impeller pump Where :Qs1 = discharge through an impeller with single admission, cu m per seckk = number of admission (entries) to the impeller ofpump.On the basis of above equation the number of admission is :

  • The specific velocity of one impeller in arrangement of series and parallel operation will be :

    Where :i= number of stages of pressurekk= number of admission (entries) to the impeller of pump.

  • Contoh soal 1 :

  • Contoh soal 2 :

  • SUCTION LIFT OF CENTRIFUGAL PUMPSEnergy equation for cross section I - I to II - II : Where :Za = Distance from the free surface to the datum, mPa = Pressure on the free surface, PascalVa = Velocity of the liquid at the free surface Z = Distance from cross section II to the free surface, mPs = Pressure of the liquid at cross section II Vs = Velocity of the liquid at cross section IIHls = Loss of head in the suction pipe from strainer to cross section II

  • Assuming that velocity Va = 0

    If the inlet velocity is denote as Ce, the head at the inlet circumference of the impeller will be Where :he = Radius of the impeller inlet, mHl= Loss of head in the suction line due to hydraulic resistances, H2OAccording above equation the suction head will decrease with an increase in Zs.

  • If ps drops to the value of the vapor pressure of the liquid at the given temperature, the liquid begins to boil. Net Positive Suction Head (NPSH): The total suction head (in feet or meters) of liquid absolute at the suction nozzle less the vapor pressure absolute (in feet or meters)NPSHA NPSHR

  • So the equation will be :suction lift ThereforeGeneral cavitation begins when Ps becomes equal to the Pv. This condition corresponds to the maximum suction lift.

  • Advisable to operate pump with a permissible geodetic suction lift :Therefore Where :zsp= vertical distance from impeller axis to the free surface, m

  • Contoh soal 1 :

  • Therefore, the permissible suction lift decrease :

    With an increase in temperature of the liquid being pumped.With an increase in loss of head in the suction line.With an increase in the velocity with which the liquid approaches the inlet edge of the impeller vanes.With an increase in the distance between the inlet edge and the impeller axis.Cavitation is also promoted by sharp edges, rough passage walls, abrupt turns and other obstacles to liquid flow which force the stream away from walls.

  • Suara berisik/noise yang bertubi-tubiGetaran pompa sampai terdengarPenggunaan daya/power yang berlebihan daripada biasanya (Ampere meningkat)Debit berkurang drop secara siknifikan Tanda-tanda KavitasiErosi permukaanPermukaan impeller dan rumah keong bopeng (berlubang-lubang kecil-kecil, terkikis)Getaran strukturPenurunan efisiensiSuara berisikAkibat Kavitasi :

  • Noise generation karena kavitasiSpektrum broadband pada saat ada kavitasi, 3 5 KHz (tipikal)

  • Bagaimana menghindari Kavitasi??- Yang jelas, kavitasi hanya terkait dengan posisi suction (pipa isap pompa).Karenanya, perhatiannya hanya pada tempat ini.- Kurangi jumlah katup dan bengkokan pada pipa isap- Gunakan eccentric reducer, bukan concentric reducer- Letakkan bagian lurus dari eccentric reducer pada sisi atas dari pipa isap.- Sedapat mungkin pipa isap sangat pendek.- Pipa isap seyogyanya berdiameter sama dengan diameter inlet pompa.- Gunakan long radius elbow- Yakinkan bahwa katup kaki terbenam secara sempurna.

  • Hindari terjebaknya udara

  • Centrifugal Pump ConstructionPump Terminologi

  • Typical single-stage end-suction volute pump

  • Double admissionwith a diffuser-ring and volute casing

  • Multistage Centrifugal Pump

  • Turbomachinery AnalysisThe Angular Momentum Principle :The angular momentum principle was applied to finite control volume :Assumsi :Torques due to body and surface force may be ignoredSteady flowUniform flow at inlet and outletIncompressibleAbove equation will be :

  • Head Developed by a Centrifugal Pump ImpellerPolygon Velocity :Where : U1 & U2 = peripheral velocity W1 & W2 = relative velocity C1 & C2 = absolute velocity b1 & b2 = inlet & outlet blade angle a1 & a2= inlet & outlet of fluid angle

  • The term on the right side is the product of x with the mass flow rate at each section. For uniform flow into the rotor at section 1, and out of the rotor at section 2, the equation be comesThe rate of work done on a turbo machine rotor is given by the dot product of rotor angular velocity ( w) and applied torque.Introducing U = r.w Where : U is the tangential speed at radius r, so we have :

  • Dividing by .g we obtain a quantity with dimension of length,This equation was deduced by Leonhard Euler in (1754)We can write theoretical infinite Head :

  • Most centrifugal pumps do not have inlet guide vanes.The absolut velocity of inlet onto the vanes is directed almost along a radiusa1 = 900so,Actual HeadWhere : K2cu = circulation factor hh = hydraulic efficiency

  • Actual HeadTabel value of hh & K2cuWhere : Kh = K2cu hh = Head factor

    ns160 to 100100 to 150150 to 220hh0,87 to 0,90,9 to 0,920,92 to 0,94K2cu0,6 to 0,820,820,82

  • Effect of the outlet angle (b2) on the head developed

  • Effect of The Outlet Angle (b2) on The Head Developed

  • HEAD DISCHARGE CHARACTERISTICIdeal-Actual Head-Discharge Characteristic of Centrifugal PumpH = Ht H2cu hh - hshHydraulic Losses in Pumps :* Friction forces due to the viscosity liquid * Losses from eddy formation* Shock looses

  • Jumlah SuduBanyaknya sudu dpt dihitung berdasarkan pers. Empiris :Sudu impeller didesign setipis mungkin, tumpul bagian leading edge & runcing di bag. Trailling edge.Jika jumlah sudu banyak maka, kerugian head semakin besar, namun bila jumlah sudu terlalu sedikit maka, aliran kurang uniform & sirkulasi semakin besar, hal ini juga menimbulkan kerugian head.Dimana : br= jari-jari rata2 lingkaran celah sudu

    ns140 to 6060 to 180180 to 350350 to 500Zv9865

  • THE CAPACITY OF PUMPS Theoretical Capacity of Pumps (Qts)Theoretical Capacity of Pumps is ideal capacity a pumps without internal or external leakage.Where :S1 & S2 = vanes thickness inlet & outlet

  • Actual Capacity (Qs) Actual Capacity or real discharge which produce by pumps is amounts of liquid which flow per unit time passes through discharge pipe at pumps running. Indicative Capacity (Qi) Amounts of liquid flow through the pumps, so this capacity is the same with actual capacity (Qs) plus internal leakage (Ql). Optimum Capacity (Qopt) Optimum Capacity is capacity of pumps when the pumps running at maximum of overall efficiency.

  • Penyebab internal leakageAkibat internal leakageAliran bersirkulasi, terpompa berulang- ulang, kemudian panasInternal LeakageWearing Ring aus, korosi, erosi, atau perawatan yang kurang tepat, maka

  • Volumetric lossesVolumetric losses consist of leakages of liquid through clearance from high-pressure to low-pressure regionThe most significant volumetric losses are : Leakage through the front sealing ring of the impeller. Leakage through the balancing disk, balancing hole. Leakage through the shaft packing or through the hub seals in multistage pumps

    ns160 to 100100 to 150150 to 220hh0,94 to 0,970,97 to 0,990,98 to 0,995

  • Useful Power (Nu) is the energy increment in the flow of liquid passing through the pump in unit time Required Power input (N / BHP)POWER

  • Contoh soal :Diketahui pompa centrifugal mempunyai data-data sebagai berikut:Diameter dalam (d1)= 150 mm1 = 2 = 300 Diameter luar (d2)= 320mmQ= 55 lt/dtLebar dalam (b1)= 50mm1= 900Lebar luar (b2)= 30mm

    Hitung:Putaran impellerHead teoritis yang dihasilkanPower yang dibutuhkan.

    Jawab:Kapasitas :

  • Sehingga:maka putaran impeller : Perbandingan putaran :

  • Sehingga Head teoritis :Daya teoritis yang dibutuhkan :Maka :

  • Axial Hydraulic Thrust and Impeller Balancing Axial Thrust at The Centrifugal pumpCara membalans gaya-gaya aksial :Menggunakan peralatan pembalans tipe hydraulis.Memakai bantalan aksial.memakai pemasukkan ganda (double admission) paralel.

  • Axial Hydrolic BalanceUse of ribs to achieve axial hydraulic balanceUse of back wear ring to achieve axial hydraulic balance

  • Centrifugal Pump OperationPipe Line Characteristic :Hpl = Hpls + Hpld

  • No static head All frictionPositive static (suction) headCENTRIFUGAL PUMPS: Basic Concepts of Operation

  • Negative (gravity) headMostly lift no friction headBasic Concepts of Operation :

  • (a) Variation in static head(b) Variation in friction headBasic Concepts of Operation :

  • Pump Characteristic :1. Main Characteristic2. Working Characteristic3. Universal CharacteristicIf the impeller rotates at n rpm, theoretical Discharge, theoretical Head and Power will be :

  • Pump Characteristic :When the speed of the pump is changed from n to n , The new velocity diagram :

  • Pump Characteristic :On the basis equation, we obtainororor

  • MAIN CHARACTERISTIC

  • WORKING CHARACTERISTIS

  • Perubahan Karakteristik Akibat Viskositas dan Putaran BerbedaWORKING CHARACTERISTIS :

  • Radial Flow Pump CharacteristicsMixed Flow Pump Characteristics

  • UNIVERSAL CHARACTERISTIC

  • SELECTION OF CENTRIFUGAL PUMPS

  • CENTRIFUGAL PUMP PERFORMANCE

  • UNSTABLE OPERATION

  • Contoh Karakteristik Kerja yang Tidak StabilUNSTABLE OPERATION

  • OPERATION IN A COMPLEX CIRCUIT

  • SERIES OPERATION OF A CENTRIFUGAL PUMPS

  • PARALLEL OPERATION OF A CENTRIFUGAL PUMPS

  • Dimensionless parameterDependent pump variables :The actual head rise ( H )Shaft power( N )Efficiency( h )Depend on the geometrical configuration :Diameter( D )Lengths( l )Surface roughness( ) Important variables :Flowrate( Q )Rotational speed( )Fluid viscosity( )Fluid density( )

  • Flow CoefficientHead CoefficientPower CoefficientEfficiency

  • Flow CoefficientHead CoefficientPower CoefficientEfficiency

  • Problem :

  • PUMP TESTINGHead Measurement

  • Flow Measurement

  • AXIAL PUMP

  • Polygon Velocity

  • Perbandingan karakteristik antara pompa centrifugal dengan pompa aksial

  • *