studi sertifikasi kaca depan kokpit (flight deck windshield)

67
LAPORAN TUGAS BESAR STUDI SERTIFIKASI KACA DEPAN KOKPIT (FLIGHT DECK WINDSHIELD) Laporan ini disusun sebagai salah satu tugas besar mata kuliah AE4060 Kelaikan Udara Disusun oleh : Adrian Setyadharma 13613013 Rowi James 13613045 Israel Gamaliel Sidabutar 13613052 Dosen : Dr. Ir. Rais Zain M.Eng. PROGRAM STUDI AERONOTIKA DAN ASTRONOTIKA FAKULTAS TEKNIK MESIN DAN DIRGANTARA INSTITUT TEKNOLOGI BANDUNG 2016

Upload: israel-gamaliel-sidabutar

Post on 10-Feb-2017

102 views

Category:

Engineering


13 download

TRANSCRIPT

Page 1: Studi sertifikasi kaca depan kokpit (flight deck windshield)

LAPORAN TUGAS BESAR

STUDI SERTIFIKASI KACA DEPAN KOKPIT

(FLIGHT DECK WINDSHIELD)

Laporan ini disusun sebagai salah satu tugas besar mata kuliah

AE4060 Kelaikan Udara

Disusun oleh :

Adrian Setyadharma 13613013

Rowi James 13613045

Israel Gamaliel Sidabutar 13613052

Dosen :

Dr. Ir. Rais Zain M.Eng.

PROGRAM STUDI AERONOTIKA DAN ASTRONOTIKA

FAKULTAS TEKNIK MESIN DAN DIRGANTARA

INSTITUT TEKNOLOGI BANDUNG

2016

Page 2: Studi sertifikasi kaca depan kokpit (flight deck windshield)

DAFTAR ISI

BAB 1………………………………………………………………..........................................1

PENDAHULUAN……………………………………………………………………………..1

1.1 LATAR BELAKANG………………………………………………………………...1

1.2 RUMUSAN MASALAH…………………………………….......................................1

1.3 RUANG LINGKUP KAJIAN………………………………………………………...1

1.4 TUJUAN……………………………………………………………………………….2

1.5 METODE DAN TEKNIK PENGUMPULAN DATA………………………………2

1.6 SISTEMATIKA PENULISAN……………………………………………………….2

BAB 2…………………………………………………………………………………………..3

DESKRIPSI PRODUK……………………………………………………………………….3

2.1 DESKRIPSI PRODUK……………………………………………………………….3

2.2 PERUSAHAN PRODUSEN WINDSHIELD………………………………………...4

BAB 3…………………………………………………………………………………………..7

REGULASI……………………………………………………………………………………7

3.1 SERVICE BULLETIN DAN AIRWORTHINESS DIRECTIVE…………………….7

3.2 TECHNICAL STANDARD ORDER…………………………………………….......10

3.3 REGULASI…………………………………………………………………………..11

BAB 4…………………………………………………………………………………………32

PROSES PENGAJUAN PMA DAN TSO…………………………………………….........32

4.1 PART MANUFACTURER APPROVAL…………………………………………….32

4.2 TECHNICAL STANDARD ORDER………………………………………………...34

BAB 5………………………………………………………………………………………....41

PENGUJIAN………………………………………………………………………………....41

5.1 UJI BIRD STRIKE…………………………………………………………………...41

5.2 UJI KEKUATAN WINDSHIELD…………………………………………………..45

5.3 UJI MATERIAL WINDSHIELD…………………………………………………...49

BAB 6………………………………………………………………………………………....49

TEMPAT PENGUJIAN……………………………………………………………………..64

DAFTAR PUSTAKA………………………………………………………………………...65

Page 3: Studi sertifikasi kaca depan kokpit (flight deck windshield)

1

BAB 1 PENDAHULUAN

1.1 LATAR BELAKANG

Industri penerbangan merupakan industri yang memiliki teknologi

tercanggih dan menjadi salah satu industri yang menjadi pionir dalam

perkembangan teknologi. Sebagian besar teknologi yang diterapkan dalam

industri transportasi bermula dari industri penerbangan. Dengan demikian,

industri penerbangan adalah industri yang sangat penting untuk

dikembangkan oleh sebuah negara.

Indonesia sebagai sebuah negara sudah memiliki pengalaman di industri

penerbangan. Pengalaman tersebut tentu akan lebih baik jika terus

dikembangkan agar dapat membawa industri penerbangan di Indonesia ke

arah yang lebih baik. Indonesia harus mampu merangsang munculnya

industri-industri penerbangan di dalam negeri sehingga Indonesia tidak

perlu bergantung kepada pihak asing dalam hal teknologi. Industri-industri

penerbangan yang berpotensi dikembangkan di Indonesia adalah industri

manufaktur pesawat udara, industri transportasi udara, industri part

pendukung pesawat udara, dan industri Maintenance, Repair, and Overhaul

(MRO).

1.2 RUMUSAN MASALAH

Laporan ini akan membahas mengenai salah satu produk dari industri part

pendukung pesawat udara, yaitu jendela pada flight deck atau yang dikenal

dengan windshield. Laporan ini akan membahas mengenai syarat-syarat apa

saja yang diperlukan untuk dapat memproduksi windshield untuk pesawat

udara dan juga mengenai persiapan-persiapan untuk mendirikan industri

windshield di Indonesia. Hal-hal tersebut bertolak dari perlunya Indonesia

mengembangkan industri penerbangan dalam negeri.

1.3 RUANG LINGKUP KAJIAN

Berikut ini adalah ruang lingkup mengenai kajian dalam laporan ini

Deskripsi mengenai windshield pada pesawat udara

Informasi mengenai produsen windshield yang ada

Regulasi-regulasi yang digunakan dalam proses sertifikasi windshield

Daftar tempat pengujian yang dapat digunakan

Page 4: Studi sertifikasi kaca depan kokpit (flight deck windshield)

2

1.4 TUJUAN

Laporan ini disusun dengan tujuan sebagai berikut

Sebagai salah satu syarat pencapaian mata kuliah AE4060 Kelaikan

Udara.

Memberikan deskripsi mengenai windshield pada pesawat udara.

Memberikan informasi mengenai aspek-aspek kelaikan udara yang

harus dipenuhi untuk memproduksi windshield pada pesawat udara.

1.5 METODA DAN TEKNIK PENGUMPULAN DATA

Metoda yang digunakan untuk mengumpulkan data dalam penyusunan

laporan adalah sebagai berikut

Studi literatur yang dilakukan dengan mempelajari regulasi kelaikan udara

yang berlaku di Indonesia, sumber-sumber valid di internet yang

menjelaskan mengenai windshield pada pesawat udara, dan juga laman dari

beberapa perusahaan pembuat windshield pada pesawat udara.

Diskusi kelompok yang dilakukan sebagai suplemen dari informasi-

informasi yang diperoleh dari studi literatur.

1.6 SISTEMATIKA PENULISAN

Laporan ini terdiri dari lima bab dengan rincian sebagai berikut

BAB 1 Pendahuluan yang menjelaskan mengenai pendahuluan, rumusan

majalah, ruang lingkup kajian, tujuan, metoda, dan teknik pengumpulan

data.

BAB 2 Deskripsi Produk yang menjelaskan mengenai deskripsi produk, dan

perusahaan produsen windshield.

BAB 3 Deskripsi Regulasi dan Means of Compliance mengenai regulasi

yang digunakan , cara melakukan pemenuhan regulasi , dan tempat yang

dapat digunakan untuk testing windshield.

Page 5: Studi sertifikasi kaca depan kokpit (flight deck windshield)

3

BAB 2 DESKRIPSI PRODUK

2.1 DESKRIPSI PRODUK

Jendela pada pesawat udara dipasang dengan tujuan agar penumpang dapat

melihat keadaan di luar kabin. Akses visual kepada kondisi di luar kabin

juga adalah salah satu persyaratan yang harus dipenuhi oleh perusahaan

manufaktur pesawat udara sebagai bagian dari regulasi kelaikan udara.

Jendela pada pesawat udara membuat para penumpang lebih sadar dan

tanggap terhadap kondisi di luar kabin. Hal tersebut tentu meningkatkan

tingkat keselamatan pada operasi penerbangan.

Pesawat udara memiliki dua jenis jendela berdasarkan letak

pemasangannya, yaitu jendela pada kabin dan jendela pada flight deck

(windshield). Jendela pada kabin dipasang pada kabin dan memungkinkan

penumpang untuk melihat kondisi di luar kabin. Windshield adalah kaca dan

frame yang ada di daerah flight deck bagian depan. Windshield

memungkinkan kru (captain dan first officer) untuk melihat kondisi di luar

pesawat yang menunjang proses pengendalian pesawat.

Windshield harus didesain kuat dan ringan sama seperti jendela pada kabin.

Windshield harus menahan tekanan yang dihasilkan oleh kabin yang

bertekanan. Kabin bertekanan sangat penting untuk pesawat yang terbang

pada ketinggian lebih dari 10.000 kaki karena akan berpengaruh pada

kenyamanan penumpang selama penerbangan. Syarat tambahan yang harus

dimiliki windshield adalah harus mampu memberikan pengelihatan yang

jelas kepada pilot dalam kondisi alam tertentu seperti hujan, harus mampu

dibuka agar dapat menjadi salah satu jalan keluar untuk kru saat darurat, dan

mampu tahan terhadap bird strike. Dengan demikian, windshield berbeda

dengan jendela kabin dalam proses sertifikasi karena harus memperhatikan

regulasi mengenai Pilot Compartment View.

Windshield yang dimaksudkan dalam laporan ini adalah kaca beserta

struktur penahannya. Wiper sendiri tidak termasuk di dalam komponen

windhsield. Wiper merupakan salah satu bentuk jawaban dari CASR part

23.773 poin b dan CASR part 25.773 poin b(1). Metode lain yang dapat

Page 6: Studi sertifikasi kaca depan kokpit (flight deck windshield)

4

digunakan untuk menjawab CASR part 23.773 poin b dan CASR part

25.773 poin b(1) adalah dengan menggunakan bleed air, electrically heated

wire, dan menggunakan bursting speed.

Gambar 2.1. Windshield

2.2 PERUSAHAAN PRODUSEN WINDSHIELD

2.2.1 Perusahaan di Luar Negeri

Berikut ini adalah beberapa contoh perusahaan di luar negeri yang

sudah dapat memproduksi windshield

LP Aero merupakan salah satu produsen ternama dunia untuk

windshield pesawat udara yang berbasis di Amerika Serikat. LP

Aero Plastic sudah menjadi PMA yang sudah mendapatkan sertifikat

dari FAA. LP Aero Plastic sudah melayani manufaktur windshield

untuk pesawat terbang selama 60 tahun.

Page 7: Studi sertifikasi kaca depan kokpit (flight deck windshield)

5

PPG Aerospace Transparencies sudah memasok berbagai jenis

windshield untuk Airbus, Boeing, Embraer, dan Bombardier. PPG

adalah OEM untuk Boeing 737, 747, 757, 767, 777, dan 787. PPG

juga menjadi pemasok tunggal untuk teknologi windshield Ateos

milik 787. PPG Aerospace memasok windshield untuk A320, A330,

dan A340. Kelebihan produk dari PPG Aerospace adalah umur

gunanya yang panjang sehingga mampu menekan biaya operasional

bagi maskapai.

Pada tahun 2011 sudah memproduksi lebih dari 10000 FAA-PMA

untuk 1000 model pesawat

Aircraft Windshield Co. adalah produsen windshield yang berbasis

di California Amerika. Aircraft Windshield Co. sudah menjadi

produsen windshield pesawat udara selama 54 tahun. Pada tahun

2015, Aircraft Windshield Co. berkolaborasi dengan Mark Ferrara

dari California Research and Design untuk memproduksi mobil

pertama di dunia.yang dibuat dengan 3d printing

Page 8: Studi sertifikasi kaca depan kokpit (flight deck windshield)

6

GKN Aerospace adalah industri yang memproduksi windshield

untuk pesawat udara. GKN Aerospace memiliki beberapa kelebihan

secara korporat yaitu vertical acrylic support and in house grid

manufacturing, kemampuan untuk melakukan pengujian termasuk

bird test, dan kemampuan untuk melakukan riset dan

pengembangan. Pesawat-pesawat yang menggunakan produk GKN

Aerospace diantaranya adalah Airbus A300, A320, A330, dan A340,

Boeing 737,747,757,767, dan 777, Learjet 35/45/60, dan Hawker

800.

Lee Aerospace sudah memproduksi windshield sejak 1989. Lee

Aerospace memiliki kemampuan untuk melakukan manufaktur,

perbaikan, pemasangan, hingga inspeksi.

2.2.2 Perusahaan di Indonesia

Berdasarkan data pada dokumen yang berjudul SERTIFIKASI

TRANSPARANSI PADA JENDELA KABIN PESAWAT UDARA pada

halaman 9 menyatakan bahwa di Indonesia terdapat dua kandidat

perusahaan yang mampu membuat transparansi jendela kabin.

Perusahaan-perusahaan tersebut adalah PT. Ashimas Flat Glass Tbk

dan PT. Surya Adhitia Fortuna Glass. Kedua perusahaan tersebut

sudah cukup berpengalaman dalam dunia produksi kaca dan jika

digadang-gadang mampu memproduksi jendela kabin maka penulis

cukup yakin bahwa perusahaan-perusahaan tersebut juga mampu

membuat windshield. N219 sudah memiliki windshield yang

diproduksi oleh perusahaan dalam negeri. Perusahaan tersebut

adalah perusahaan yang biasa memproduksi kaca mobil. Namun

penulis tidak dapat menemukan nama perusahaan yang dimaksud.

Page 9: Studi sertifikasi kaca depan kokpit (flight deck windshield)

7

BAB 3 REGULASI

3.1. SERVICE BULLETIN DAN AIRWORTHINESS DIRECTIVE

Service Bulletin adalah sebuah bulletin yang berperan sebagai saran dan

umumnya tidak wajib. Adapun Service Bulletin memuat saran-saran

mengenai perbaikan produk yang dikeluarkan oleh pembuat pesawat udara

untuk pengguna-pengguna pesawat udara tersebut. Dalam beberapa kasus

tertentu, pembuat pesawat udara dapat mengeluarkan Service Bulletin yang

bersifat mandatory.

Airworthiness Directive merupakan arahan yang bersifat wajib dipatuhi dan

disanggupi oleh para pengguna pesawat mengenai keadaan yang berbahaya

(tidak aman) menyangkut pesawat udara yang terkait.

3.1.1 Contoh Service Bulletin

Page 10: Studi sertifikasi kaca depan kokpit (flight deck windshield)

8

Page 11: Studi sertifikasi kaca depan kokpit (flight deck windshield)

9

3.1.2 Contoh Airworthiness Directive

Page 12: Studi sertifikasi kaca depan kokpit (flight deck windshield)

10

3.2 TECHNICAL STANDARD ORDER

Setelah melakukan pencarian di internet mengenai TSO untuk bagian

transparencies, penulis tidak dapat menemukan TSO yang membahas

mengenai bagian tersebut. Penulis hanya menemukan beberapa Advisory

Circular (AC) mengenai standar material yang dapat digunakan sebagai

transparencies, seperti pada AC No. 23-27, yang kemudian mengacu pada

standar SAE-AMS-P-83310 untuk material akrilik atau MIL-PRF-8184

Type I untuk material polycarbonate as-cast dengan aplikasi untuk

penarikan (stretching) atau Type II untuk material lembaran polycarbonate

as-cast saja. Untuk material polycarbonate dibutuhkan klasifikasi Class 2,

untuk meningkatkan ketahanan terhadap absorpsi kelembaban. Untuk

contoh dokumen tersedia di bagian lampiran laporan ini. Contoh yang

digunakan adalah MIL-PRF-8184F.16 . Pada intinya, isi dari dokumen

MIL-PRF-8184F membahas spesifikasi prestasi (performance) dari

lembaran plastik akrilik termodifikasi. Spesifikasi ini mencakup kualitas

optik dan ketransparanan dari lembaran akrilik termodifikasi tersebut.

Kemudian dituliskan mengenai apa saja kebutuhan yang diperlukan. Seperti

kualifikasi, sifat material (warna, dimensi, dan ketebalan), optical

uniformity, dan formability. Selain itu dituliskan juga metode-metode yang

dilakukan untuk verifikasi data, pengemasan produk, serta catatan penting

mengenai produk yang dibahas.

Page 13: Studi sertifikasi kaca depan kokpit (flight deck windshield)

11

3.3 REGULASI

Dalam laporan ini, kami menggunakan beberapa regulasi yang terkait, yaitu:

CASR Part 25.365 Pressurized Cabin Loads

CASR Part 25.571 Damage Tolerance and Fatigue Evaluation of

Structure

CASR Part 23.773 Pilot Compartment View

CASR Part 25.773 Pilot Compartment View

CASR Part 23.775 Windshields and Windows

CASR Part 25.775 Windshields and Windows

CASR Part 25.809 Emergency Exit Arrangement

CASR Part 25.843 Tests for Pressurized Cabin

CASR Part 25.1419 Ice Protection

CASR Part 25.1529 Instructions for Continued Airworthiness

Page 14: Studi sertifikasi kaca depan kokpit (flight deck windshield)

12

3.3.1 CASR Part 25.365 Pressurized Cabin Loads

For each pressurized compartment, the following apply:

(a) The airplane structure must be strong enough to withstand the

flight loads combined with pressure differential loads from zero up

to the maximum relief valve setting.

(b) The external pressure distribution in flight, and stress

concentrations and fatigue effects must be accounted for.

(c) If landings may be made with the compartment pressurized,

landing loads must be combined with pressure differential loads

from zero up to the maximum allowed during landing.

(d) The airplane structure must be designed to be able to withstand

the pressure differential loads corresponding to the maximum relief

valve setting multiplied by a factor of 1.33 for airplanes to be

approved for operation to 45,000 feet or by a factor of 1.67 for

airplanes to be approved for operation above 45,000 feet, omitting

other loads.

(e) Any structure, component or part, inside or outside a pressurized

compartment, the failure of which could interfere with continued

safe flight and landing, must be designed to withstand the effects of a

sudden release of pressure through an opening in any compartment

at any operating altitude resulting from each of the following

conditions:

(1) The penetration of the compartment by a portion of an engine

following an engine disintegration;

(2) Any opening in any pressurized compartment up to the size

H(o) in square feet; however, small compartments may be

combined with an adjacent pressurized compartment and both

considered as a single compartment for openings that cannot

reasonably be expected to be confined to the small compartment.

The size H(o) must be computed by the following formula:

Ho = P.As

where,

Page 15: Studi sertifikasi kaca depan kokpit (flight deck windshield)

13

Ho = Maximum opening in square feet, need not exceed 20 square

feet.

P = (As/6240) + 0.024

As = Maximum cross-sectional area of the pressurized shell normal

to the longitudinal axis, in square feet; and

(3) The maximum opening caused by airplane or equipment

failures not shown to be extremely improbable.

(f) In complying with paragraph (e) of this section, the fail-safe

features of the design may be considered in determining the

probability of failure or penetration and probable size of openings,

provided that possible improper operation of closure devices and

inadvertent door openings are also considered. Furthermore, the

resulting differential pressure loads must be combined in a rational

and conservative manner with 1 g level flight loads and any loads

arising from emergency depressurization conditions. These loads

may be considered as ultimate conditions; however, any

deformations associated with these conditions must not interfere

with continued safe flight and landing. The pressure relief provided

by intercompartment venting may also be considered.

(g) Bulkheads, floors, and partitions in pressurized compartments for

occupants must be designed to withstand the conditions specified in

paragraph (e) of this section. In addition, reasonable design

precautions must be taken to minimize the probability of parts

becoming detached and injuring occupants while in their seats.

Page 16: Studi sertifikasi kaca depan kokpit (flight deck windshield)

14

3.3.2 CASR Part 25.571 Damage Tolerance and Fatigue Evaluation of

Structure

(a) General. An evaluation of the strength, detail design, and

fabrication must show that catastrophic failure due to fatigue,

corrosion, manufacturing defects, or accidental damage, will be

avoided throughout the operational life of the airplane. This

evaluation must be conducted in accordance with the provisions of

paragraphs (b) and (e) of this section, except as specified in

paragraph (c) of this section, for each part of the structure that could

contribute to a catastrophic failure (such as wing, empennage,

control surfaces and their systems, the fuselage, engine mounting,

landing gear, and their related primary attachments). For turbojet

powered airplanes, those parts that could contribute to a catastrophic

failure must also be evaluated under paragraph (d) of this section. In

addition, the following apply:

(1) Each evaluation required by this section must include -

(i) The typical loading spectra, temperatures, and

humidities expected in service;

(ii) The identification of principal structural elements and

detail design points, the failure of which could cause

catastrophic failure of the airplane; and

(iii) An analysis, supported by test evidence, of the

principal structural elements and detail design points

identified in paragraph (a)(1)(ii) of this section.

(2) The service history of airplanes of similar structural design,

taking due account of differences in operating conditions and

procedures, may be used in the evaluations required by this section.

(3) Based on the evaluations required by this section, inspections

or other procedures must be established, as necessary, to prevent

catastrophic failure, and must be included in the Airworthiness

Limitations section of the Instructions for Continued Airworthiness

required by sec. 25.1529. The limit of validity of the engineering

Page 17: Studi sertifikasi kaca depan kokpit (flight deck windshield)

15

data that supports the structural maintenance program (hereafter

referred to as LOV), stated as a number of total accumulated flight

cycles or flight hours or both, established by this section must also

be included in the Airworthiness Limitations section of the

Instructions for Continued Airworthiness required by sec. 25.1529.

Inspection thresholds for the following types of structure must be

established based on crack growth analyses and/or tests, assuming

the structure contains an initial flaw of the maximum probable size

that could exist as a result of manufacturing or service-induced

damage:

(i) Single load path structure, and

(ii) Multiple load path ―fail-safe‖ structure and crack arrest

―fail-safe‖ structure, where it cannot be demonstrated that

load path failure, partial failure, or crack arrest will be

detected and repaired during normal maintenance,

inspection, or operation of an airplane prior to failure of the

remaining structure.

(b) Damage-tolerance evaluation. The evaluation must include a

determination of the probable locations and modes of damage due to

fatigue, corrosion, or accidental damage. Repeated load and static

analyses supported by test evidence and (if available) service

experience must also be incorporated in the evaluation. Special

consideration for widespread fatigue damage must be included

where the design is such that this type of damage could occur. An

LOV must be established that corresponds to the period of time,

stated as a number of total accumulated flight cycles or flight hours

or both, during which it is demonstrated that widespread fatigue

damage will not occur in the airplane structure. This demonstration

must be by full-scale fatigue test evidence. The type certificate may

be issued prior to completion of full-scale fatigue testing, provided

the Administrator has approved a plan for completing the required

tests. In that case, the Airworthiness Limitations section of the

Page 18: Studi sertifikasi kaca depan kokpit (flight deck windshield)

16

Instructions for Continued Airworthiness required by sec. 25.1529

must specify that no airplane may be operated beyond a number of

cycles equal to 1/2 the number of cycles accumulated on the fatigue

test article, until such testing is completed. The extent of damage for

residual strength evaluation at any time within the operational life of

the airplane must be consistent with the initial detectability and

subsequent growth under repeated loads. The residual strength

evaluation must show that the remaining structure is able to

withstand loads (considered as static ultimate loads) corresponding

to the following conditions:

(1) The limit symmetrical maneuvering conditions specified in sec.

25.337 at all speeds up to Vcand in sec. 25.345

(2) The limit gust conditions specified in sec. 25.341 at the

specified speeds up to VC and in sec. 25.345

(3) The limit rolling conditions specified in sec. 25.349 and the

limit unsymmetrical conditions specified in secs. 25.367 and

25.427 (a) through (c), at speeds up to VC.

(4) The limit yaw maneuvering conditions specified in sec.

25.351(a) at the specified speeds up to VC.

(5) For pressurized cabins, the following conditions:

(i) The normal operating differential pressure combined

with the expected external aerodynamic pressures applied

simultaneously with the flight loading conditions specified

in paragraphs (b)(1) through (4) of this section, if they have

a significant effect.

(ii) The maximum value of normal operating differential

pressure (including the expected external aerodynamic

pressures during 1 g level flight) multiplied by a factor of

1.15, omitting other loads.

(6) For landing gear and directly-affected airframe structure, the

limit ground loading conditions specified in secs. 25.473, 25.491,

and 25.493.

Page 19: Studi sertifikasi kaca depan kokpit (flight deck windshield)

17

If significant changes in structural stiffness or geometry, or both,

follow from a structural failure, or partial failure, the effect on

damage tolerance must be further investigated

(c) Fatigue (safe-life) evaluation. Compliance with the damage-

tolerance requirements of paragraph (b) of this section is not

required if the applicant establishes that their application for

particular structure is impractical. This structure must be shown by

analysis, supported by test evidence, to be able to withstand the

repeated loads of variable magnitude expected during its service life

without detectable cracks. Appropriate safe-life scatter factors must

be applied.

(d) Sonic fatigue strength. It must be shown by analysis, supported

by test evidence, or by the service history of airplanes of similar

structural design and sonic excitation environment, that –

(1) Sonic fatigue cracks are not probable in any part of the flight

structure subject to sonic excitation; or

(2) Catastrophic failure caused by sonic cracks is not probable

assuming that the loads prescribed in paragraph (b) of this section

are applied to all areas affected by those cracks.

(e) Damage-tolerance (discrete source) evaluation. The airplane

must be capable of successfully completing a flight during which

likely structural damage occurs as a result of –

(1) Impact with a 4-pound bird when the velocity of the airplane

relative to the bird along the airplane's flight path is equal to Vc at

sea level or 0.85Vc at 8,000 feet, whichever is more critical;

(2) Uncontained fan blade impact;

(3) Uncontained engine failure; or

(4) Uncontained high energy rotating machinery failure

The damaged structure must be able to withstand the static loads

(considered as ultimate loads) which are reasonably expected to

occur on the flight. Dynamic effects on these static loads need not be

considered. Corrective action to be taken by the pilot following the

Page 20: Studi sertifikasi kaca depan kokpit (flight deck windshield)

18

incident, such as limiting maneuvers, avoiding turbulence, and

reducing speed, must be considered. If significant changes in

structural stiffness or geometry, or both, follow from a structural

failure or partial failure, the effect on damage tolerance must be

further investigated.

Page 21: Studi sertifikasi kaca depan kokpit (flight deck windshield)

19

3.3.3 CASR Part 23.773 Pilot Compartment View

(a) Each pilot compartment must be -

(1) Arranged with sufficiently extensive, clear and undistorted

view to enable the pilot to safely taxi, takeoff, approach, land, and

perform any maneuvers within the operating limitations of the

airplane.

(2) Free from glare and reflections that could interfere with the

pilot's vision. Compliance must be shown in all operations for

which certification is requested; and

(3) Designed so that each pilot is protected from the elements so

that moderate rain conditions do not unduly impair the pilot's view

of the flight path in normal flight and while landing.

(b) Each pilot compartment must have a means to either remove or

prevent the formation of fog or frost on an area of the internal

portion of the windshield and side windows sufficiently large to

provide the view specified in paragraph (a)(1) of this part.

Compliance must be shown under all expected external and internal

ambient operating conditions, unless it can be shown that the

windshield and side windows can be easily cleared by the pilot

without interruption of moral {sic} pilot duties.

Page 22: Studi sertifikasi kaca depan kokpit (flight deck windshield)

20

3.3.4 CASR Part 25.773 Pilot Compartment View

(a) Nonprecipitation conditions. For nonprecipitation conditions, the

following apply:

(1) Each pilot compartment must be arranged to give the pilots a

sufficiently extensive, clear, and undistorted view, to enable them

to safely perform any maneuvers within the operating limitations

of the airplane, including taxiing takeoff, approach, and landing.

(2) Each pilot compartment must be free of glare and reflection that

could interfere with the normal duties of the minimum flight crew

(established under sec. 25.1523). This must be shown in day and

night flight tests under non precipitation conditions.

(b) Precipitation conditions. For precipitation conditions, the

following apply:

(1) The airplane must have a means to maintain a clear portion of

the windshield, during precipitation conditions, sufficient for both

pilots to have a sufficiently extensive view along the flight path in

normal flight attitudes of the airplane. This means must be

designed to function, without continuous attention on the part of

the crew, in –

(i) Heavy rain at speeds up to 1.5 VSR1with lift and drag

devices retracted; and

(ii) The icing conditions specified in sec. 25.1419 if

certification for flight in icing conditions is requested.

(2) No single failure of the systems used to provide the view

required by paragraph (b)(1) of this section must cause the loss of

that view by both pilots in the specified precipitation conditions.

(i) A window that is openable under the conditions

prescribed in paragraph (b)(1) of this section when the

cabin is not pressurized, provides the view specified in that

paragraph, and gives sufficient protection from the

elements against impairment of the pilot's vision; or

Page 23: Studi sertifikasi kaca depan kokpit (flight deck windshield)

21

(ii) An alternate means to maintain a clear view under the

conditions specified in paragraph (b)(1) of this section,

considering the probable damage due to a severe hail

encounter.

(3) The first pilot must have a window that--

(i) Is openable under the conditions prescribed in paragraph

(b)(1) of this section when the cabin is not pressurized;

(ii) Provides the view specified in paragraph (b)(1) of this

section; and

(iii) Provides sufficient protection from the elements

against impairment of the pilot's vision.

(4) The openable window specified in paragraph (b)(3) of this

section need not be provided if it is shown that an area of the

transparent surface will remain clear sufficient for at least one pilot

to land the airplane safely in the event of-

(i) Any system failure or combination of failures which is

not extremely improbable, in accordance with Sec.

25.1309, under the precipitation conditions specified in

paragraph (b)(1) of this section.

(ii) An encounter with severe hail, birds, or insects.

(c) Internal windshield and window fogging. The airplane must have

a means to prevent fogging of the internal portions of the windshield

and window panels over an area which would provide the visibility

specified in paragraph (a) of this section under all internal and

external ambient conditions, including precipitation conditions, in

which the airplane is intended to be operated.

(d) Fixed markers or other guides must be installed at each pilot

station to enable the pilots to position themselves in their seats for an

optimum combination of outside visibility and instrument scan. If

lighted markers or guides are used they must comply with the

requirements specified in sec. 25.1381

Page 24: Studi sertifikasi kaca depan kokpit (flight deck windshield)

22

3.3.5 CASR Part 23.775 Windshields and Windows

(a) The internal panels of windshields and windows must be

constructed of a nonsplintering material, such as nonsplintering

safety glass.

(b) The design of windshields, windows, and canopies in pressurized

airplanes must be based on factors peculiar to high altitude

operation, including -

(1) The effects of continuous and cyclic pressurization loadings;

(2) The inherent characteristics of the material used; and

(3) The effects of temperatures and temperature gradients.

(c) On pressurized airplanes, if certification for operation up to and

including 25,000 feet is requested, an enclosure canopy including a

representative part of the installation must be subjected to special

tests to account for the combined effects of continuous and cyclic

pressurization loadings and flight loads, or compliance with the fail-

safe requirements of paragraph (d) of this part must be shown.

(d) If certification for operation above 25,000 feet is requested the

windshields, window panels, and canopies must be strong enough to

withstand the maximum cabin pressure differential loads combined

with critical aerodynamic pressure and temperature effects, after

failure of any load carrying element of the windshield, window

panel, or canopy.

(e) The windshield and side windows forward of the pilot's back

when the pilot is seated in the normal flight position must have a

luminous transmittance value of not less than 70 percent.

(f) Unless operation in known or forecast icing conditions is

prohibited by operating limitations, a means must be provided to

prevent or to clear accumulations of ice from the windshield so that

the pilot has adequate view for taxi, takeoff, approach, landing, and

to perform any maneuvers within the operating limitations of the

airplane.

Page 25: Studi sertifikasi kaca depan kokpit (flight deck windshield)

23

(g) In the event of any probable single failure, a transparency heating

system must be incapable of raising the temperature of any

windshield or window to a point where there would be -

(1) Structural failure that adversely affects the integrity of the

cabin; or

(2) There would be a danger of fire.

(h) In addition, for commuter category airplanes, the following

applies:

(1) Windshield panes directly in front of the pilots in the normal

conduct of their duties, and the supporting structures for these

panes, must withstand, without penetration, the impact of a two-

pound bird when the velocity of the airplane (relative to the bird

along the airplane's flight path) is equal to the airplane's maximum

approach flap speed.

(2) The windshield panels in front of the pilots must be arranged so

that, assuming the loss of vision through any one panel, one or

more panels remain available for use by a pilot seated at a pilot

station to permit continued safe flight and landing.

Page 26: Studi sertifikasi kaca depan kokpit (flight deck windshield)

24

3.3.6 CASR Part 25.775 Windshields and Windows

(a) Internal panes must be made of nonsplintering material.

(b) Windshield panes directly in front of the pilots in the normal

conduct of their duties, and the supporting structures for these panes,

must withstand, without penetration, the impact of a four pound bird

when the velocity of the airplane (relative to the bird along the

airplane's flight path) is equal to the value of VC, at sea level,

selected under Sec. 25.335(a).

(c) Unless it can be shown by analysis or tests that the probability of

occurrence of a critical windshield fragmentation condition is of a

low order, the airplane must have a means to minimize the danger to

the pilots from flying windshield fragments due to bird impact. This

must be shown for each transparent pane in the cockpit that

(1) Appears in the front view of the airplane;

(2) Is inclined 15 degrees or more to the longitudinal axis of the

airplane; and

(3) Has any part of the pane located where its fragmentation will

constitute a hazard to the pilots.

(d) The design of windshields and windows in pressurized airplanes

must be based on factors peculiar to high altitude operation,

including the effects of continuous and cyclic pressurization

loadings, the inherent characteristics of the material used, and the

effects of temperatures and temperature differentials. The windshield

and window panels must be capable of withstanding the maximum

cabin pressure differential loads combined with critical aerodynamic

pressure and temperature effects after any single failure in the

installation or associated systems. It may be assumed that, after a

single failure that is obvious to the flight crew (established under

Sec. 25.1523), the cabin pressure differential is reduced from the

maximum, in accordance with appropriate operating limitations, to

allow continued safe flight of the airplane with a cabin pressure

altitude of not more than 15,000 feet.

Page 27: Studi sertifikasi kaca depan kokpit (flight deck windshield)

25

(e) The windshield panels in front of the pilots must be arranged so

that, assuming the loss of vision through any one panel, one or more

panels remain available for use by a pilot seated at a pilot station to

permit continued safe flight and landing.

Page 28: Studi sertifikasi kaca depan kokpit (flight deck windshield)

26

3.3.7 CASR Part 25.809 Emergency Exit Arrangement

(a) Each emergency exit, including each flightcrew emergency exit,

must be a moveable door or hatch in the external walls of the

fuselage, allowing an unobstructed opening to the outside. In

addition, each emergency exit must have means to permit viewing of

the conditions outside the exit when the exit is closed. The viewing

means may be on or adjacent to the exit provided no obstructions

exist between the exit and the viewing means. Means must also be

provided to permit viewing of the likely areas of evacuee ground

contact. The likely areas of evacuee ground contact must be

viewable during all lighting conditions with the landing gear

extended as well as in all conditions of landing gear collapse.

(b) Each emergency exit must be openable from the inside and the

outside except that sliding window emergency exits in the flight

crew area need not be openable from the outside if other approved

exits are convenient and readily accessible to the flight crew area.

Each emergency exit must be capable of being opened, when there is

no fuselage deformation—

(1) With the airplane in the normal ground attitude and in each of

the attitudes corresponding to collapse of one or more legs of the

landing gear; and

(2) Within 10 seconds measured from the time when the opening

means is actuated to the time when the exit is fully opened.

(3) Even though persons may be crowded against the door on the

inside of the airplane.

(c) The means of opening emergency exits must be simple and

obvious; may not require exceptional effort; and must be arranged

and marked so that it can be readily located and operated, even in

darkness. Internal exit-opening means involving sequence operations

(such as operation of two handles or latches, or the release of safety

catches) may be used for flightcrew emergency exits if it can be

Page 29: Studi sertifikasi kaca depan kokpit (flight deck windshield)

27

reasonably established that these means are simple and obvious to

crewmembers trained in their use.

(d) If a single power-boost or single power-operated system is the

primary system for operating more than one exit in an emergency,

each exit must be capable of meeting the requirements of paragraph

(b) of this section in the event of failure of the primary system.

Manual operation of the exit (after failure of the primary system) is

acceptable.

(e) Each emergency exit must be shown by tests, or by a

combination of analysis and tests, to meet the requirements of

paragraphs (b) and (c) of this section.

(f) Each door must be located where persons using them will not be

endangered by the propellers when appropriate operating procedures

are used.

(g) There must be provisions to minimize the probability of jamming

of the emergency exits resulting from fuselage deformation in a

minor crash landing.

(h) When required by the operating rules for any large passenger-

carrying turbojet-powered airplane, each ventral exit and tailcone

exit must be—

(1) Designed and constructed so that it cannot be opened during

flight; and

(2) Marked with a placard readable from a distance of 30 inches

and installed at a conspicuous location near the means of opening

the exit, stating that the exit has been designed and constructed so

that it cannot be opened during flight.

(i) Each emergency exit must have a means to retain the

exit in the open position, once the exit is opened in an

emergency. The means must not require separate action to

engage when the exit is opened, and must require positive

action to disengage.

Page 30: Studi sertifikasi kaca depan kokpit (flight deck windshield)

28

3.3.8 CASR Part 25.843 Tests for Pressurized Cabin

(a) Strength test. The complete pressurized cabin, including doors,

windows, and valves, must be tested as a pressure vessel for the

pressure differential specified in Sec. 25.365(d).

(b) Functional tests. The following functional tests must be

performed:

(1) Tests of the functioning and capacity of the positive and

negative pressure differential valves, and of the emergency release

valve, to stimulate the effects of closed regulator valves.

(2) Tests of the pressurization system to show proper functioning

under each possible condition of pressure, temperature, and

moisture, up to the maximum altitude for which certification is

requested.

(3) Flight tests, to show the performance of the pressure supply,

pressure and flow regulators, indicators, and warning signals, in

steady and stepped climbs and descents at rates corresponding to

the maximum attainable within the operating limitations of the

airplane, up to the maximum altitude for which certification is

requested.

(4) Tests of each door and emergency exit, to show that they

operate properly after being subjected to the flight tests prescribed

in paragraph (b)(3) of this section.

Page 31: Studi sertifikasi kaca depan kokpit (flight deck windshield)

29

3.3.9 CASR Part 25.1419 Ice Protection

If the applicant seeks certification for flight in icing conditions, the

airplane must be able to safely operate in the continuous maximum

and intermittent maximum icing conditions of appendix C. To

establish this—

(a) An analysis must be performed to establish that the ice protection

for the various components of the airplane is adequate, taking into

account the various airplane operational configurations; and

(b) To verify the ice protection analysis, to check for icing

anomalies, and to demonstrate that the ice protection system and its

components are effective, the airplane or its components must be

flight tested in the various operational configurations, in measured

natural atmospheric icing conditions and, as found necessary, by one

or more of the following means:

(1) Laboratory dry air or simulated icing test, or a combination of

both, of the components or models of the components.

(2) Flight dry air tests of the ice protection system as a whole, or of

its individual components.

(3) Flight tests of the airplane or its components in measured

simulated icing conditions.

(c) Caution information, such as an amber caution light or

equivalent, must be provided to alert the flightcrew when the anti–

ice or deice system is not functioning normally.

(d) For turbine engine powered airplanes, the ice protection

provisions of this section are considered to be applicable primarily to

the airframe. For the powerplant installation, certain additional

provisions of subpart E of this part may be found applicable

(e) One of the following methods of icing detection and activation of

the airframe ice protection system must be provided:

(1) A primary ice detection system that automatically activates or

alerts the flightcrew to activate the airframe ice protection system;

Page 32: Studi sertifikasi kaca depan kokpit (flight deck windshield)

30

(2) A definition of visual cues for recognition of the first sign of

ice accretion on a specified surface combined with an advisory ice

detection system that alerts the flightcrew to activate the airframe

ice protection system; or

(3) Identification of conditions conducive to airframe icing as

defined by an appropriate static or total air temperature and visible

moisture for use by the flightcrew to activate the airframe ice

protection system.

(f). Unless the applicant shows that the airframe ice protection

system need not be operated during specific phases of flight, the

requirements of paragraph (e) of this section are applicable to all

phases of flight.

(g) After the initial activation of the airframe ice protection system—

(1) The ice protection system must be designed to operate

continuously;

(2) The airplane must be equipped with a system that automatically

cycles the ice protection system; or

(3) An ice detection system must be provided to alert the

flightcrew each time the ice protection system must be cycled.

(h) for operation of the ice protection system, including activation

and deactivation, must be established Procedures and documented in

the Airplane Flight Manual.

Page 33: Studi sertifikasi kaca depan kokpit (flight deck windshield)

31

3.3.10 CASR Part 25.1529 Instructions for Continued Airworthiness

The applicant must prepare Instructions for Continued Airworthiness

in accordance with Appendix H to this part that are acceptable to the

Director General. The instructions may be incomplete at type

certification if a program exists to ensure their completion prior to

delivery of the first airplane or issuance of a standard certificate of

airworthiness, whichever occurs later.

Page 34: Studi sertifikasi kaca depan kokpit (flight deck windshield)

32

BAB 4 PROSES PENGAJUAN PMA DAN TSO

4.1. PART MANUFACTURER APPROVAL

Untuk dapat mendesain windshield, sebuah perusahaan setidak-tidaknya

harus memiliki DOA kelas C. Dengan demikian hanya ada dua perusahaan

di Indonesia yang boleh mendesain windshield, yaitu PT. GMF AeroAsia

dan PT. DI. Perusahaan yang memanufaktur windshield harus memiliki

Part Manufacturer Approval (PMA). DKUPPU masih mempelajari tata

cara untuk pengajuan PMA. FAA order 8110.42C memiliki penjelasan

bagaimana PMA dapat diajukan. Berikut adalah proses pengajuan PMA

menurut FAA order 8110.42C appendix A

Page 35: Studi sertifikasi kaca depan kokpit (flight deck windshield)

33

Gambar 4.1. Proses pengajuan Part Manufacturer Approval (part 1)

Gambar 4.2. Proses pengajuan Part Manufacturer Apprpval (cont)

Page 36: Studi sertifikasi kaca depan kokpit (flight deck windshield)

34

4.2. Technical Standard Order

TSO untuk windshield belum dapat ditemukan. Prosedur TSO dapat dilihat

pada dokumen CASR Part 21 Amdt. 2 Subpart O Technical Standard

Order Operation ( halaman 61- 64). Berikut isi dokumen tersebut,

SUBPART 0 TECHNICAL STANDARD ORDER

AUTHORIZATIONS

21.601 Applicability and Definitions.

(a) This subpart prescribes -

(1) Procedural requirements for the issue of Technical Standard

Order authorizations;

(2) Rules governing the holders of Technical Standard Order

authorizations; and

(3) Procedural requirements for the issuance of a letter of

Technical Standard Order design approval.

(b) For the purpose of this subpart -

(1) A Technical Standard Order (referred to in this subpart as

"TSO") is issued by the DGCA and is a minimum performance

standard for specified articles (for the purpose of this subpart,

articles means materials, parts, processes, or appliances) used on

civil aircraft.

(2) A TSO authorization is an DGCA design and production

approval issued to the manufacturer of an article which has been

found to meet a specific TSO.

(3) A letter of TSO design approval is a DGCA design approval

for an article which has been found to meet a specific TSO in

accordance with the procedures of Sec. 21.621.

(4) An article manufactured under an TSO authorization, a

DGCA letter of acceptance as described in Sec. 21.613 (b), or an

article manufactured under a letter of TSO design approval

described in Sec. 21.621 is an approved article for the purpose

Page 37: Studi sertifikasi kaca depan kokpit (flight deck windshield)

35

of meeting the regulations of this CASR that require the article

to be approved; and

(5) An article manufacturer is the person who controls the

design and quality of the article produced (or to be produced, in

the case of an application), including the parts of them and any

processes or services related to them that are procured from an

outside source.

(c) The DGCA does not issue an TSO authorization if the

manufacturing facilities for the product are located outside of the

Republic of Indonesia, unless the DGCA finds that the location of the

manufacturer's facilities places no undue burden on the DGCA in

administering applicable regulations.

21.603 Application.

(a) An applicant for a TSO authorization must apply in the form and

manner prescribed by the DGCA. The applicant must include the

following documents in the application:

(1) A statement of conformance certifying that the applicant has

met the requirements of this subpart and that the article

concerned meets the applicable TSO that is effective on the date

of application for that article.

(2) One copy of the technical data required in the applicable

TSO.

(b) If the applicant anticipates a series of minor changes in accordance

with Sec.21.619, the applicant may set forth in its application the basic

model number of the article and the part number of the components

with open brackets after it to denote that suffix change letters or

numbers (or combinations of them) will be added from time to time.

(c) If the application is deficient, the applicant must, when requested

by the DGCA, provide any additional information necessary to show

compliance with this part. If the applicant fails to provide the

Page 38: Studi sertifikasi kaca depan kokpit (flight deck windshield)

36

additional information within 30 days after the DGCA's request, the

DGCA denies the application and notifies the applicant.

21.605 Organization.

Each applicant for or holder of a TSO authorization must provide the

DGCA with a document describing how the applicant's organization

will ensure compliance with the provisions of this subpart. At a

minimum, the document must describe assigned responsibilities and

delegated authority, and the functional relationship of those

responsible for quality to management and other organizational

components.

21.607 Quality system.

Each applicant for or holder of a TSO authorization must establish a

quality system that meets the requirements of Sec. 21.137.

21.608 Quality manual.

Each applicant for or holder of a TSO authorization must provide a

manual describing its quality system to the DGCA for approval. The

manual must be in the Bahasa Indonesia or English language and

retrievable in a form acceptable to the DGCA.

21.609 Location of or change to manufacturing facilities.

(a) An applicant may obtain a TSO authorization for manufacturing

facilities located outside of the ROI if the DGCA finds no undue

burden in administering the applicable regulation.

(b) The TSO authorization holder must obtain DGCA approval before

making any changes to the location of any of its manufacturing

facilities.

(c) The TSO authorization holder must immediately notify the DGCA,

in writing, of any change to the manufacturing facilities that may

Page 39: Studi sertifikasi kaca depan kokpit (flight deck windshield)

37

affect the inspection, conformity, or airworthiness of its product or

article.

21.610 Inspections and tests.

Each applicant for or holder of a TSO authorization must allow the

DGCA to inspect its quality system, facilities, technical data, and any

manufactured articles and witness any tests, including any inspections

or tests at a supplier facility, necessary to determine compliance with

this applicable CASR.

21.611 Issuance.

If the DGCA finds that the applicant complies with the requirements

of this applicable CASR, the DGCA issues a TSO authorization to the

applicant (including all TSO deviations granted to the applicant).

21.613 Duration.

(a) A TSO authorization or letter of TSO design approval is effective

for two years until surrendered, withdrawn, or otherwise terminated

by the DGCA.

(b) If a TSO is revised or canceled, the holder of an affected DGCA

letter of acceptance of a statement of conformance, TSO

authorization, or letter of TSO design approval may continue to

manufacture articles that meet the original TSO without obtaining a

new acceptance, authorization, or approval but must comply with

applicable CASR.

21.614 Transferability.

The holder of a TSO authorization or letter of TSO design approval

may not transfer the TSO authorization or letter of TSO design

approval.

Page 40: Studi sertifikasi kaca depan kokpit (flight deck windshield)

38

21.616 Responsibility of holder.

Each holder of a TSO authorization must-

(a) Amend the document required by Sec 21.605 as necessary to

reflect changes in the organization and provide these amendments to

the DGCA

(b) Maintain a quality system in compliance with the data and

procedures approved for the TSO authorization;

(c) Ensure that each manufactured article conforms to its approved

design, is in a condition for safe operation, and meets the applicable

TSO;

(d) Mark the TSO article for which an approval has been issued.

Marking must be in accordance with CASR part 45, including any

critical parts;

(e) Identify any portion of the TSO article (e.g., sub-assemblies,

component parts, or replacement articles) that leave the manufacturer's

facility as DGCA approved with the manufacturer's part number and

name, trademark, symbol, or other DGCA approved manufacturer's

identification;

(f) Have access to design data necessary to determine conformity and

airworthiness for each article produced under the TSO authorization.

The manufacturer must retain this data until it no longer manufactures

the article. At that time, copies of the data must be sent to the DGCA ;

(g) Retain its TSO authorization and make it available to the DGCA

upon request; and

(h) Make available to the DGCA information regarding all delegation

of authority to suppliers

Page 41: Studi sertifikasi kaca depan kokpit (flight deck windshield)

39

21.618 Approval for deviation.

(a) Each manufacturer who requests approval to deviate from any

performance standard of a TSO must show that factors or design

features providing an equivalent level of safety compensate for the

standards from which a deviation is requested.

(b) The manufacturer must send requests for approval to deviate,

together with all pertinent data, to the appropriate aircraft certification

office. If the article is manufactured under the authority of a foreign

country or jurisdiction, the manufacturer must send requests for

approval to deviate, together with all pertinent data, through the civil

aviation authority of that country or jurisdiction to the DGCA.

21.619 Design changes.

(a) Minor changes by the manufacturer holding a TSO authorization.

The manufacturer of an article under an authorization issued under

this part may make minor design changes (any change other than a

major change) without further approval by the DGCA. In this case, the

changed article keeps the original model number (part numbers may

be used to identify minor changes) and the manufacturer must forward

to the appropriate aircraft certification office, any revised data that are

necessary for compliance with Sec 2 l.603(b).

(b) Major changes by the manufacturer holding a TSO authorization.

Any design change by the manufacturer extensive enough to require a

substantially complete investigation to determine compliance with a

TSO is a major change. Before making a major change, the

manufacturer must assign a new type or model designation to the

article and apply for an authorization under Sec. 21.603.

(c) Changes by persons other than the manufacturer. No design

change by any person (other than the manufacturer who provided the

statement of conformance for the article) is eligible for approval under

this part unless the person seeking the approval is a manufacturer and

Page 42: Studi sertifikasi kaca depan kokpit (flight deck windshield)

40

applies under Sec. 21.603(a) for a separate TSO authorization. Persons

other than a manufacturer may obtain approval for design changes

under part 43 or under the applicable airworthiness regulations.

21.620 Changes in quality system.

After the issuance of a TSO authorization-

(a) Each change to the quality system is subject to review by the

DGCA; and

(b) The holder of the TSO authorization must immediately notify the

DGCA, in

writing, of any change that may affect the inspection, conformity, or

airworthiness of its article.

21.621 Issue of letters of TSO design approval: Import articles.

(a) The DGCA may issue a letter of TSO design approval for an

article-

(1) Designed and manufactured in a foreign country to the

export provisions of an agreement with ROI for the acceptance

of these articles for import; and

(2) For import into ROI if-

(i) The State of Design certifies that the article has been

examined, tested, and found to meet the applicable TSO or

the applicable performance standards of the State of

Design and any other performance standards the DGCA

may prescribe to provide a level of safety equivalent to

that provided by the TSO; and

(ii) The manufacturer has provided to the DGCA one copy

of the technical data required in the applicable

performance standard through its State of Design.

(b) The DGCA issues the letter of TSO design approval that lists any

deviation granted under Sec.21.618.

Page 43: Studi sertifikasi kaca depan kokpit (flight deck windshield)

41

BAB 5 PENGUJIAN

Windshield dapat memperoleh sertifikasi melalui serangkaian pengujian yang

harus dilakukan

Pengujian dilakukan pada dua bagian, yaitu pada windshield secara keseluruhan

seperti yang tertera pada AC25-775 ditambah dengan bird strike test, dan uji pada

material transparencies yang meliputi uji impak, uji vertical burn¸uji temperatur

uji kestabilan termal, dan uji deformasi akibat termal.

5.1. UJI BIRD STRIKE

Pengujian ini didasarkan pada CASR 25.775 Windshields and Windows. Regulasi

tersebut mengharuskan windshield untuk dapat menahan impak burung 4 pound

tanpa penetrasi. Windshield harus sanggup menahan impak saat kecepatan

pesawat relative terhadap burung sepanjang lintas terbang pesawat sama dengan

kecepatan cruise di sea level .

Dari dokumen AEDC-TR-86-2 dijelaskan bahwa Range S3 Test dilakukan untuk

melakukan verifikasi tentang test artificial bird yang telah dilakukan .Tes ini

dilakukan menggunakan compressed-air operated launcher, x-ray system yang

akan digunakan untuk mengukur kecepatan burung dan dudukan untuk target

dalam kasus ini windshield.

Informasi lebih rinci mengenai test unit dan kapabilitas tes tersebut dapat dilihat

pada referensi nomor 5.

Gambar 5.1. AEDC Bird Impact Range, S3

Page 44: Studi sertifikasi kaca depan kokpit (flight deck windshield)

42

Gambar 5.2. Test Area Arrangement

Pada percobaan ini dilakukan dengan menembakan 4 lb burung asli (4lb) dan

artificial bird dengan diameter 4inch dan berbentuk silindrikal dengan fineness

ratio of two. Artificial bird terbuat dari material gelatin. Kedua burung ini

ditembakkan menggunakan launch tube menggunakan sabot (alat untuk

memastikan burung berada pada posisi yang benar di launch tube) yang terbuat

dari polyethylene foam atau balsa wood. Burung akan terlepas dari sabot dengan

menggunakan Sabot Stripper Tube yang berbentuk Tapered Conic. Saat sabot

melewati Sabot Stripper Tube, kecepatan sabot akan berkurang akibat gesekan

dan akan menyebabkan burung keluar dari launch tube dengan terbang bebas.

Posisi dan orientasi burung saat sebelum impak terjadi akan dimonitor oleh 3 buah

105kV X-ray shadowgraph units yang dipasang pada instrumentation cart seperti

pada gambar 3.2. Setiap stasiun X-ray akan aktif saat burung memutuskan 24-

gage cooper wire di electrical breakwire system. Setiap X-ray pulser juga

menyebabkan chronograph system dapat mengukur selang waktu antar X-ray.

Sehingga kecepatan burung dapat diketahui. Dokumentasi photografik saat impak

terjadi dan menyebakan debris patterns direkam menggunakan 16mm motion

picture cameras (Hycam Model No. 41-004) yang beroperasi sekitar 5000 frame

per detik.

Page 45: Studi sertifikasi kaca depan kokpit (flight deck windshield)

43

Gambar 5.3. Target Plate Installation

Pada dokumen AEDC-TR-86-2 digunakan plat alumunium (T6-6061) sebagai

target dibaut ke plat baja dengan ketabalan 1inch dan 16 inch diameter daerah plat

alumunium yang terbuka.

Dokumen ini didapat bahwa bird/projectile material shear strength characteristic

akan mempengaruhi kuatnya impak yang akan terjadi pada kasus impak

transparency.

Gambar 5.4. Projectiles sesaat sebelum impak

Page 46: Studi sertifikasi kaca depan kokpit (flight deck windshield)

44

Gambar 5.5. Debris Patterns sesaat setelah impak.

Menurut CASR 25, Kondisi windshield setelah impak satu burung dengan berat 4

lbs saat kecepatan cruise di sea level adalah

Inner ply tidak boleh ada yang pecah atau retak

Panel yang berada tepat di depan pilot harus bisa menahan tanpa penetrasi

Page 47: Studi sertifikasi kaca depan kokpit (flight deck windshield)

45

Gambar 5.6. Deformasi pada alumunium yang ditembak

5.2. UJI KEKUATAN WINDSHIELD

Menurut CASR part 25.775

Berikut hal yang dilakukan untuk membuktikan kekuatan windshield merujuk

pada AC25-775.

5.2.1. Ultimate Static Strength

1. Dilakukan detailed structural analysis menggunakan metode analisis

struktur yang baik. Windshield harus diberi kombinasi pressure load

terbesar yang mungkin terjadi , termasuk maximum internal pressure,

external aerodynamic pressure,, temperature effect , dan flight load.

2. Membuktikan batas strength yang diperbolehkan termasuk batasan

untuk material production variability, material characteristics, long term

degradation, dan environmental effects untuk setiap ply. Kasus Critical

design dicek untuk memastikan batasan tidak melebihi design ultimate

stress. Load factor diatas ultimate (2) boleh digunakan ( ultimate

didefinisikan sebesar 1.5 kali pressure load yang disebutkan pada

Page 48: Studi sertifikasi kaca depan kokpit (flight deck windshield)

46

25.365(d)). Pressure load tersebut didefinisikan sebagai pressure

differential load saat relief valve berada pada setting maksimum dikalikan

dengan 1.33 untuk pesawat yang beroperasi dengan ketinggian maksimum

45000 feet dan 1.67 untuk pesawat yang beroperasi di ketinggian lebih

dari 45000 feet.

Menurut Dayton T. Brown (http://www.dtbtest.com/static-testing.aspx)

beberapa peralatan yang dibutuhkan untuk melakukan static test adalah

frame, aktuator hidrolik, servo, dan strain gauge. Penulis tidak

menemukan metoda dan parameter-parameter untuk static test. Namun,

ada artikel di ASTM yang menjelaskan mengenai spesifikasi struktur pada

pesawat udara. Dokumen tersebut dapat dibeli seharga 45$

Sumber : http://www.astm.org/cgi-bin/resolver.cgi?F3114-15

5.2.2. Fatigue

Fatigue test secara konvensional masih dapat dilakukan pada windshield

namun durasinya harus lebih panjang. Hal tersebut dikarenakan umur

fatigue untuk material pada windshield masih beragam dibandingkan

dengan pada logam. Penulis tidak menemukan standar pengujian maupun

alat-alat yang digunakan untuk melakukan sebuah fatigue test. Ada

beberapa literatur yang dapat dipergunakan seperti yang terdapat di ASTM

dan dapat dibeli seharga 55$.

Page 49: Studi sertifikasi kaca depan kokpit (flight deck windshield)

47

Sumber:

https://www.astm.org/DIGITAL_LIBRARY/STP/SOURCE_PAGES/STP203.ht

m

Ditambah dengan publikasi di laman yang sama mengenai Fatigue Testing

For Aircraft Structural Component yang dapat dibeli seharga 25$.

Sumber :

https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP46294S.htm

Sebagai referensi, Airbus melakukan fatigue testing sebanyak 2.5 kali dari

design life goal. Sumber : http://www.airbus.com/company/aircraft-

manufacture/how-is-an-aircraft-built/test-programme-and-certification/

5.2.3. Fail Safe.

Fail safe strength capability dari windshield harus didemonstrasikan

setelah terjadi kegagalan tunggal pada instalasi / sistem terkait (baik

kerusakan windshield maupun broken fastener , cracked mounting

component , dan malfungsi heat system pada windshield. Demonstrasi

harus menunjukkan karaktersistik material dan keberagaman degradasi

Page 50: Studi sertifikasi kaca depan kokpit (flight deck windshield)

48

material (in service) , critical temperature effects , maximum cabin

differential pressure , and critical external aerodynamic. Kebutuhan pada

CASR 25.571 untuk windshield akan terpenuhi dengan kriteria fail-safe

berikut:

Melakukan analysis untuk membuktikan critical main pressure bearing

ply

Untuk mengatasi efek dinamik akibat ply failure , test pada dudukan

windshield akibat kegagalan critical ply dibawah tekanan maximum

kabin (maximum relieve valve setting) yang tiba-tiba. Tes dilakukan

dengan kondisi critical external aerodynamic pressure dan critical

temperature effects.

Saat kegagalan windshield dapat diamati oleh flightcrew , Test pressure

boleh menurun setelah initial critical pane failure. Hal ini

mempertimbangkan crew action yang didefinisikan pada flight manual

procedures.

Saat kegagalan windshield tidak dapat diamati oleh flightcrew , test

pressure harus bisa ditahan sama selama periode terbang. Selama

periode ini , efek creep harus dipertimbangkan

Untuk memastikan ply pada windshield tidak melebihi batas material

yang diperbolehkan , fail safe stress perlu dicek. Untuk mengatasi

production variability, material characteristics, long term degradation,

and environmental effects , tes failsafe pembebanan pada windshield

harus dilakukan. Hal ini dilakukan dengan menaikkan load factor

(setelah kegagalan critical ply). Berikut gambar load factor untuk setiap

material yang digunakan ;

Gambar 5.7. Load Factor

Page 51: Studi sertifikasi kaca depan kokpit (flight deck windshield)

49

5.3. UJI MATERIAL WINDHIELD

Pada uji material akan dijelaskan hanya pengujian untuk material acrylic

menggunakan dokumen MIL-PRF-8184F.

5.3.1 Kebutuhan

Untuk mendapatkan sertifikasi dari dokumen ini maka diharuskan

transparency acrylic memiliki kriteria berikut:

1. Warna . Plastic sheet harus tidak berwarna.

2. Dimensi. Dimensi dari plastic sheet harus memenuhi tabel berikut.

3. Karakteristik performa . Plastik sheet harus memenuhi kebutuhan pada

tabel berikut,

Page 52: Studi sertifikasi kaca depan kokpit (flight deck windshield)

50

4. Diameter 10±0.1 inches dan draw tidak kurang dari 4.5 inches.

5. Resistance to weathering. Setelah terekspos pada accelerated

weathering seperti yang ditetapkan pada metode tes, Plastic sheet tidak

boleh menunjukkan adanya cracking , crazing , atau keanehan pada

permukaan yang mempengaruhi visibilitas.

6. Optical uniformity

a. Optical Defect. Plastic sheet tidak boleh memiliki optical defects

, seperti partikel (di dalam material), gelembung , scratches ,

atau ketidaksempurnaan , yang mengurangi visibilitas pada sheet

dan menyebabkan variasi pada deviasi angular selama lebih dari

5 menit dengan jarak tidak lebih dari 20 inches pada grid board

saat dilakukan testing dengan metode yang dijelaskan. Cacat

yang tidak mengurangi visibilitas dapat diabaikan kecuali

membentuk cluster. Optical defect dalam rentan 1 inch dari

ujung sheet dapat diabaikan

b. Angular Deviation. Plastic sheet tidak boleh mempunyai

keanehan pada permukaan yang menyebabkan angular

deviations pada bagian tak terdeviasi yang melebihi limit sesuai

Page 53: Studi sertifikasi kaca depan kokpit (flight deck windshield)

51

tabel dibawah saat dilakukan dengan metode test yang

ditentukan.

7. Craze Resistance. Craze Resistance harus didefinisikan sesuai metode

tes. Hasil stress akibat craze tidak boleh kurang dari nilai berikut

8. Instruction Sheet. Instruction sheet yang berisi informasi mengenai

precaution yang dibutuhkan untuk dilakukan observasi saat pemakaian

,forming , cementing , handling , dan disimpan harus ada pada setiap

shipping container.

9. Protective covering. Protective covering harus dipasang pada kedua sisi

sheet untuk melindungi sheet dari scratches dan abrasi. Cover harus

dapat dengan mudah dilepas tanpa merusak permukaan. Plastic sheet

harus dapat diidentifikasi pada protective covering dengan specification

number ,type , class , thickness , manufacturer’s code , dan national

stock number.

Page 54: Studi sertifikasi kaca depan kokpit (flight deck windshield)

52

5.3.2. Kualifikasi test sample

Test sample harus memiliki luas tidak kurang dari 1 square meter dari

plastic sheet untuk ketebalan tertentu. Dimensi individual sheet tidak kurang

dari 30x45 cm. Untuk kualifikasi pada semua ketebalan , pihak manufaktur

harus memberikan sample dengan ketebalan 0.060 inch (1.5 mm), 0.250

inch (6.4 mm), 0.500 inch (12.7 mm), 1.000 inch (25.4 mm), 2.250 inches

(5.7 cm), dan 4.000 inches (10.2 cm). Kualifikasi pada 2 ketebalan akan

memberikan kualifikasi pada ketebalan diantara 2 ketebalan tersebut.

Test specimen harus disiapkan sesuai ketentuan diatas , di machining dan di

polish menjadi ketebalan tertentu sesuai kebutuhan untuk memenuhi

kebutuhan tes flammability , coefficient of thermal expansion, formability

,flexural deformation temperature , mechanical properties , ultraviolet

transmittance , and craze resistance.

Page 55: Studi sertifikasi kaca depan kokpit (flight deck windshield)

53

5.3.3. Conformance Inspection

1. Visual and dimensional inspection. Setiap produk perlu dilakukan

inspeksi sesuai tabel berikut;

2. Physical and mechanical properties. 3 Sampel harus diambil secara

acak dari seluruh produk. Test specimen garus disiapkan dari setiap

sampel untuk melakukan test pada Table VI.

Page 56: Studi sertifikasi kaca depan kokpit (flight deck windshield)

54

5.3.4. Kondisi Tes

1. Standard Condition. Kecuali dispesifikan pada metode tes , semua tes

dan inspeksi dilakukan pada suhu 7 ±2 oF (25 ±1 oC) and kelembaban

relatif of 50 ±5 persen.

2. Test Results. Kecuali dispesifikan pada metode tes , semua tes dan

inspeksi harus di record sebagai rata-rata dari jumlah specimen yang

diuji sebagai nilai individu.

5.3.5. Metode Tes

1. Ketebalan.

Pengukuran ketebalan harus dilakukan dengan alat dengan tingkat akurasi

0.001 inch (0.025 mm) dan memenuhi persyaratan kebutuhan yang

dijelaskan sebelumnya.

2. Long term water absorption

Tiga test specimen , dengan ukuran 1x2 dengan tebal 3 inch, dilakukan

vacuum dried pada 158 ±2 °F (70 ±1 °C) selama 72 ±1 hours. Specimen

harus ditimbang hingga ke milligram (W1) terdekat dan langsung di

tenggelam kan ke dalam air pada 140 ±2 °F (60 ±1 °C) selama 25 days +1, -

0 hours. Setelah diangkat dari air, specimen harus langsung dikeringkan

dengan kain lembut dan ditimbang kembali (W2). Long term water

absorbtion harus memenuhi kriteria table II dihitung dengan

3. Coefficient of thermal expansion.

Dua test specimen, dengan ketebalan 0.250 inch (6.4 mm) dites sesuai

dokumen ASTM-D696 atau ASTM-E831 dengan kriteria keberhasilan pada

table II.

Page 57: Studi sertifikasi kaca depan kokpit (flight deck windshield)

55

4. Formability.

Dua test specimen dilakukan forming untuk memenuhi kebutuhan yang telah

disebutkan. Kondisi forming harus berdasarkan instruksi manufaktur.

Plastic sheet yang memiliki ketebalan 0.500 inch (12.7 mm) atau kurang

harus dilakukan tes dalam bentuk “as cast”. Plastic sheet yang memiliki

ketebalan lebih dari 0.5 inch perlu dilakukan machining hingga

ketebalannya 0.5 inch untuk keperluan testing.

5. Internal Strain.

Dua kondisi berbeda dari 12x18 inch plastic sheet harus dites. Setiap sheet

dianggap mempunyai ukuran specimen 12x12 inch yang ditopang oleh sheet

yang lain. 2 garis yang jelas diberikan dengan sudut yang tepat membelah

tengah area 12x12 inch . Lalu beri gauge marks dengan jarak 2 inches (5

cm) dari ujung specimen area dari setiap garis. Jarak antar gauge marks

harus diukur dengan yang paling dekat 0.060 inch (1.5 mm) dan dilakukan

recording. Kemudian setiap sheet digantung pada satu short edge di air oven

Page 58: Studi sertifikasi kaca depan kokpit (flight deck windshield)

56

pada suhu 320 ±18 oF (160 ±10 oC) dan selama waktu yang ditentukan

sebagai berikut;

Setelah dikeluarkan dari oven , sheet didinginkan pada standard condition

dengan digantung secara vertical. Jarak antar gauge mark di ukur kembali.

Perubahan dimensi diukur dalam persen perubahan jarak antar gauge marks

dari pengukuran awal. Rata-rata dari 4 nilai di catat dan harus memenuhi

kebutuhan pada table II.

6. Flexural deformation temperature.

Dua spesimen dilakukan test berdasarkan dokumen ASTM-D648 kecuali

jika ketebalan sampel yang dites sama dengan lebar specimen. Ketebalan

yang tidak didefinisikan pada ASTM-D648 perlu dilakukan plied atau

machining. Jika dilakukan machining, permukaan yang di machining harus

pada 1 bagian. Beban perlu dihitung untuk memberikan maximum fiber

stress, 264 psi (1,820 kPa). Setiap nilai yang didapat harus dilakukan

recording dan memenuhi kebutuhan pada table I.

Page 59: Studi sertifikasi kaca depan kokpit (flight deck windshield)

57

7. Mechanical properties

Specimen untuk uji tarik dan elongation disiapkan dari sheet dengan

ketebalan 0.5 inch atau kurang. Sheet yang memiliki ketebalan lebih dari 0.5

inch perlu dilakukan machining dulu hingga ketebalan 0.5 inch. Permukaan

yang dilakukan machining perlu dilakukan polishing. Spesimen merupakan

specimen type II (as cast application only no for stretch). Untuk keperluan

testing, specimen yang dimachining perlu di anneal pada suhu 194 °F (90

°C) selama tidak kurang dari 2 jam dan didinginkan perlahan ( antara 27 °F

(15 °C) per hour dan 74 °F (23 °C) ) untuk melepas stress akibat machining.

a. Tensile strength

Lima specimen diuji berdasarkan ASTM-D638. Hasil harus

memenuhi table II.

b. Elongation

Elongation harus ditentukan dengan dokumen ASTM-D638. Rata-

rata elongation tepat sebelum terjadi fracture harus memenuhi tabel

II.

Page 60: Studi sertifikasi kaca depan kokpit (flight deck windshield)

58

8. Ultraviolet transmittance.

Spectral Transmitansi dari specimen , dengan ketebalan 0.250 inch (6.4

mm) , didefinisikan dengan monochromator yang mempunyai bandwidth 10

millimicrons atau kurang dan sebuah photometer dengan reproducibility ±1

percent. Hasil harus memenuhi table II.

9. Index of refraction

Tiga spesimen dilakukan uji dengan refractometer mengikuti procedure

pada ASTM-D542. Hasil harus memenuhi table II

10. Luminous transmittance and haze

Tiga specimen dengan luas 2x3 inches (5x7 cm), dengan mengikuti

dokumen ASTM-D1003 (prosedur A atau B), dilakukan tes luminous

transmittance dan haze. Setelah itu specimen ini akan dilakukan tes

accelerated weathering. Setelah tes accelerated weathering specimen

dimasukkan ke dalam distilled water selama tidak lebih dari 10 detik, lalu

dikeringkan untuk menghilangkan surface moisture dan diperiksa kembali.

Hasil luminous transmittance dan haze harus memenuhi kebutuhan table II.

Page 61: Studi sertifikasi kaca depan kokpit (flight deck windshield)

59

11. Accelerated weathering

Specimen yang telah dilakukan tes luminous transmittance dan haze akan

dilakukan accelerated weathering berdasarkan ASTM-G26, metode A

selama 240 hours. Setiap specimen diperiksa secara visual untuk memenuhi

kebutuhan yang sebelumnya telah disebutkan , lalu diperiksa kembali untuk

ketentuan luminous transmittance dan haze dan warpage.

12. Warpage after accelerated weathering

Setelah dilakukan accelerated weathering pada specimen , specimen

dikondisikan pada bidang datar. Setelah dikondisikan specimen , warpage

ditentukan dengan menentukan jarak terjauh dari ujung tepi yang

menghubungkan 2 pojokan yang berlawanan secara diagonal ke permukaan

plastic sheet. Jarak ini diukur dengan peralatan dengan akurasi 0.001 inch

Page 62: Studi sertifikasi kaca depan kokpit (flight deck windshield)

60

(0.025 mm). Nilai warpage yang dicatat adalah nilai yang terbesar (bukan

rata-rata) dan harus memenuhi kriteria pada table I.

13. Optical uniformity

a. Optical Defect

Plastic sheet harus diperiksa secara visual untuk memenuhi

kebutuhan optical defect yang sebelumnya telah disebutkan. Bagian

yang dicurigai mempunyai optical defect yang menyebabkan

pengurangan visibilitas atau distorsi harus dilakukan tes mengikuti

dokumen ASTM-F733.

b. Angular Deviation

Angular Deviation harus ditentukan menggunakan ASTM-F733

kecuali displacement factor (angular deviation minutes) ditentukan

dengan mengalikan maximum image movement dalam nches pada

grid board dengan 12. Setiap sheet harus diperiksa , lalu diputar 90

derajat, dan diperiksa kembali untuk memenuhi kriteria kebutuhan

yang telah disebutkan.

14. Thermal Stability

Dua kondisi plastic sheet dengan luas 12x18inch ( 30x45 cm) diuji. Setiap

sheet digantung di circulating air oven pada suhu 356 9 F (180 5 C)

selama 2 hours +5, 0 minutes. Setelah dikeluarkan dari oven , sheet

digantung secara vertical dan didinginkan pada standard condition , lalu

diperiksa secara visual untuk memenuhi kriteria pada table II.

Page 63: Studi sertifikasi kaca depan kokpit (flight deck windshield)

61

15. Craze Resistance

a. Conditioning of specimens

Dua puluh spesimen , dengan ukuran 1x15 inches ( 2.5 x 38.1 cm )

dengan ketebalan 0.25 inch (6.4 mm) hingga ketebalan 0.500 inch

(12.7 mm) (termasuk) dilakukan anneal pada suhu 248 2 F (120

1 C) selama 2 hours. Specimen dengan ketebalan lebih dari 0.5

inch perlu dilakukan machining hingga ketebalan 0.5 inch. Langsung

setelah dilakukan annealing , 10 specimen dikondisikan pada

standard condition selama 48 jam. Sisanya didinginkan dengan udara

selama 1 jam , lalu dimasukkan ke air pada suhu 120 2 F (49 1

C) selama 24 hours, lalu dimasukkan ke air yang dijaga suhunya 73

2 F (23 1 C) selama 2 hingga 3 hours. Selama dimasukkan ke

dalam air specimen tidak boleh saling kontak. Specimen basah harus

segera diuji dalam jangka waktu 15 menit setelah dikeluarkan dari

air. Specimen kering harus dites secepat mungkin setelah selesai

pada standard condition.

b. Procedure

Setiap specimen yang diukur , diberi solasi / dibalut dengan 0.125-

inch (3.2-mm) wide black matte tape (Chartpak atau yang

sebanding) sesuai gambar berikut dan disiapkan sebagai batang

kantilever yang diberi beban . Specimen diberi beban selama 10

minutes sebelum ditambahkan test fluid. 10 specimen ( 5 basah dan

5 kering ) diuji menggunakan isopropyl alcohol untuk memenuhi

TT-I-735 dan 10 specimen lain diuji menggunakan 1 hingga 2

campuran dari toluene untuk memenuhi A-A-59107 dan isobutyl

acetate untuk memenuhi ASTM-D1718. Cairan diberikan melalui

filter paper. Filter paper harus tetap basah selama uji dilakukan

dengan menambahkan test fluid dengan eyedropper jika dibutuhkan.

Selama crazing merambat terhadap beban , filter paper diletakkan

pada specimen. Lama ekspos specimen dengan test fluid adalah 30

minutes +1, 0 minutes. Posisi rambat craze terakhir diberi tanda

pada sisi specimen . Jarak antara titik craze terakhir dan titik

Page 64: Studi sertifikasi kaca depan kokpit (flight deck windshield)

62

pembebanan diukur menggunakan combination square yang

dimodifikasi sebuah plumb line dan leveling bob. Craze stress harus

memenuhi kriteria kebutuhan yang telah disebutkan dengan

menghitung,

Page 65: Studi sertifikasi kaca depan kokpit (flight deck windshield)

63

http://everyspec.com/COMML_ITEM_DESC/A-A-59000_A-A-59999/A-A-

59107_14208/

http://everyspec.com/FED_SPECS/T/TT-I-735A_27051/

Page 66: Studi sertifikasi kaca depan kokpit (flight deck windshield)

64

BAB 6 TEMPAT PENGUJIAN

Ada beberapa tempat pengujian yang berpotensial untuk digunakan sebagai

tempat pengujian produk yang akan dibuat. Berikut adalah beberapa tempat

pengujian yang ada :

Lee Aerospace, 9323 E 34th St N, Wichita, KS 67226, USA

GKN Aerospace, Worcestershire B98 0TL, United Kingdom

GTS, 4910 Burlington Way, Tacoma, WA 98409, USA

JCS Technology, Weston-super-Mare North Somerset BS24 9B, United

Kingdom

TEC-Eurolab , Viale Europa, 40, 41011 Campogalliano MO, Italy

Element Materials Technology , https://www.element.com/locations

National Technical Systems , Headquarters: Calabasas, California, United

States

Badan Pengkajian dan Penerapan Teknologi (BPPT), Kawasan Puspiptek

Gedung 220 Cisauk Tangerang Selatan, untuk pengujian impak.

Pengujian efek temperatur dan efek mekanik pada material Transparancies di

Laboratorium Uji Polimer LIPI. Terletak di Laboratorium Uji Polimer, Pusat

Penelitian Fisika – LIPI, Jl. Cisitu/Sangkuriang No. 21/154 D, Bandung 40135

(ASTM qualified)

Page 67: Studi sertifikasi kaca depan kokpit (flight deck windshield)

65

DAFTAR PUSTAKA

1. (DKUPPU), C.A.S.R.: C.A.S.R. part 21 Amdt 2 .

http://hubud.dephub.go.id/?en/dsku/download/1318

2. (FAA), F.A.A.: Advisory Circular (AC) 25.775-1.

www.faa.gov/documentLibrary/media/Advisory_Circular/AC25-775-1.pdf

3. (DKUPPU), C.A.S.R.: C.A.S.R. part 25 Amdt. 6 .

http://hubud.dephub.go.id/?en/dsku/download/6650

4. Rafi Hadyatama, dkk. 2014. SERTIFIKASI TRANSPARANSI PADA

JENDELA KABIN PESAWAT UDARA. Bandung:Institut Teknologi

Bandung

5. http://aviationstudys.blogspot.co.id/2015/05/aircraft-windows-wind-

screen.html diakses 17 November 2016

6. http://leeaerospace.com/aircraft-windows/ diakses 7 November 2016

7. http://www.gkn.com/aerospace/products-and-

capabilities/transparencies/windshield-cockpit-

windows/Pages/default.aspx diakses 7 November 2016

8. http://www.aircraftwindshield.com/ diakses 7 November 2016

9. http://www.glapinc.com/Corporate/history.htm diakses 7 November 2016

10. http://www.ppgaerospace.com/Products/Transparencies/Commercial-

Aviation.aspx diakses 7 November 2016

11. http://www.lpaero.com/ diakses 7 November 2016

12. https://www.astm.org diakses 18 November 2016

13. https://www.element.com/ diakses 18 November 2016

14. https://www.nts.com diakses 18 November 2016