tidal energy

29
Tidal Energy (Energi Pasang Surut) Apa itu Tidal Energy? Energi pasang surut (Tidal Energy) merupakan energi yang terbarukan. Prinsip kerja nya sama dengan pembangkit listrik tenaga air,dimana air dimanfaatkan untuk memutar turbin dan mengahasilkan energi listrik.Energi diperoleh dari pemanfaatan variasi permukaan laut terutama disebabkan oleh efek gravitasi bulan, dikombinasikan dengan rotasi bumi dengan menangkap energi yang terkandung dalam perpindahan massa air akibat pasang surut. Listrik tenaga pasang surut adalah salah satu teknologi yang sedang berkembang saat ini, yang memanfaatkan energi potensial kinetik dan gravitasi pada aliran pasang surut. Jika dibandingkan dengan sumber-sumber energi terbarukan lainnya, aliran pasang surut merupakan sumber energi yang relatif dapat diandalkan, pergerakan pasang surut dapat diprediksi secara akurat dalam arah, waktu dan besarnya. Jika dibandingkan dengan energi angin dan surya, energi tidal memiliki sejumlah keunggulan antara lain: energi listrik yang dihasilkan bisa dimanfaatkan secara gratis, tidak membutuhkan

Upload: bayu-setia-pambudi

Post on 20-Jan-2016

151 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Tidal Energy

Tidal Energy (Energi Pasang Surut)Apa itu Tidal Energy?

Energi pasang surut (Tidal Energy) merupakan energi yang terbarukan. Prinsip kerja nya sama dengan pembangkit listrik tenaga air,dimana air dimanfaatkan untuk memutar turbin dan mengahasilkan energi listrik.Energi diperoleh dari pemanfaatan variasi permukaan laut terutama disebabkan oleh efek gravitasi bulan, dikombinasikan dengan rotasi bumi dengan menangkap energi yang terkandung dalam perpindahan massa air akibat pasang surut.

Listrik tenaga pasang surut adalah salah satu teknologi yang sedang berkembang saat ini, yang memanfaatkan energi potensial kinetik dan gravitasi pada aliran pasang surut. Jika dibandingkan dengan sumber-sumber energi terbarukan lainnya, aliran pasang surut merupakan sumber energi yang relatif dapat diandalkan, pergerakan pasang surut dapat diprediksi secara akurat dalam arah, waktu dan besarnya.

Jika dibandingkan dengan energi angin dan surya, energi tidal memiliki sejumlah keunggulan antara lain: energi listrik yang dihasilkan bisa dimanfaatkan secara gratis, tidak membutuhkan bahan bakar, tidak menimbulkan efek rumah kaca, produksi listrik stabil karena pasang surut air laut bisa diprediksi, lebih hemat ruang dan tidak membutuhkan teknologi konversi yang rumit. Kelemahan energi ini diantaranya adalah membutuhkan alat konversi yang handal yang mampu bertahan dengan kondisi lingkungan laut yang keras yang disebabkan antara lain oleh tingginya tingkat korosi dan kuatnya arus laut.

Energi pasang surut diperkirakan sekitar 500 sampai 1000 m kWh pertahun. Pembangkit listrik tenaga pasang surut (PLTPs) terbesar di dunia terdapat di muara sungai Rance di sebelah utara Perancis. Pembangkit listrik ini dibangun pada tahun 1966 dan berkapasitas 240 MW.

Dua jenis energi pasang surut yang dapat dimanfaatkan:

Page 2: Tidal Energy

1. Energi Kinetik: arus antara surut dan pasang surut bergelombang.

2. Energi Potensial: Selisih ketinggian antara pasang tinggi dan rendah.

Bagaimana Cara Kerja Turbin Bawah Air tersebut?

Cara kerja turbin tersebut sangat sederhana, ia bekerja seperti turbin angin, tetapi bilah-bilah turbin tersebut digerakkan oleh arus air, bukannya oleh angin.

Diagram berikut menunjukkan bagaimana gaya tarik gravitasi bulan dan matahari mempengaruhi pasang surut di Bumi. Besarnya tarik ini tergantung pada massa benda dan jarak yang jauh. Bulan memiliki efek yang lebih besar di bumi walaupun memiliki massa kurang dari matahari karena bulan jauh lebih dekat ke bumi. Gaya gravitasi bulan menyebabkan lautan untuk tonjolan sepanjang sumbu yang mengarah langsung ke bulan. Rotasi bumi menyebabkan naik turunnya gelombang.

Ketika matahari dan bulan berada di garis tarik gravitasi mereka di bumi menggabungkan dan menyebabkan “musim semi” pasang. Ketika diposisikan dalam diagram pertama di atas, 90 satu sama lain, tarik gravitasi mereka masing-masing menarik air ke arah yang berbeda, menyebabkan “perbani” pasang.

Periode rotasi bulan adalah sekitar 4 minggu, sementara satu rotasi bumi membutuhkan waktu 24 jam, ini menghasilkan siklus pasang surut sekitar 12,5 jam. Perilaku pasang surut mudah ditebak dan ini berarti bahwa jika dimanfaatkan, energi pasang surut bisa menghasilkan tenaga untuk

Page 3: Tidal Energy

periode waktu tertentu. Ini periode pembangkit listrik yang dapat digunakan untuk mengimbangi pembangkit dari bentuk-bentuk lain seperti fosil atau nuklir yang memiliki konsekuensi lingkungan. Meskipun hal ini berarti bahwa pasokan tidak akan memenuhi permintaan, mengimbangi bentuk berbahaya dari generasi merupakan titik awal yang penting untuk energi terbarukan.

Jenis-Jenis Pembangkit Listrik Tenaga Pasang Surut

Tidal Fences: biasanya dibangun antara pulau-pulau kecil atau antara daratan dan pulau-pulau. Putaran terjadi karena arus pasang surut untuk menghasilkan energi.

Teknologi Tidal Fence skala besar digunakan juga sebagai jem-batan penghubung antarpulau di antara selat. Menggunakan instalasi yang hampir sama dengan Tidal Power namun terpisah dengan turbin arus antara 5 sampai 8 knot (5.6 sampai 9 mil/jam) dapat dimanfaatkan energi lebih besar dari pembangkit listrik tenaga angin karena densitas air 832 kali lebih besar dari udara (5 knot arus = velositas angin 270 km/jam).

Skala besar pembangkit tenaga arus ini sepanjang 4 km telah dimulai dikerjakan di kepulauan Dalupiri dan Samar, Filipina sekaligus membuat jembatan penghubung pada empat pulaunya. Proyek ini disponsori oleh Blue Energy Power System-Canada yang telah mengomersialkan diri dengan berbagai modul turbin dalam berbagai skala. Diestimasi energi yang nantinya dihasilkan di Filipina ini maksimum sebesar 2200 MW dengan minimum rata-rata sebesar 1100 MW setiap hari. Hal ini didasarkan dengan kecepatan arus rata-rata sebesar 8 knots pada kedalaman sekitar 40 meter. Modul turbin Davis yang dipakai dapat mengonversi listrik pada lokasi tertentu seperti

Page 4: Tidal Energy

di sungai sebesar 5 kW sampai 500 kW sedangkan instalasi di laut bisa menghasilkan 200 MW sampai 8000 MW.

Barrage Tidal Plants: adalah jenis yang paling umum dari pembangkit pasang surut. Menggunakan bendungan untuk menjebak air, dan ketika mencapai ketinggian yang sesuai karena air pasang, air dilepaskan agar mengalir melalui turbin yang akan menggrakkan generator listrik.

Teluk yang ujungnya sempit sangat cocok diterapkan. Ketika air pasang menghasilkan tingkat air yang berbeda di dalam dan di luar dam, pintu-pintu air akan terbuka, air yang mengalir melewati turbin akan menjalankan generator untuk menghasilkan listrik. Pemanfaatan energi ini memerlukan daerah yang cukup luas untuk menampung air laut (reservoir area) dan bangunan dam bisa dijadikan jembatan transportasi. Tidal Power dibedakan menjadi dua yaitu kolam tunggal dan kolam ganda. Pada sistem pertama energi dimanfaatkan hanya di saat periode air surut atau air naik. Sedangkan sistem kolam ganda memanfaat-kan aliran dalam dua arah. Perbedaan tinggi antara permukaan air di kolam dan permukaan air laut pada instalasi ini semakin tinggi semakin baik. Di Jepang, sistem ini telah mulai dikembangkan di Laut Ariake, Kyushu yang memiliki variasi pasut tertinggi. Di muara sungai Severn, Inggris juga telah mulai direncanakan instalasi berskala besar untuk 12 GW listrik.

Tidal Turbines: Terlihat seperti turbin angin, sering tersusun dalam baris tapi berada di dalam air. Arus pasang surut memutar turbin untuk menciptakan energi.

Page 5: Tidal Energy

Teknologi ini berfungsi sangat baik pada arus pantai yang ber-gerak sekitar 3.6 dan 4.9 knots (4 dan 5.5 mph). Pada kecepatan ini, Turbin arus berdiameter 15 meter dapat menghasilkan energi sama dengan turbin angin yang berdiameter 60 meter. Lokasi ideal turbin arus pasut ini tentunya dekat dengan pantai pada kedalaman antara 20-30 meter. Energi listrik yang dihasilkan menurut Perusahaan Marine Current Turbine-Inggris adalah lebih besar dari 10 MW per 1 km2, dan 42 lokasi yang berpotensi di Inggris telah teridentifikasi perusahaan ini. Lokasi ideal lainnya yang dapat dikembangkan terdapat di Filipina, Cina dan tentunya Indonesia.

Penelitian pemanfaatan energi arus pasut sejak tahun 1920 te-lah dilakukan oleh beberapa ne-gara seperti Perancis, Amerika Serikat, Rusia dan Kanada. Se-telah lebih dari 40 tahun, stasiun Frances La Rance adalah satu-satunya industri Pembangkit Listrik Tenaga Arus Pasang Surut dengan skala besar di dunia. Memproduksi 240 MW listrik lewat instalasi Tidal Power melewati daerah estuari sungai Rance, dekat Saint Malo. Instalasi ini telah ada sejak 1966 dan menyuplai 90 persen kebutuhan listrik wilayah itu. Di Rusia, Murmansk memanfaatkan 0,4 MW listrik dari jenis yang sama. Tidak jauh dari Indonesia, ada Australia yang memanfaatkannya di Kimberly dan Cina sebesar 8 MW. Di Canada stasiun Annapolis Royal, Nova Scotia telah memproduksi sekitar 20 MW listrik Tidal Turbine untuk keperluan masyarakatnya. Di kota Hammerfest, Norwegia, listrik telah sukses dibangkitkan dengan memanfaatkan arus pasang di pantai dan mencukupi sebagian kebutuhan listrik kota dengan modul turbin Blades.

Generasi pertama Pembangkit Listrik Tidal:

- Tidal Fences

- Barriage style Tidal Power Plants

Generasi Kedua Pembangkit Listrik Tidal :

Tidal Underwater Wind turbines

- Vertical Axis

- Horizontal Axis

THAWT Device

Page 6: Tidal Energy

Kekurangan Pembangkit Listrik Tidal Generasi Kedua adalah saat ini biaya yang dikeluarkan masih mahal:

1. Mahal untuk membangun dan memelihara2. Sebuah fasilitas1.085MW bisa membutuhkan biaya sebanyak 1,2 miliar dolar AS untuk

membangun dan menjalankan.

Transverse Horizontal Axis Water Turbine (THAWT):

THAWT ini telah diusulkan sebagai perangkat yang dapat dengan mudah ditingkatkan dan membutuhkan lebih sedikit pondasi, bearings seals dan generator dari perangkat aliran aksial yang lebih konvensional. Perangkat THAWT merupakan varian horizontal digunakan pada turbin cross-flow Darrieus.

Sebuah partikel fluida melewatipertemuandua set bilahturbin cross-flow Darrieus. Salah satu sisididepan turbin sebagai tempat masuk fluida, dan di sisi belakang sebagai tempat fluida keluar.

Kelebihan dari perangkat ini adalah memungkinkan untuk membangun unit yang lebih panjang sehingga kekakuan dan kekuatan dapat ditingkatkan, mengurangi biaya keseluruhan dari pondasi, bantalan, seal, dan generator. Sebuah perangkat dengan skala penuh mungkin memiliki diameter 10 - 20 m dan akan beroperasi di kedalaman aliran 20 - 50 m.Ukuran THAWT tidak dibatasi oleh kedalaman air di mana peralatan tersebut ditempatkan. Pembangkit listrik hingga 100 mw dapat dicapai dengan sebuah rangkaian yang hanya tersidiri dari 10 perangkat THAWT.

Sebagai perbandingan, jika perangkat THAWT diperpanjang di wilayah yang sama saat ini sebagai perangkat aliran aksial, maka:

Page 7: Tidal Energy

Generator yang dibutuhkan lebih sedikit, Primary Seal yg dibutuhkan lebih sedikit, dan

Pondasi yang lebih sedikit.

Sehingga:

Biaya modal menjadil lebih rendah, Menurunkan biaya pemeliharaan, dan

Menurunkan biaya operasional

Potensi energi tidal di Indonesia termasuk yang terbesar di dunia. Sekarang inilah saatnya bagi Indonesia untuk mulai menggarap energi ini. Jika bangsa kita mampu memanfaatkan dan menguasai teknologi pemanfaatan energi tidal, ada dua keuntungan yang bisa diperoleh yaitu, pertama, keuntungan pemanfaatan energi tidal sebagai solusi pemenuhan kebutuhan energi nasional dan, kedua, kita akan menjadi negara yang mampu menjual teknologi tidal yang memberikan kontribusi terhadap devisa negara. Belajar dari India yang mampu menjadi salah satu pemain teknologi turbin angin dunia (dengan produk turbin angin Suzlon), maka tujuan yang kedua bukanlah hal yang terlalu muluk untuk kita wujudkan.

Page 8: Tidal Energy

Tidal Energy (Energi Pasang Surut)

Salah satu sumber energi terbarukan yaitu Ocean Energy (energi samudra). Energi samudra ada 3 macam yaitu energi pasang surut, energi gelombang laut, dan energi panas laut. Pada bagian ini akan dibahas Tidal Energy (Energi Pasang Surut).

Pasang surut menggerakkan air dalam jumlah besar setiap harinya dan pemanfaatannya dapat menghasilkan energi dalam jumlah yang cukup besar. Dalam sehari bisa terjadi hingga dua kali siklus pasang surut. Oleh karena waktu siklus bisa diperkirakan (kurang lebih setiap 12,5 jam sekali), suplai listriknya pun relatif lebih dapat diandalkan daripada pembangkit listrik bertenaga ombak. Namun demikian, hanya terdapat sekitar 20 tempat di dunia yang telah diidentifikasi sebagai tempat yang cocok untuk pembangunan pembangkit listrik bertenaga pasang surut ombak. Pada dasarnya ada dua metodologi untuk memanfaatkan energi pasang surut :

1. Dam Pasang Surut (Barrage Tidal System)

Prinsip KerjaTeknologi pasang surut dengan membangun dam merupakan teknologi yang paling lama  digunakan. Ekstrasi energi didapat dari perbedaan ketinggian antara air di dalam dam dan  diluar dam (laut). Dam yang dibangun untuk memanfaatkan siklus pasang surut jauh lebih besar daripada dam air sungai pada umumnya. Dam ini biasanya dibangun di muara sungai dimana terjadi pertemuan antara air sungai dengan air laut. Saat pasang air mengalir memasuki dam sampai kondisi tertentu lalu air tersebut ditahan, bila laut sudah surut air dialirkan kembali ke laut melewati turbin air sehingga energi listrik diperoleh.

Gambar 1   Prinsip Kerja Barrage Tidal System

AplikasiPembangkit listrik tenaga pasang surut (PLTPs) terbesar di dunia terdapat di muara sungai Rance di sebelah utara Perancis. Pembangkit listrik ini dibangun pada tahun 1966 dan berkapasitas 240

Page 9: Tidal Energy

MW. PLTPs La Rance didesain dengan teknologi canggih dan beroperasi secara otomatis, sehingga hanya membutuhkan dua orang saja untuk pengoperasian pada akhir pekan dan malam hari. PLTPs terbesar kedua di dunia terletak di Annapolis, Nova Scotia, Kanada dengan kapasitas?hanya 16 MW.Dalam perkembangannya sistem dam ini berdampak pada lingkungan, walau berhasil menghasilkan energi listrik lumayan besar, namun ekologi air berbagai jenis satwa yang berhubungan antara muara dan laut tidak berkembang biak dengan baik.

2. Turbin Lepas Pantai (Offshore Turbines)

Turbin lepas pantai ini lebih menyerupai pembangkit listrik tenaga angin versi bawah laut. Bentuk dari tidal turbine sangat beragam seperti halnya wind turbine. Tidal turbine terbesar dipasang Scotlandia berbobot 1300 ton dengan tinggi sekitar 22 m, dengan  kecepatan aliran laut 2.65 m/s mampu menghasilkan daya sampai dengan 4000 Twh setiap tahun, diharapkan turbin ini mampu digunakan lebih dari 1000 rumah tangga.

 

Gambar 2   Tidal Turbine di Dalam Laut

Keunggulannya dibandingkan metode pertama yaitu: lebih murah biaya instalasinya, dampak lingkungan yang relatif lebih kecil daripada pembangunan dam, dan persyaratan lokasinya pun lebih mudah sehingga dapat dipasang di lebih banyak tempat. Sistem ini tidak memerlukan bendungan, namun langsung terpasang di lautan lepas, gaya dorong dihasilkan dari pegerakan energi kinetik arus laut, dikarenakan densitas air lebih tinggi dari pada angin, offshore turbine dapat menghasilkan energi yang lebih besar dengan ukuran yang sama untuk wind turbine.

AplikasiBeberapa perusahaan yang mengembangkan teknologi turbin lepas pantai adalah: Blue Energy dari Kanada, Swan Turbines (ST) dari Inggris, dan Marine Current Turbines (MCT) dari Inggris.

Page 10: Tidal Energy

 

Gambar 3 Macam-Macam Jenis Turbin Lepas Pantai yang Digerakkan oleh Arus Pasang Surut. (a) Seagen Tidal Turbines Buatan MCT. (b) Tidal Stream Turbines Buatan Swan Turbines. (c) Davis Hydro Turbines dari Blue Energy. (d) Skema Komponen Davis Hydro Turbines Milik Blue Energy.

Prinsip KerjaTeknologi MCT bekerja seperti pembangkit listrik tenaga angin yang dibenamkan di bawah laut. Dua buah baling dengan diameter 15-20 meter memutar rotor yang menggerakkan generator yang terhubung kepada sebuah kotak gir (gearbox). Kedua baling tersebut dipasangkan pada sebuah sayap yang membentang horizontal dari sebuah batang silinder yang diborkan ke dasar laut. Turbin tersebut akan mampu menghasilkan 750-1500 kW per unitnya, dan dapat disusun dalam barisan-barisan sehingga menjadi ladang pembangkit listrik. Demi menjaga agar ikan dan makhluk lainnya tidak terluka oleh alat ini, kecepatan rotor diatur antara 10-20 rpm (sebagai perbandingan saja, kecepatan baling-baling kapal laut bisa berkisar hingga sepuluh kalinya).Dibandingkan dengan MCT dan jenis turbin lainnya, desain Swan Turbines memiliki beberapa perbedaan, yaitu: baling-balingnya langsung terhubung dengan generator listrik tanpa melalui kotak gir. Ini lebih efisien dan mengurangi kemungkinan terjadinya kesalahan teknis pada alat. Perbedaan kedua yaitu, daripada melakukan pemboran turbin ke dasar laut ST menggunakan pemberat secara gravitasi (berupa balok beton) untuk menahan turbin tetap di dasar laut.Adapun satu-satunya perbedaan mencolok dari Davis Hydro Turbines milik Blue Energy adalah poros baling-balingnya yang vertikal (vertical-axis turbines). Turbin ini juga dipasangkan di dasar laut menggunakan beton dan dapat disusun dalam satu baris bertumpuk membentuk pagar pasang surut (tidal fence) untuk mencukupi kebutuhan listrik dalam skala besar.

Kelebihan dan KekuranganAdapun kelebihan dan kekurangan dari tidal energy (energi pasang surut), diantaranya :Kelebihan:• Setelah dibangun, energi pasang surut dapat diperoleh secara gratis• Tidak menghasilkan gas rumah kaca ataupun limbah lainnya• Tidak membutuhkan bahan bakar

Page 11: Tidal Energy

• Biaya operasi rendah• Produksi listrik stabil• Pasang surut air laut dapat diprediksi• Turbin lepas pantai memiliki biaya instalasi rendah dan tidak menimbulkan dampak lingkungan yang besarKekurangan:• Biaya pembangunan sangat mahal• Meliputi area yang sangat luas sehingga merubah ekosistem lingkungan baik ke arah hulu maupun hilir hingga berkilo-kilometer• Hanya dapat mensuplai energi kurang lebih 10 jam setiap harinya, ketika ombak bergerak masuk ataupun keluar

Page 12: Tidal Energy

PEMBANGKIT LISTRIK TENAGA PASANG SURUT (PLTPs)1.           LATAR   BELAKANGSalah

PEMBANGKIT LISTRIK TENAGA PASANG SURUT (PLTPs)

1. 1.      LATAR BELAKANG

Salah satu potensi laut atau samudra yang belum banyak diketahui masyarakat umum adalah potensi energi laut yang menghasilkan listrik. Negra yang melakukan penelitan dan perkembangan potensi energi laut untuk menghasilkan listrik adalah inggris, Prancis, dan jepang.

Laut merupakan sumber kehidupan yang bisa memberikan manfaat tersendiri di berbagai aspek-aspek kehidupan misalnya saja kondisi pasang surut air laut yang dimafaatkan untuk membangkitkan suatu energi listrik yang besar, sehingga bisa digunakan dalam kehidupan kita yang sangat diperlukan sekali adanya listrik.

Secara umum, potensi energi laut yang dapat menghasilkan listrik dapat di bagi kedalam 3 bentuk potensi energi, yaitu ombak atau gelombang (wave energy), energi pasang surut (Tindal energy), dan hasil konversi energi panas laut(ocean thermal energy conversion).

Oleh kerena itu dengan adanya suatu ide-ide yang bisa membangkitkan suatu energi listrik sangatlah diperlukan sekali. Dalam hal ini akan dibahas masalah pembangkit tenaga listrik pasang surut baik dari alat pembangkitnya, bahan baku untuk memperlancar proses pembangkitan maupun cara kerja dari pada pembangkit sehingga bisa membangkitkan energi listrik.

1. 2.      PASANG SURUT

Pasang-surut (pasut) merupakan salah satu gejala alam yang tampak nyata di laut, yakni suatu gerakan vertikal (naik turunnya air laut secara teratur dan berulang-ulang) dari seluruh partikel massa air laut dari permukaan sampai bagian terdalam dari dasar laut. Gerakan tersebut disebabkan oleh pengaruh gravitasi (gaya tarik menarik) antara bumi dan bulan, bumi dan matahari, atau bumi dengan bulan dan matahari. Pasang-surut laut merupakan hasil dari gaya tarik gravitasi dan efek sentrifugal, yakni dorongan ke arah luar pusat rotasi. Hukum gravitasi Newton menyatakan, bahwa semua massa benda tarik menarik satu sama lain dan gaya ini tergantung pada besar massanya, serta jarak di antara massa tersebut. Gravitasi bervariasi secara langsung dengan massa, tetapi berbanding terbalik terhadap jarak. Sejalan dengan hukum di atas, dapat dipahami bahwa meskipun massa bulan lebih kecil dari massa matahari tetapi jarak bulan ke bumi jauh lebih kecil, sehingga gaya tarik bulan terhadap bumi pengaruhnya lebih besar dibanding matahari terhadap bumi. Kejadian yang sebenarnya dari gerakan pasang air laut sangat berbelit-belit,sebab gerakan tersebut tergantung pula pada rotasi bumi, angin, arus laut dan keadaan-keadaan lain yang bersifat setempat. Gaya tarik gravitasi menarik air laut ke arah bulan

Page 13: Tidal Energy

dan matahari dan menghasilkan dua tonjolan (bulge) pasang surut gravitasional di laut. Lintang dari tonjolan pasang surut ditentukan oleh deklinasi, yaitu sudut antara sumbu rotasi bumi dan bidang orbital bulan dan matahari (WARDIYATMOKO & BINTARTO,1994).

Pasang-surut purnama  (spring tides) terjadi ketika bumi, bulan dan matahari berada dalam suatu garis lurus (matahari dan bulan dalam keadaan oposisi). Pada saat itu, akan dihasilkan pasang tinggi yang sangat tinggi dan pasang rendah yang sangat rendah, karena kombinasi gaya tarik dari matahari dan bulan bekerja saling menguatkan. Pasang-surut purnama ini terjadi dua kali setiap bulan, yakni pada saat bulan baru dan bulan purnama (full moon).  Sedangkan pasang-surut perbani  (neap tides)  terjadi ketika bumi, bulan dan matahari membentuk sudut tegak lurus, yakni saat bulan membentuk sudut 90° dengan bumi. Pada saat itu akan dihasilkan pasang tinggi yang rendah dan pasang rendah yang tinggi. Pasang-surut perbani ini terjadi dua kali, yaitu pada saat bulan 1/4 dan 3/4 (WARDIYATMOKO & BINTARTO, 1994).

Pasang-sumt laut dapat didefinisikan pula sebagai gelombang yang dibangkitkan oleh adanya interaksi antara bumi, matahari dan bulan. Puncak gelombang disebut pasang tinggi (High Water/RW) dan lembah gelombang disebut surut/pasang rendah (Low Water/LW). Perbedaan vertikal antara pasang tinggi dan pasang rendah disebut rentang pasang-surut atau tunggang pasut (tidal range) yang bisa mencapai beberapa meter hingga puluhan meter. Periode pasang-surut adalah waktu antara puncak atau lembah gelombang ke puncak atau lembah gelombang berikutnya. Harga periode pasang-surut bervariasi antara 12 jam 25 menit hingga 24 jam 50 menit (SETIAWAN, 2006).

Menurut WIBISONO (2005), sebenarnya hanya ada tiga tipe dasar pasang-surut yang didasarkan pada periode dan keteraturannya, yaitu sebagai berikut:

1.  Pasang-surut tipe harian tunggal (diurnal type): yakni bila dalam waktu 24 jam terdapat 1 kali pasang dan 1 kali surut.

2.  Pasang-surut tipe tengah harian/ harian ganda (semi diurnal type): yakni bila dalam waktu 24 jam terdapat 2 kali pasang dan 2 kali surut.

3.  Pasang-surut tipe  campuran (mixed tides): yakni bila dalam waktu 24 jam terdapat bentuk campuran yang condong ke tipe harian tunggal atau condong ke tipe harian ganda.

Tipe pasang-surut ini penting diketahui untuk studi lingkungan, mengingat bila di suatu lokasi dengan tipe pasang-surut harian tunggal atau campuran condong harian tunggal terjadi pencemaran, maka dalam waktu kurang dari 24 jam, pencemar diharapkan akan tersapu bersih dari lokasi. Namun pencemar akan pindah ke lokasi lain, bila tidak segera dilakukan clean up. Berbeda dengan lokasi dengan tipe harian ganda, atau tipe campuran condong harian ganda, maka pencemar tidak akan segera tergelontor keluar. Dalam sebulan, variasi harian dari rentang pasang-surut berubah secara sistematis terhadap siklus bulan. Rentang pasang-surut juga bergantung pada bentuk perairan dan konfigurasi lantai samudera. Pasang-surut (pasut) di berbagai lokasi mempunyai ciri yang berbeda karena dipengaruhi oleh topografi dasar laut, lebar selat, bentuk teluk dan sebagainya.

Page 14: Tidal Energy

Di beberapa tempat, terdapat beda antara pasang tertinggi dan surut terendah (rentang pasut), bahkan di Teluk Fundy (Kanada) bisa mencapai 20 meter. Proses terjadinya pasut memang merupakan proses yang sangat kompleks, namun masih bisa diperhitungkan dan diramalkan. Pasut dapat diramalkan karena sifatnya periodik, dan untuk meramalkan pasut, diperlukan data amplitudo dan beda fasa dari masing-masing komponen pembangkit pasut. Ramalan pasut untuk suatu lokasi tertentu kini dapat dibuat dengan ketepatan yang cukup cermat (NONTJI, 2005).

Pasut tidak hanya mempengaruhi lapisan di bagian teratas saja, melainkan seluruh massa air yang bisa menimbulkan energi yang besar. Di perairan pantai, terutama di teluk atau selat sempit, gerakan naik turunnya muka air akan menimbulkan terjadinya arus pasut. Jika muka air bergerak naik, maka arus mengalir masuk, sedangkan pada saat muka air bergerak turun, arus mengalir ke luar. NONTJI (2005) mengatakan bahwa pengetahuan mengenai pasut sangat diperlukan dalam pembangunan pelabuhan, bangunan di pantai dan lepas pantai, serta dalam hal lain seperti pengelolaan dan budidaya di wilayah pesisir, pelayaran, peringatan dini terhadap bencana banjir air pasang, pola umum gerakan massa air dan sebagainya. Namun yang paling penting dari pasut adalah energinya dapat dimanfaatkan untuk menghasilkan tenaga listrik.

1. 3.      PEMBANGKIT LISTRIK TENAGA PASANG SURUT (PLTPs)

Pembanglit listrik tenagan pasang surut pada dasarnya ada dua metode untuk memanfaatkan energi pasang surut, yaitu Dam Pasang Surut (Tindal Barrages) dan Turbin Lepas Pantai ( Offshore Turbines).

1. Dam Pasang Surut (Tindal Barrages)

Pembangkit Listrik Tenaga Pasang Surut ini merupakan pembangkit yang menggunakan metode pembuatan dam pada hulu sungai yang berbuara ke laut yang memanfaatkan pasang surut air laut sehingga dapat menggerakan turbin dan generator. Pada metode ini merupakan penemuan pembangkit listrik terbarukan yang akan di jelaskan oleh penulis dibawah ini.

1. Turbin Lepas Pantai ( Offshore Turbines).

Pilihan lainnya ialah menggunakan turbin lepas pantai yang lebih menyerupai pembangkit listrik tenaga angin versi bawah laut. Keunggulannya dibandingkan metode pertama yaitu: lebih murah biaya instalasinya, dampak lingkungan yang relatif lebih kecil daripada pembangunan dam, dan persyaratan lokasinya pun lebih mudah sehingga dapat dipasang di lebih banyak tempat.

Beberapa perusahaan yang mengembangkan teknologi turbin lepas pantai adalah: Blue Energy dari Kanada, Swan Turbines (ST) dari Inggris, dan Marine Current Turbines (MCT) dari Inggris. Gambar hasil rekaan tiga dimensi dari ketiga jenis turbin tersebut ditampilkan dalam gambar 1.

Page 15: Tidal Energy

Pembangkit Energi Listrik Pasang Surut

Pembangkit Energi Listrik Pasang SurutEnergi pasang surut (tidal energy) merupakan energi yang terbarukan. Prinsip kerja nya sama dengan pembangkit listrik tenaga air, dimana air dimanfaatkan untuk memutar turbin dan menghasilkan energi listrik.

Keuntungan dari energi pasang surut ini adalah listrik yang dihasilkan bisa dimanfaatkan secara gratis, tidak membutuhkan bahan bakar, tidak menimbulkan efek rumah kaca, produksi listrik stabil karena pasang surut air laut bisa diprediksi.

Tetapi energi pasang surut bukanlah energi masa depan karena memiliki berbagai kelemahan. Diantaranya adalah biaya pembuatan damnya mahal dan dapat merusak ekosistem dipesisr pantai.Energi pasang surut diperkirakan dapat menghasilkan listrik 500 sampai 1000 MW pertahun. Pembangkit listrik tenaga pasang surut (PLTPs) terbesar di dunia terdapat di muara sungai Rance di sebelah utara Perancis. Pembangkit listrik ini dibangun pada tahun 1966 dan berkapasitas 240 MW. PLTPs yang terbesar nanti akan dibangun di Korea Selatan dengan kapasitas 300 MV yang mampu untuk mengaliri listrik untuk 200.000 rumah. Proyek ini akan selesai tahun 2015.

Energi pasang surut memanfaatkan pergerakan air laut dalam jumlah besar (pasang surut). Seperti yang kita ketahui pasang terjadi dua kali sehari, diperkirakan sekitar 12 jam sekali. Karena siklusnya bisa diprediksi, maka sangat mudah untuk memanfaatkan energi pasang surut ini.

Prinsip kerja energi pasang surut sangat sederhana. Saat pasang datang air laut masuk melewati dam melalui katup yang bisa membuka secara otomatis. Saat pasang surut, katup yang ada di dam tertutup sehingga air laut terjebak didalam dam. Air laut yang terjebak inilah yang dimanfaatkan untuk memutar turbin.

Page 16: Tidal Energy

Apa itu Tidal Energy?

Energi pasang surut (Tidal Energy) merupakan energi yang terbarukan. Prinsip kerja nya sama dengan pembangkit listrik tenaga air,dimana air dimanfaatkan untuk memutar turbin dan mengahasilkan energi listrik.Energi diperoleh dari pemanfaatan variasi permukaan laut terutama disebabkan oleh efek gravitasi bulan, dikombinasikan dengan rotasi bumi dengan menangkap energi yang terkandung dalam perpindahan massa air akibat pasang surut.

Listrik tenaga pasang surut adalah salah satu teknologi yang sedang berkembang saat ini, yang memanfaatkan energi potensial kinetik dan gravitasi pada aliran pasang surut. Jika dibandingkan dengan sumber-sumber energi terbarukan lainnya, aliran pasang surut merupakan sumber energi yang relatif dapat diandalkan, pergerakan pasang surut dapat diprediksi secara akurat dalam arah, waktu dan besarnya.

Jika dibandingkan dengan energi angin dan surya, energi tidal memiliki sejumlah keunggulan antara lain: energi listrik yang dihasilkan bisa dimanfaatkan secara gratis, tidak membutuhkan bahan bakar, tidak menimbulkan efek rumah kaca, produksi listrik stabil karena pasang surut air laut bisa diprediksi, lebih hemat ruang dan tidak membutuhkan teknologi konversi yang rumit. Kelemahan energi ini diantaranya adalah membutuhkan alat konversi yang handal yang mampu bertahan dengan kondisi lingkungan laut yang keras yang disebabkan antara lain oleh tingginya tingkat korosi dan kuatnya arus laut.

Energi pasang surut diperkirakan sekitar 500 sampai 1000 m kWh pertahun. Pembangkit listrik tenaga pasang surut (PLTPs) terbesar di dunia terdapat di muara sungai Rance di sebelah utara Perancis. Pembangkit listrik ini dibangun pada tahun 1966 dan berkapasitas 240 MW.

Dua jenis energi pasang surut yang dapat dimanfaatkan:

1. Energi Kinetik: arus antara surut dan pasang surut bergelombang.

2. Energi Potensial: Selisih ketinggian antara pasang tinggi dan rendah.

Page 17: Tidal Energy

Bagaimana Cara Kerja Turbin Bawah Air tersebut?

Cara kerja turbin tersebut sangat sederhana, ia bekerja seperti turbin angin, tetapi bilah-bilah turbin tersebut digerakkan oleh arus air, bukannya oleh angin.

Diagram berikut menunjukkan bagaimana gaya tarik gravitasi bulan dan matahari mempengaruhi pasang surut di Bumi. Besarnya tarik ini tergantung pada massa benda dan jarak yang jauh. Bulan memiliki efek yang lebih besar di bumi walaupun memiliki massa kurang dari matahari karena bulan jauh lebih dekat ke bumi. Gaya gravitasi bulan menyebabkan lautan untuk tonjolan sepanjang sumbu yang mengarah langsung ke bulan. Rotasi bumi menyebabkan naik turunnya gelombang.

Ketika matahari dan bulan berada di garis tarik gravitasi mereka di bumi menggabungkan dan menyebabkan “musim semi” pasang. Ketika diposisikan dalam diagram pertama di atas, 90 satu sama lain, tarik gravitasi mereka masing-masing menarik air ke arah yang berbeda, menyebabkan “perbani” pasang.

Periode rotasi bulan adalah sekitar 4 minggu, sementara satu rotasi bumi membutuhkan waktu 24 jam, ini menghasilkan siklus pasang surut sekitar 12,5 jam. Perilaku pasang surut mudah ditebak dan ini berarti bahwa jika dimanfaatkan, energi pasang surut bisa menghasilkan tenaga untuk periode waktu tertentu. Ini periode pembangkit listrik yang dapat digunakan untuk mengimbangi pembangkit dari bentuk-bentuk lain seperti fosil atau nuklir yang memiliki konsekuensi lingkungan. Meskipun hal ini berarti bahwa pasokan tidak akan memenuhi permintaan,

Page 18: Tidal Energy

mengimbangi bentuk berbahaya dari generasi merupakan titik awal yang penting untuk energi terbarukan.

Jenis-Jenis Pembangkit Listrik Tenaga Pasang Surut

Tidal Fences: biasanya dibangun antara pulau-pulau kecil atau antara daratan dan pulau-pulau. Putaran terjadi karena arus pasang surut untuk menghasilkan energi.

Teknologi Tidal Fence skala besar digunakan juga sebagai jem-batan penghubung antarpulau di antara selat. Menggunakan instalasi yang hampir sama dengan Tidal Power namun terpisah dengan turbin arus antara 5 sampai 8 knot (5.6 sampai 9 mil/jam) dapat dimanfaatkan energi lebih besar dari pembangkit listrik tenaga angin karena densitas air 832 kali lebih besar dari udara (5 knot arus = velositas angin 270 km/jam).

Skala besar pembangkit tenaga arus ini sepanjang 4 km telah dimulai dikerjakan di kepulauan Dalupiri dan Samar, Filipina sekaligus membuat jembatan penghubung pada empat pulaunya. Proyek ini disponsori oleh Blue Energy Power System-Canada yang telah mengomersialkan diri dengan berbagai modul turbin dalam berbagai skala. Diestimasi energi yang nantinya dihasilkan di Filipina ini maksimum sebesar 2200 MW dengan minimum rata-rata sebesar 1100 MW setiap hari. Hal ini didasarkan dengan kecepatan arus rata-rata sebesar 8 knots pada kedalaman sekitar 40 meter. Modul turbin Davis yang dipakai dapat mengonversi listrik pada lokasi tertentu seperti di sungai sebesar 5 kW sampai 500 kW sedangkan instalasi di laut bisa menghasilkan 200 MW sampai 8000 MW.

Page 19: Tidal Energy

Barrage Tidal Plants: adalah jenis yang paling umum dari pembangkit pasang surut. Menggunakan bendungan untuk menjebak air, dan ketika mencapai ketinggian yang sesuai karena air pasang, air dilepaskan agar mengalir melalui turbin yang akan menggrakkan generator listrik.

Teluk yang ujungnya sempit sangat cocok diterapkan. Ketika air pasang menghasilkan tingkat air yang berbeda di dalam dan di luar dam, pintu-pintu air akan terbuka, air yang mengalir melewati turbin akan menjalankan generator untuk menghasilkan listrik. Pemanfaatan energi ini memerlukan daerah yang cukup luas untuk menampung air laut (reservoir area) dan bangunan dam bisa dijadikan jembatan transportasi. Tidal Power dibedakan menjadi dua yaitu kolam tunggal dan kolam ganda. Pada sistem pertama energi dimanfaatkan hanya di saat periode air surut atau air naik. Sedangkan sistem kolam ganda memanfaat-kan aliran dalam dua arah. Perbedaan tinggi antara permukaan air di kolam dan permukaan air laut pada instalasi ini semakin tinggi semakin baik. Di Jepang, sistem ini telah mulai dikembangkan di Laut Ariake, Kyushu yang memiliki variasi pasut tertinggi. Di muara sungai Severn, Inggris juga telah mulai direncanakan instalasi berskala besar untuk 12 GW listrik.

Tidal Turbines: Terlihat seperti turbin angin, sering tersusun dalam baris tapi berada di dalam air. Arus pasang surut memutar turbin untuk menciptakan energi.

Page 20: Tidal Energy

Teknologi ini berfungsi sangat baik pada arus pantai yang ber-gerak sekitar 3.6 dan 4.9 knots (4 dan 5.5 mph). Pada kecepatan ini, Turbin arus berdiameter 15 meter dapat menghasilkan energi sama dengan turbin angin yang berdiameter 60 meter. Lokasi ideal turbin arus pasut ini tentunya dekat dengan pantai pada kedalaman antara 20-30 meter. Energi listrik yang dihasilkan menurut Perusahaan Marine Current Turbine-Inggris adalah lebih besar dari 10 MW per 1 km2, dan 42 lokasi yang berpotensi di Inggris telah teridentifikasi perusahaan ini. Lokasi ideal lainnya yang dapat dikembangkan terdapat di Filipina, Cina dan tentunya Indonesia.

Penelitian pemanfaatan energi arus pasut sejak tahun 1920 te-lah dilakukan oleh beberapa ne-gara seperti Perancis, Amerika Serikat, Rusia dan Kanada. Se-telah lebih dari 40 tahun, stasiun Frances La Rance adalah satu-satunya industri Pembangkit Listrik Tenaga Arus Pasang Surut dengan skala besar di dunia. Memproduksi 240 MW listrik lewat instalasi Tidal Power melewati daerah estuari sungai Rance, dekat Saint Malo. Instalasi ini telah ada sejak 1966 dan menyuplai 90 persen kebutuhan listrik wilayah itu. Di Rusia, Murmansk memanfaatkan 0,4 MW listrik dari jenis yang sama. Tidak jauh dari Indonesia, ada Australia yang memanfaatkannya di Kimberly dan Cina sebesar 8 MW. Di Canada stasiun Annapolis Royal, Nova Scotia telah memproduksi sekitar 20 MW listrik Tidal Turbine untuk keperluan masyarakatnya. Di kota Hammerfest, Norwegia, listrik telah sukses dibangkitkan dengan memanfaatkan arus pasang di pantai dan mencukupi sebagian kebutuhan listrik kota dengan modul turbin Blades.

Generasi pertama Pembangkit Listrik Tidal:

- Tidal Fences

- Barriage style Tidal Power Plants

Generasi Kedua Pembangkit Listrik Tidal :

Tidal Underwater Wind turbines

- Vertical Axis

- Horizontal Axis

THAWT Device

Page 21: Tidal Energy

Kekurangan Pembangkit Listrik Tidal Generasi Kedua adalah saat ini biaya yang dikeluarkan masih mahal:

1. Mahal untuk membangun dan memelihara2. Sebuah fasilitas1.085MW bisa membutuhkan biaya sebanyak 1,2 miliar dolar AS untuk

membangun dan menjalankan.

Transverse Horizontal Axis Water Turbine (THAWT):

THAWT ini telah diusulkan sebagai perangkat yang dapat dengan mudah ditingkatkan dan membutuhkan lebih sedikit pondasi, bearings seals dan generator dari perangkat aliran aksial yang lebih konvensional. Perangkat THAWT merupakan varian horizontal digunakan pada turbin cross-flow Darrieus.

Sebuah partikel fluida melewatipertemuandua set bilahturbin cross-flow Darrieus. Salah satu sisididepan turbin sebagai tempat masuk fluida, dan di sisi belakang sebagai tempat fluida keluar.

Kelebihan dari perangkat ini adalah memungkinkan untuk membangun unit yang lebih panjang sehingga kekakuan dan kekuatan dapat ditingkatkan, mengurangi biaya keseluruhan dari pondasi, bantalan, seal, dan generator. Sebuah perangkat dengan skala penuh mungkin memiliki diameter 10 - 20 m dan akan beroperasi di kedalaman aliran 20 - 50 m.Ukuran THAWT tidak dibatasi oleh kedalaman air di mana peralatan tersebut ditempatkan. Pembangkit listrik hingga 100 mw dapat dicapai dengan sebuah rangkaian yang hanya tersidiri dari 10 perangkat THAWT.

Sebagai perbandingan, jika perangkat THAWT diperpanjang di wilayah yang sama saat ini sebagai perangkat aliran aksial, maka:

Page 22: Tidal Energy

Generator yang dibutuhkan lebih sedikit, Primary Seal yg dibutuhkan lebih sedikit, dan

Pondasi yang lebih sedikit.

Sehingga:

Biaya modal menjadil lebih rendah, Menurunkan biaya pemeliharaan, dan

Menurunkan biaya operasional

Potensi energi tidal di Indonesia termasuk yang terbesar di dunia. Sekarang inilah saatnya bagi Indonesia untuk mulai menggarap energi ini. Jika bangsa kita mampu memanfaatkan dan menguasai teknologi pemanfaatan energi tidal, ada dua keuntungan yang bisa diperoleh yaitu, pertama, keuntungan pemanfaatan energi tidal sebagai solusi pemenuhan kebutuhan energi nasional dan, kedua, kita akan menjadi negara yang mampu menjual teknologi tidal yang memberikan kontribusi terhadap devisa negara. Belajar dari India yang mampu menjadi salah satu pemain teknologi turbin angin dunia (dengan produk turbin angin Suzlon), maka tujuan yang kedua bukanlah hal yang terlalu muluk untuk kita wujudkan.