sifat fisik air laut

Upload: fitrawan-fattah

Post on 16-Oct-2015

711 views

Category:

Documents


5 download

DESCRIPTION

sifat fisik air laut

TRANSCRIPT

  • 5/26/2018 Sifat Fisik Air Laut

    1/20

    Rabu, 04 April 2012

    Sifat Fisik Air Laut

    Oseanografi terdiri dari dua kata: oceanos yang berarti laut dan graphos yang berarti

    gambaran atau deskripsi (bahasa Yunani). Secara sederhana kita dapat mengartikan

    oseanografi sebagai gambaran atau deskripsi tentang laut. Dalam bahasa lain yang lebih

    lengkap, oseanografi dapat diartikan sebagai studi dan penjelajahan (eksplorasi) ilmiah

    mengenai laut dan segala fenomenanya. Laut sendiri adalah bagian dari hidrosfer. Seperti

    kita ketahui bahwa bumi terdiri dari bagian padat yang disebut litosfer, bagian cair yang

    disebut hidrosfer dan bagian gas yang disebut atmosfer. Sementara itu bagian yang

    berkaitan dengan sistem ekologi seluruh makhluk hidup penghuni planet Bumi

    dikelompokkan ke dalam biosfer.

    Sebelum melangkah pada uraian yang lebih jauh, mungkin ada di antara anda yang

    bertanya: Apa bedanya oseanografi dan oseanologi? Kalau kita melihat pada beberapaensiklopedia yang ada, oseanografi dan oseanologi adalah dua hal yang sama (sinonim).

    Namun, dari beberapa sumber lain dikatakan bahwa ada perbedaan mendasar yang

    membedakan antara oseanografi dan oseanologi. Oseanologi terdiri dari dua kata (dalam

    bahasa Yunani) yaitu oceanos (laut) dan logos (ilmu) yang secara sederhana dapat

    diartikan sebagai ilmu yang mempelajari tentang laut. Dalam arti yang lebih lengkap,

    oseanologi adalah studi ilmiah mengenai laut dengan cara menerapkan ilmu-ilmu

    pengetahuan tradisional seperti fisika, kimia, matematika, dll ke dalam segala aspek

    mengenai laut. Anda tinggal pilih, mau setuju dengan pendapat pertama atau kedua.

    Secara umum, oseanografi dapat dikelompokkan ke dalam 4 (empat) bidang ilmu utama

    yaitu: geologi oseanografi (geologi laut) yang mempelajari lantai samudera atau litosfer dibawah laut memfokus pada struktur, tanda dan evolusi pasu samudra. Fisika oseanografi

    (ekologi fisik) yang mempelajari masalah-masalah fisis dan cirri-ciri seperti arus,

    gelombang, pasang surut dan temperatur air laut. Kimia oseanografi (oseanografi kimia)

    yang mempelajari masalah-masalah kimiawi air laut dan bersangkut-paut dengan susunan

    air laut siklus biogeokimia yang berpengaruh akan itu, yang terakhir biologi oseanografi

    (ekologi marin) yang mempelajari masalah-masalah yang berkaitan dengan flora dan fauna

    di laut termasuk siklus kehidupan dan produksi pangan.

    Oseanografi adalah jumlah beberapa cabang tersebut. Penyelidikan oseanografis

    mendatangkan percontohan air laut dan kehidupan marin untuk pengkajian mendalam,

    perabaan jauh proses oseanik dengan pesawat udara dan satelit mengorbitkan bumi, dan

    http://geoenviron.blogspot.com/2012/04/sifat-fisik-air-laut.htmlhttp://geoenviron.blogspot.com/2012/04/sifat-fisik-air-laut.htmlhttp://4.bp.blogspot.com/-2NlJ3oasXfM/T30PPsM-y9I/AAAAAAAAAUU/JAK4mSrQk9c/s1600/27.JPGhttp://geoenviron.blogspot.com/2012/04/sifat-fisik-air-laut.html
  • 5/26/2018 Sifat Fisik Air Laut

    2/20

    eksplorasi lantai laut dengan sarana penggerekan laut-dalam dan penampangan seismik

    pusat bumi da bawah dasar pangkal samudra. Pengetahuan lebih besar samudra dunia

    memperbolehkan ilmuwan meramalkan secara lebih tepat, seandainya, perubahan cuaca

    dan iklim jangka waktu panjang dan juga antarkan pada eksploitasi lebih efisien sumber

    daya bumi. Oseanografipun vital pada pehamaman efek pencemar pada perairan lautan dan

    pemeliharaan kualitas perairan samudra terhadap tuntutan manusia dibuat padanya yang

    kian menambah.Studi menyeluruh (komprehensif) mengenai laut dimulai pertama kali dengan

    dilakukannya ekspedisi Challenger (1872-1876) yang dipimpin oleh naturalis bernama

    C.W. Thomson (berkebangsaan Skotlandia) dan John Murray (berkebangsaan Kanada).

    Istilah Oseanografi sendiri digunakan oleh mereka dalam laporan yang diedit oleh Murray.

    Murray selanjutnya menjadi pemimpin dalam studi mengenai sedimen laut. Keberhasilan

    dari ekspedisi Challenger dan pentingnya ilmu pengetahuan tentang laut dalam

    perkapalan/perhubungan laut, perikanan, kabel laut dan studi mengenai iklim akhirnya

    membawa banyak negara untuk melakukan ekspedisi-ekspedisi berikutnya. Organisasi

    oseanografi internasional pertama adalah The International Council for the Exploration of

    the Sea (1901).

    Di Indonesia sendiri terdapat beberapa lembaga penelitian dan perguruan-perguruan tinggidalam bidang kelautan. Salah satu lembaga penelitian kelautan yang tertua di Indonesia

    adalah Pusat Penelitian Oseanografi,yang berada di bawah Lembaga Ilmu Pengetahuan

    Indonesia (disingkat menjadi P20-LIPI) yang dulu namanya Lembaga Oseanologi (LON-

    LIPI) . Cikal bakal dari lembaga penelitian ini dulu bernama Zoologish Museum en

    Laboratorium te Buitenzorg yang didirikan pada tahun 1905.

    BAB I

    TEMPERATUR AIR LAUT

    Dalam oseanografi dikenal dua istilah untuk menentukan temperatur air laut yaitutemperatur insitu (selanjutnya disebut sebagai temperatur saja) dan temperatur potensial.

    Temperatur adalah sifat termodinamis cairan karena aktivitas molekul dan atom di dalam

    cairan tersebut. Semakin besar aktivitas (energi), semakin tinggi pula temperaturnya.

    Temperatur menunjukkan kandungan energi panas. Energi panas dan temperatur

    dihubungkan oleh energi panas spesifik. Energi panas spesifik sendiri secara sederhana

    dapat diartikan sebagai jumlah energi panas yang dibutuhkan untuk menaikkan temperatur

    dari satu satuan massa fluida sebesar 1o. Jika kandungan energi panas nol (tidak ada

    aktivitas atom dan molekul dalam fluida) maka temperaturnya secara absolut juga nol

    (dalam skala Kelvin). Jadi nol dalam skala Kelvin adalah suatu kondisi dimana sama sekali

    tidak ada aktivitas atom dan molekul dalam suatu fluida. Temperatur air laut di permukaan

    ditentukan oleh adanya pemanasan (heating) di daerah tropis dan pendinginan (cooling) didaerah lintang tinggi. Kisaran harga temperatur di laut adalah -2o s.d. 35oC.

    Tekanan di dalam laut akan bertambah dengan bertambahnya kedalaman. Sebuah parsel air

    yang bergerak dari satu level tekanan ke level tekanan yang lain akan mengalami

    penekanan (kompresi) atau pengembangan (ekspansi). Jika parsel air mengalamai

    penekanan secara adiabatis (tanpa terjadi pertukaran energi panas), maka temperaturnya

    akan bertambah. Sebaliknya, jika parsel air mengalami pengembangan (juga secara

    adiabatis), maka temperaturnya akan berkurang. Perubahan temperatur yang terjadi akibat

    penekanan dan pengembangan ini bukanlah nilai yang ingin kita cari, karena di dalamnya

    tidak terjadi perubahan kandungan energi panas. Untuk itu, jika kita ingin membandingkan

  • 5/26/2018 Sifat Fisik Air Laut

    3/20

    temperatur air pada suatu level tekanan dengan level tekanan lainnya, efek penekanan dan

    pengembangan adiabatik harus dihilangkan. Maka dari itu didefinisikanlah temperatur

    potensial, yaitu temperatur dimana parsel air telah dipindahkan secara adiabatis ke level

    tekanan yang lain. Di laut, biasanya digunakan permukaan laut sebagai tekanan referensi

    untuk temperatur potensial. Jadi kita membandingkan harga temperatur pada level tekanan

    yang berbeda jika parsel air telah dibawa, tanpa percampuran dan difusi, ke permukaan

    laut. Karena tekanan di atas permukaan laut adalah yang terendah (jika dibandingkandengan tekanan di kedalaman laut yang lebih dalam), maka temperatur potensial (yang

    dihitung pada tekanan permukaan) akan selalu lebih rendah daripada temperatur

    sebenarnya.

    Gambar 1. Temperatur Profile

    Satuan untuk temperatur dan temperatur potensial adalah derajat Celcius. Sementara itu,

    jika temperatur akan digunakan untuk menghitung kandungan energi panas dan transpor

    energi panas, harus digunakan satuan Kelvin. 0oC = 273,16K. Perubahan 1oC sama

    dengan perubahan 1K.

    Seperti telah disebutkan di atas, temperatur menunjukkan kandungan energi panas, dimana

    energi panas dan temperatur dihubungkan melalui energi panas spesifik. Energi panas

    persatuan volume dihitung dari harga temperatur menggunakan rumus

    Q = densitas x energi panas specific x temperatur(temperatur dalam satuan Kelvin). Jika tekanan tidak sama dengan nol, perhitungan energi

    panas di lautan harus menggunakan temperatur potensial. Satuan untuk energi panas

    (dalam mks) adalah Joule. Sementara itu, perubahan energi panas dinyatakan dalam Watt

    (Joule/detik). Aliran (fluks) energi panas dinyatakan dalam Watt/meter2 (energi per detik

    per satuan luas).

    Kisaran suhu pada daerah tropis relatif stabil karena cahaya matahari lebih banyak

    mengenai daerah ekuator daripada daerah kutub. Hal ini dikarenakan cahaya matahari yang

    merambat melalui atmosfer banyak kehilangan panas sebelum cahaya tersebut mencapai

    kutub. Suhu di lautan kemungkinan berkisar antara -1.87C (titik beku air laut) di daerah

    http://1.bp.blogspot.com/_ZkEgecIMcD8/TUVYLYE0EHI/AAAAAAAAABo/QwkFf3BZL98/s1600/perubahan+suhu.jpg
  • 5/26/2018 Sifat Fisik Air Laut

    4/20

    kutub sampai maksimum sekitar 42C di daerah perairan dangkal (Hutabarat dan Evans,

    1986).

    Sebaran suhu secara menegak ( vertikal) diperairan Indonesia terbagi atas tiga lapisan,

    yakni lapisan hangat di bagian teratas atau lapisan epilimnion dimana pada lapisan ini

    gradien suhu berubah secara perlahan, lapisan termoklin yaitu lapisan dimana gradien suhu

    berubah secara cepat sesuai dengan pertambahan kedalaman, lapisan dingin di bawah

    lapisan termoklin yang disebut juga lapisan hipolimnion dimana suhu air laut konstansebesar 4C. Pada lapisan termoklin memiliki ciri gradien suhu yaitu perubahan suhu

    terhadap kedalaman sebesar 0.1C untuk setiap pertambahan kedalaman satu meter

    (Nontji,1987).

    Gambar 2. Profil suhu Permukaan Dunia

    Suhu menurun secara teratur sesuai dengan kedalaman. Semakin dalam suhu akan semakin

    rendah atau dingin. Hal ini diakibatkan karena kurangnya intensitas matahari yang masuk

    kedalam perairan. Pada kedalaman melebihi 1000 meter suhu air relatif konstan dan

    berkisar antara 2C4C (Hutagalung, 1988)

    Suhu mengalami perubahan secara perlahan-lahan dari daerah pantai menuju laut lepas.

    Umumnya suhu di pantai lebih tinggi dari daerah laut karena daratan lebih mudah

    menyerap panas matahari sedangkan laut tidak mudah mengubah suhu bila suhu

    lingkungan tidak berubah. Di daerah lepas pantai suhunya rendah dan stabil.

    Lapisan permukaan hingga kedalaman 200 meter cenderung hangat, hal ini dikarenakan

    sinar matahari yang banyak diserap oleh permukaan. Sedangkan pada kedalaman 200-1000

    meter suhu turun secara mendadak yang membentuk sebuah kurva dengan lereng yang

    tajam. Pada kedalaman melebihi 1000 meter suhu air laut relatif konstan dan biasanya

    berkisar antara 2-4o C (sahala hutabarat,1986).

    Faktor yang memengaruhi suhu permukaan laut adalah letak ketinggian dari permukaan

    laut (Altituted), intensitas cahaya matahari yang diterima, musim, cuaca, kedalaman air,

    sirkulasi udara, dan penutupan awan (Hutabarat dan Evans, 1986).

    BAB II

    TEKANAN DAN KEDALAMAN LAUT

    http://1.bp.blogspot.com/_ZkEgecIMcD8/TUVYrhuDNEI/AAAAAAAAABw/C1ZXa5LAuGE/s1600/suhu+air+laut+dunia.jpg
  • 5/26/2018 Sifat Fisik Air Laut

    5/20

    Tekanan air laut bertambah terhadap kedalaman. Kedalaman air laut biasanya diukur

    dengan menggunakan echo sounder atau CTD (Conductivity, Temperature, Depth).

    Kedalaman yang diukur dengan menggunakan CTD didasarkan pada harga tekanan.

    Tekanan didefinisikan sebagai gaya per satuan luas. Semakin ke dalam, tekanan air laut

    akan semakin besar. Hal ini disebabkan oleh semakin besarnya gaya yang bekerja pada

    lapisan yang lebih dalam. Satuan dari tekanan dalam cgs adalah dynes/cm2, sedangkan

    dalam mks adalah Newton/m2. Satu Pascal sama dengan satu Newton/m2. Dalamoseanografi, satuan tekanan yang digunakan adalah desibar (disingkat dbar), dimana 1 dbar

    = 10-1 bar = 105 dynes/cm2 = 104 Pascal.

    Gaya akibat tekanan bekerja dari tekanan yang berbeda pada satu titik ke titik lainnya.

    Gaya ini bekerja dari tekanan yang lebih tinggi ke tekanan yang lebih rendah. Di laut, gaya

    gravitasi yang bekerja (ke arah bawah) akan diimbangi oleh gaya akibat adanya perbedaan

    tekanan tersebut (ke arah atas), sehingga air yang bergerak ke bawah tidak akan mengalami

    percepatan.

    Tekanan pada satu kedalaman bergantung pada massa air yang berada di atasnya.

    Persamaan yang digunakan untuk mengukur harga kedalaman dari harga tekanan adalah

    persamaan hidrostatis, yaitu

    dp= x g x dhKeterangan

    dp=perubahan tekanan,

    =densitas air laut,

    g=percepatan gravitasi, dan

    dh=perubahan kedalaman.

    Jadi, jika tekanan berubah sebesar 100 dbar, dengan harga percepatan gravitasi g=9.8

    m/det2 dan densitas air laut =1025 kg/m3, maka perubahan kedalamannya adalah 99,55

    meter. Variasi tekanan di laut berada pada kisaran nol (di permukaan) hingga 10.000 dbar

    (di kedalaman paling dalam).

    BAB III

    SALINITAS AIR LAUT3.1. Teori Asal-Usul Garam-Garam di laut

    Mula-mula diperkirakan bahwa zat-zat kimia yang menyebabkan air laut asin berasal dari

    darat yang dibawa oleh sungai-sungai yang mengalir ke laut, entah itu dari pengikisan

    batu-batuan darat, dari tanah longsor, dari air hujan atau dari gejala alam lainnya, yang

    terbawa oleh air sungai ke laut. Jika hal ini benar tentunya susunan kimiawi air sungai

    tidak akan berbeda dengan susunan kimiawi air laut. Namun tabel 2 menunjukkan bahwa

    ada perbedaan besar dalam susunan kimiawi kedua macam air tersebut. Jadi dugaan itu

    tidak benar. Lalu dari mana sebenarnya asal garam-garam tersebut.

    Menurut teori, zat-zat garam tersebut berasal dari dalam dasar laut melalui proses

    outgassing, yakni rembesan dari kulit bumi di dasar laut yang berbentuk gas ke permukaan

    dasar laut. Bersama gas-gas ini, terlarut pula hasil kikisan kerak bumi dan bersama-samagaram-garam ini merembes pula air, semua dalam perbandingan yang tetap sehingga

    terbentuk garam di laut. Kadar garam ini tetap tidak berubah sepanjang masa. Artinya kita

    tidak menjumpai bahwa air laut makin lama makin asin.

    Zat-zat yang terlarut yang membentuk garam, yang kadarnya diukur dengan istilah

    salinitas dapat dibagi menjadi empat kelompok, yakni:

    1. Konstituen utama : Cl, Na, SO4, dan Mg.

    2. Gas terlarut : CO2, N2, dan O2.

    3. Unsur Hara : Si, N, dan P.

    4. Unsur Runut : I, Fe, Mn, Pb, dan Hg.

  • 5/26/2018 Sifat Fisik Air Laut

    6/20

    Konstituen utama merupakan 99,7% dari seluruh zat terlarut dalam air laut, sedangkan

    sisanya 0,3% terdiri dari ketiga kelompok zat lainnya. Akan tetapi meskipun kelompok zat

    terakhir ini sangat kecil persentasenya, mereka banyak menentukan kehidupan di laut.

    Sebaliknya kepekatan zat-zat ini banyak ditentukan oleh aktivitas kehidupan di laut.

    Selain zat-zat terlarut ini, air juga mengandung butiran-butiran halus dalam suspense.

    Sebagian dari zat ini akhirnya terlarut, sebagian lagi mengendap ke dasar laut dan sisanya

    diurai oleh bakteri menjadi zat-zat hara yang dimanfaatkan tumbuhan untuk fotosintesis.Tabel 1. Perbedaan kandungan garam dan ion utama antara air laut dan air sungai

    NAMA UNSUR % jumlah berat seluruh gram

    AIR LAUT AIR SUNGAI

    Klorida 55,04 5,68

    Natrium 30,61 5,79

    Sulfat 7,68 12,14

    Magnesium 3,69 3,41

    Kalsium 1,16 20,29

    Kalium 1,10 2,12

    Bikarbonat 0,41 -

    Karbonat - 35,15Brom 0,19 -

    Asam borak 0,07 -

    Strontium 0,04 -

    Flour 0,00 -

    Silika - 11,67

    Oksida - 2,75

    Nitrat - 0,90

    Air laut mengandung 3,5% garam-garaman, gas-gas terlarut, bahan-bahan organik dan

    partikel-partikel tak terlarut. Keberadaan garam-garaman mempengaruhi sifat fisis air laut

    (seperti: densitas, kompresibilitas, titik beku, dan temperatur dimana densitas menjadi

    maksimum) beberapa tingkat, tetapi tidak menentukannya. Beberapa sifat (viskositas, dayaserap cahaya) tidak terpengaruh secara signifikan oleh salinitas. Dua sifat yang sangat

    ditentukan oleh jumlah garam di laut (salinitas) adalah daya hantar listrik (konduktivitas)

    dan tekanan osmosis.

    Garam-garaman utama yang terdapat dalam air laut adalah klorida (55%), natrium (31%),

    sulfat (8%), magnesium (4%), kalsium (1%), potasium (1%) dan sisanya (kurang dari 1%)

    teridiri dari bikarbonat, bromida, asam borak, strontium dan florida. Tiga sumber utama

    garam-garaman di laut adalah pelapukan batuan di darat, gas-gas vulkanik dan sirkulasi

    lubang-lubang hidrotermal (hydrothermal vents) di laut dalam.

    Secara ideal, salinitas merupakan jumlah dari seluruh garam-garaman dalam gram pada

    setiap kilogram air laut. Secara praktis, adalah susah untuk mengukur salinitas di laut, oleh

    karena itu penentuan harga salinitas dilakukan dengan meninjau komponen yang terpentingsaja yaitu klorida (Cl). Kandungan klorida ditetapkan pada tahun 1902 sebagai jumlah

    dalam gram ion klorida pada satu kilogram air laut jika semua halogen digantikan oleh

    klorida. Penetapan ini mencerminkan proses kimiawi titrasi untuk menentukan kandungan

    klorida.

    Salinitas ditetapkan pada tahun 1902 sebagai jumlah total dalam gram bahan-bahan terlarut

    dalam satu kilogram air laut jika semua karbonat dirubah menjadi oksida, semua bromida

    dan yodium dirubah menjadi klorida dan semua bahan-bahan organik dioksidasi.

    Selanjutnya hubungan antara salinitas dan klorida ditentukan melalui suatu rangkaian

    pengukuran dasar laboratorium berdasarkan pada sampel air laut di seluruh dunia dan

    dinyatakan sebagai:

  • 5/26/2018 Sifat Fisik Air Laut

    7/20

    S (o/oo) = 0.03 +1.805 Cl (o/oo) (1902)

    Lambang o/oo (dibaca per mil) adalah bagian per seribu. Kandungan garam 3,5%

    sebanding dengan 35o/oo atau 35 gram garam di dalam satu kilogram air laut. Persamaan

    tahun 1902 di atas akan memberikan harga salinitas sebesar 0,03o/oo jika klorinitas sama

    dengan nol dan hal ini sangat menarik perhatian dan menunjukkan adanya masalah dalam

    sampel air yang digunakan untuk pengukuran laboratorium. Oleh karena itu, pada tahun

    1969 UNESCO memutuskan untuk mengulang kembali penentuan dasar hubungan antaraklorinitas dan salinitas dan memperkenalkan definisi baru yang dikenal sebagai salinitas

    absolut dengan rumus:

    S (o/oo) = 1.80655 Cl (o/oo) (1969)

    Namun demikian, dari hasil pengulangan definisi ini ternyata didapatkan hasil yang sama

    dengan definisi sebelumnya.

    Definisi salinitas ditinjau kembali ketika tekhnik untuk menentukan salinitas dari

    pengukuran konduktivitas, temperatur dan tekanan dikembangkan. Sejak tahun 1978,

    didefinisikan suatu satuan baru yaitu Practical Salinity Scale (Skala Salinitas Praktis)

    dengan simbol S, sebagai rasio dari konduktivitas.

    Salinitas praktis dari suatu sampel air laut ditetapkan sebagai rasio dari konduktivitas

    listrik (K) sampel air laut pada temperatur 15oC dan tekanan satu standar atmosferterhadap larutan kalium klorida (KCl), dimana bagian massa KCl adalah 0,0324356 pada

    temperatur dan tekanan yang sama. Rumus dari definisi ini adalah:

    S = 0.0080 - 0.1692 K1/2 + 25.3853 K + 14.0941 K3/2 - 7.0261 K2 + 2.7081 K5/2

    Catatan:

    Dari penggunaan definisi baru ini, dimana salinitas dinyatakan sebagai rasio, maka satuan

    o/oo tidak lagi berlaku, nilai 35o/oo berkaitan dengan nilai 35 dalam satuan praktis.

    Beberapa oseanografer menggunakan satuan "psu" dalam menuliskan harga salinitas, yang

    merupakan singkatan dari "practical salinity unit". Karena salinitas praktis adalah rasio,

    maka sebenarnya ia tidak memiliki satuan, jadi penggunaan satuan "psu" sebenarnya tidak

    mengandung makna apapun dan tidak diperlukan. Pada kebanyakan peralatan yang ada

    saat ini, pengukuran harga salinitas dilakukan berdasarkan pada hasil pengukurankonduktivitas.

    Salinitas di daerah subpolar (yaitu daerah di atas daerah subtropis hingga mendekati kutub)

    rendah di permukaan dan bertambah secara tetap (monotonik) terhadap kedalaman. Di

    daerah subtropis (atau semi tropis, yaitu daerah antara 23,5o - 40oLU atau 23,5o - 40oLS),

    salinitas di permukaan lebih besar daripada di kedalaman akibat besarnya evaporasi

    (penguapan). Di kedalaman sekitar 500 sampai 1000 meter harga salinitasnya rendah dan

    kembali bertambah secara monotonik terhadap kedalaman. Sementara itu, di daerah tropis

    salinitas di permukaan lebih rendah daripada di kedalaman akibatnya tingginya presipitasi

    (curah hujan).

  • 5/26/2018 Sifat Fisik Air Laut

    8/20

    Gambar 3. Typical temperature and salinity profiles in the open ocean.

    3.2. Sebaran Salinitas di Laut

    Sebaran salinitas di laut dipengaruhi oleh berbagai faktor seperti pola sirkulasi air,

    penguapan, curah hujan, aliran sungai. Perairan estuaria atau daerah sekitar kuala dapat

    mempunyai struktur salinitas yang kompleks, karena selain merupakan pertemuan antara

    air tawar yang relatif lebih ringan dan air laut yang lebih berat, juga pengadukan air sangat

    menentukan. Beberapa kemungkinan ditunjukkan secara diagramatis pada gambar 1.

    Pertama adalah perairan dengan stratifikasi salinitas yang sangat kuat, terjadi di mana air

    tawar merupakan lapisan yang tipis di permukaan sedangkan di bawahnya terdapat air laut.

    Ini bisa ditemukan di depan muara sungai yang alirannya kuat sedangkan pengaruhpasang-surut kecil. Nelayan atau pelaut di pantai Sumatra yang dalam keadaan darurat

    kehabisan air tawar kadang-kadang masih dapat menyiduk air tawar di lapisan tipis teratas

    dengan menggunakan piring, bila berada di depan muara sungai besar.

    Kedua, adalah perairan dengan stratifikasi sedang. Ini terjadi karena adanya gerak pasang-

    surut yang menyebabkan terjadinya pengadukan pada kolom air hingga terjadi pertukaran

    air secara vertikal. Di permukaan, air cenderung mengalir keluar sedangkan air laut

    merayap masuk dari bawah. Antara keduanya terjadi percampuran. Akibatnya garis

    isohalin (=garis yang menghubungkan salinitas yang sama) mempunyai arah yang condong

    ke luar. Keadaan semacam ini juaga bisa dijumpai di beberapa perairan estuaria di

    Sumatra.

    Di perairan lepas pantai yang dalam, angin dapat pula melakukan pengadukan di lapisanatas hingga membentuk lapisan homogen kira-kira setebal 50-70 m atau lebih bergantung

    intensitas pengadukan. Di perairan dangkal, lapisan homogen ini berlanjut sampai ke dasar.

    Di lapisan dengan salinitas homogen, suhu juga biasanya homogen. Baru di bawahnya

    terdapat lapisan pegat (discontinuity layer) dengan gradasi densitas yang tajam yang

    menghambat percampuran antara lapisan di atas dan di bawahnya.

    Di bawah lapisan homogen, sebaran salinitas tidak banyak lagi ditentukan oleh angin tetapi

    oleh pola sirkulasi massa air di lapisan massa air di lapisan dalam. Gerakan massa air ini

    bisa ditelusuri antara lain dengan mengakji sifat-sifat sebaran salinitas maksimum dan

    salinitas minimum dengan metode inti (core layer method).

    http://2.bp.blogspot.com/_ZkEgecIMcD8/TUVZGX-J8FI/AAAAAAAAAB4/nWa2CAQU9Og/s1600/salinitas1.gif
  • 5/26/2018 Sifat Fisik Air Laut

    9/20

    Salinitas di daerah subpolar (yaitu daerah di atas daerah subtropis hingga mendekati kutub)

    rendah di permukaan dan bertambah secara tetap (monotonik) terhadap kedalaman. Di

    daerah subtropis (atau semi tropis, yaitu daerah antara 23,5o40oLU atau 23,5o40oLS),

    salinitas di permukaan lebih besar daripada di kedalaman akibat besarnya evaporasi

    (penguapan). Di kedalaman sekitar 500 sampai 1000 meter harga salinitasnya rendah dan

    kembali bertambah secara monotonik terhadap kedalaman. Sementara itu, di daerah tropis

    salinitas di permukaan lebih rendah daripada di kedalaman akibatnya tingginya presipitasi(curah hujan).

    3.3. Dinamika Salinitas di Daerah Estuaria

    Estuaria adalah perairan muara sungai semi tertutup yang berhubungan bebas dengan laut,

    sehingga air laut dengan salinitas tinggi dapat bercampur dengan air tawar. Estuaria dapat

    terjadi pada lembah-lembah sungai yang tergenang air laut, baik karena permukaan laut

    yang naik (misalnya pada zaman es mencair) atau pun karena turunnya sebagian daratan

    oleh sebab-sebab tektonis. Estuaria juga dapat terbentuk pada muara-muara sungai yang

    sebagian terlindungi oleh beting pasir atau lumpur.

    Kombinasi pengaruh air laut dan air tawar akan menghasilkan suatu komunitas yang khas,

    dengan lingkungan yang bervariasi, antara lain:

    1. Tempat bertemunya arus air tawar dengan arus pasang-surut, yang berlawananmenyebabkan suatu pengaruh yang kuat pada sedimentasi, pencampuran air, dan ciri-ciri

    fisika lainnya, serta membawa pengaruh besar pada biotanya.

    2. Pencampuran kedua macam air tersebut menghasilkan suatu sifat fisika lingkungan

    khusus yang tidak sama dengan sifat air sungai maupun sifat air laut.

    3. Perubahan yang terjadi akibat adanya pasang-surut mengharuskan komunitas

    mengadakan penyesuaian secara fisiologis dengan lingkungan sekelilingnya.

    4. Tingkat kadar garam di daerah estuaria tergantung pada pasang-surut air laut, banyaknya

    aliran air tawar dan arus-arus lainnya, serta topografi daerah estuaria tersebut.

    3.4. Model Salinitas

    ModelSalinitas adalah suatu penggambaran atas kadar garam yang terdapat pada air,

    baik kandungan atau perbedaannya sehingga untuk tiap daerah dimungkinkan terdapatperbedaan model salinitasnya.

    Perubahan salinitas dipengaruhi oleh pasang surut dan musim. Ke arah darat, salinitas

    muara cenderung lebih rendah. Tetapi selama musim kemarau pada saat aliran air sungai

    berkurang, air laut dapat masuk lebih jauh ke arah darat sehingga salinitas muara

    meningkat. Sebaliknya pada musim hujan, air tawar mengalir dari sungai ke laut dalam

    jumlah yang lebih besar sehingga salinitas air di muara menurun.

    Perbedaan salinitas dapat mengakibatkan terjadinya lidah air tawar dan pergerakan massa

    di muara. Perbedaan salinitas air laut dengan air sungai yang bertemu di muara

    menyebabkan keduanya bercampur membentuk air payau. Karena kadar garam air laut

    lebih besar, maka air laut cenderung bergerak di dasar perairan sedangkan air tawar di

    bagian permukaan. Keadaan ini mengakibatkan terjadinya sirkulasi air di muara.Aliran air tawar yang terjadi terus-menerus dari hulu sungai membawa mineral, bahan

    organik, dan sedimen ke perairan muara. Di samping itu, unsur hara terangkut dari laut ke

    daerah muara oleh adanya gerakan air akibat arus dan pasang surut. Unsur-unsur hara yang

    terbawa ke muara merupakan bahan dasar yang diperlukan untuk fotosintesis yang

    menunjang produktifitas perairan. Itulah sebabnya produktifitas muara melebihi

    produktifitas ekosistem laut lepas dan perairan tawar. Lingkungan muara yang paling

    produktif di jumpai di daerah yang ditumbuhi komunitas bakau.

  • 5/26/2018 Sifat Fisik Air Laut

    10/20

    BAB IV

    DENSITAS AIR LAUT

    Densitas merupakan salah satu parameter terpenting dalam mempelajari dinamika laut.

    Perbedaan densitas yang kecil secara horisontal (misalnya akibat perbedaan pemanasan di

    permukaan) dapat menghasilkan arus laut yang sangat kuat. Oleh karena itu penentuan

    densitas merupakan hal yang sangat penting dalam oseanografi. Lambang yang digunakan

    untuk menyatakan densitas adalah (rho).Densitas air laut bergantung pada temperatur (T), salinitas (S) dan tekanan (p).

    Kebergantungan ini dikenal sebagai persamaan keadaan air laut (Equation of State of Sea

    Water):

    = (T,S,p)

    Penentuan dasar pertama dalam membuat persamaan di atas dilakukan oleh Knudsen dan

    Ekman pada tahun 1902. Pada persamaan mereka, dinyatakan dalam g cm-3. Penentuan

    dasar yang baru didasarkan pada data tekanan dan salinitas dengan kisaran yang lebih

    besar, menghasilkan persamaan densitas baru yang dikenal sebagai Persamaan Keadaan

    Internasional (The International Equation of State, 1980). Persamaan ini menggunakan

    temperatur dalam oC, salinitas dari Skala Salinitas Praktis dan tekanan dalam dbar (1 dbar

    = 10.000 pascal = 10.000 N m-2). Densitas dalam persamaan ini dinyatakan dalam kg m-3.Jadi, densitas dengan harga 1,025 g cm-3 dalam rumusan yang lama sama dengan densitas

    dengan harga 1025 kg m-3 dalam Persamaan Keadaan Internasional.

    Densitas bertambah dengan bertambahnya salinitas dan berkurangnya temperatur, kecuali

    pada temperatur di bawah densitas maksimum. Densitas air laut terletak pada kisaran 1025

    kg m-3 sedangkan pada air tawar 1000 kg m-3. Para oseanografer biasanya menggunakan

    lambang t (huruf Yunani sigma dengan subskrip t, dan dibaca sigma -t) untuk menyatakan

    densitas air laut. dimana t = - 1000 dan biasanya tidak menggunakan satuan (seharusnya

    menggunakan satuan yang sama dengan ). Densitas rata-rata air laut adalah t = 25.

    Aturan praktis yang dapat kita gunakan untuk menentukan perubahan densitas adalah: t

    berubah dengan nilai yang sama jika T berubah 1oC, S 0,1, dan p yang sebanding dengan

    perubahan kedalaman 50 m.Densitas maksimum terjadi di atas titik beku untuk salinitas di bawah 24,7 dan di bawah

    titik beku untuk salinitas di atas 24,7. Hal ini mengakibatkan adanya konveksi panas.

    S < 24.7 : air menjadi dingin hingga dicapai densitas maksimum, kemudian jika air

    permukaan menjadi lebih ringan (ketika densitas maksimum telah terlewati) pendinginan

    terjadi hanya pada lapisan campuran akibat angin (wind mixed layer) saja, dimana

    akhirnya terjadi pembekuan. Di bagian kolam (basin) yang lebih dalam akan dipenuhi oleh

    air dengan densitas maksimum. S > 24.7 : konveksi selalu terjadi di keseluruhan badan

    air. Pendinginan diperlambat akibat adanya sejumlah besar energi panas (heat) yang

    tersimpan di dalam badan air. Hal ini terjadi karena air mencapai titik bekunya sebelum

    densitas maksimum tercapai.

    Seperti halnya pada temperatur, pada densitas juga dikenal parameter densitas potensialyang didefinisikan sebagai densitas parsel air laut yang dibawa secara adiabatis ke level

    tekanan referensi.

    a. Tekanan dan Kedalaman Laut

    Tekanan air laut bertambah terhadap kedalaman. Kedalaman air laut biasanya diukur

    dengan menggunakan echo sounder atau CTD (Conductivity, Temperature, Depth).

    Kedalaman yang diukur dengan menggunakan CTD didasarkan pada harga tekanan.

    Tekanan didefinisikan sebagai gaya per satuan luas. Seperti telah disebutkan di atas,

    semakin ke dalam, tekanan air laut akan semakin besar. Hal ini disebabkan oleh semakin

    besarnya gaya yang bekerja pada lapisan yang lebih dalam. Satuan dari tekanan dalam cgs

    adalah dynes/cm2, sedangkan dalam mks adalah Newton/m2. Satu Pascal sama dengan

  • 5/26/2018 Sifat Fisik Air Laut

    11/20

    satu Newton/m2. Dalam oseanografi, satuan tekanan yang digunakan adalah desibar

    (disingkat dbar), dimana 1 dbar = 10-1 bar = 105 dynes/cm2 = 104 Pascal.

    Gaya akibat tekanan bekerja dari tekanan yang berbeda pada satu titik ke titik lainnya.

    Gaya ini bekerja dari tekanan yang lebih tinggi ke tekanan yang lebih rendah. Di laut, gaya

    gravitasi yang bekerja (ke arah bawah) akan diimbangi oleh gaya akibat adanya perbedaan

    tekanan tersebut (ke arah atas), sehingga air yang bergerak ke bawah tidak akan mengalami

    percepatan. Tekanan pada satu kedalaman bergantung pada massa air yang berada diatasnya. Persamaan yang digunakan untuk mengukur harga kedalaman dari harga tekanan

    adalah persamaan hidrostatis, yaitu dp=*g*dh, dimana dp=perubahan tekanan, =densitas

    air laut, g=percepatan gravitasi, dan dh=perubahan kedalaman. Jadi, jika tekanan berubah

    sebesar 100 dbar, dengan harga percepatan gravitasi g=9.8 m/det2 dan densitas air laut

    =1025 kg/m3, maka perubahan kedalamannya adalah 99,55 meter. Variasi tekanan di laut

    berada pada kisaran nol (di permukaan) hingga 10.000 dbar (di kedalaman paling dalam).

    b. Sifat fisis air laut

    Air laut merupakan campuran dari 96,5% air murni dan 3,5% material lainnya seperti

    garam-garaman, gas-gas terlarut, bahan-bahan organik dan partikel-partikel tak terlarut.

    Sifat-sifat fisis utama air laut ditentukan oleh 96,5% air murni.1. Sifat Air Murni

    Air murni jika dibandingkan dengan cairan lain (dengan komposisi yang sama), memiliki

    sifat

    yang khas dan luar biasa (uncommon). Hal ini merupakan hasil dari struktur molekul air

    (H2O), dimana atom-atom hidrogen yang membawa 1 muatan atom positif dan oksigen

    yang

    membawa 2 muatan atom negatif membentuk sebuah molekul sedemikian rupa dimana

    muatan-muatan atom tersebut tidak ternetralisir karena sudut yang terbentuk antara dua

    atom

    hidrogen hanya sebesar 105o (kondisi netral akan terbentuk jika sudut yang terbentuk

    adalah180o). Akibatnya, air murni memiliki sifat-sifat sebagai berikut:

    1. Molekul air merupakan dipol elektrik, yang membentuk suatu kumpulan molekul

    (polimer) dengan rata-rata 6 molekul pada temperatur 20oC. Oleh karena itu air bereaksi

    lebih lambat (untuk berubah) daripada molekul-molekul individunya.

    2. Air memiliki daya pisah yang luar biasa besar, akibatnya material terlarut akan

    memperbesar daya hantar listrik air. Air murni memiliki daya hantar listrik yang relatif

    rendah, tetapi air laut memiliki daya hantar antara air murni dan tembaga. Pada temperatur

    20oC, daya hambat (resistensi) air laut 1,3 kilometer (dengan kandungan garam 3,5%)

    sebanding dengan air murni 1 milimeter.

    3. Sudut 105o dekat dengan sudut tetrahedron, yaitu struktur dengan 4 lengan yang keluar

    dari atom pusat dengan sudut seragam (sebesar 109o28') . Akibatnya, atom oksigen didalam air berusaha untuk mendapatkan 4 atom hidrogen dalam suatu susunan tetrahedral.

    Ini disebut sebagai ikatan hidrogen (hydrogen bond) yang membutuhkan energi ikat 10

    hingga 100 kali lebih kecil daripada ikatan-ikatan molekul sehingga air bersifat lebih

    fleksibel dalam reaksinya merubah kondisi-kondisi kimiawi.

    4. Tetrahedron memiliki sifat dasar jaringan yang lebih lebar dibanding susunan kumpulan

    molekuler yang terdekat. Mereka membentuk kumpulan satu, dua, empat dan delapan

    molekul. Pada temperatur tinggi kumpulan molekul satu dan dua lebih dominan; sementara

    itu dengan turunnya temperatur, tandan (cluster) yang lebih besarlah yang akan dominan.

    Tandan yang lebih besar mengisi ruang yang lebih kecil daripada jumlah molekul yang

    sama dengan tandan yang lebih kecil. Akibatnya, kerapatan (densitas) air mencapai nilai

  • 5/26/2018 Sifat Fisik Air Laut

    12/20

    maksimumnya pada temperatur 4oC.

    Ketika membeku, seluruh molekul air membentuk tetrahedron yang mengakibatkan adanya

    ekspansi volume secara tiba-tiba, yaitu dengan berkurangnya densitas. Oleh karena itu, air

    pada fasa padat jauh lebih ringan daripada air pada fasa cair, dimana hal ini merupakan

    sifat yang jarang kita dapati. Akibatnya:

    1. Es akan mengambang. Hal ini penting untuk kehidupan di danau air tawar, karena es

    berperan sebagai penyekat terhadap pelepasan energi panas (heat) sehingga pembekuan airdari permukaan hingga ke dasar tidak akan terjadi.

    2. Densitas menurun secara cepat pada saat titik beku air tercapai. Ekspansi yang terjadi

    pada

    saat membeku merupakan penyebab utama dalam pelapukan batuan.

    3. Titik beku berkurang di bawah tekanan, akibatnya pencairan terjadi pada dasar glacier

    yang

    memudahan terjadinya aliran glacier.

    4. Rantai hidrogen putus di bawah tekanan, sehingga es di bawah tekanan akan menjadi

    plastis, akibatnya daratan es di Antartika dan Artik mengalir melepaskan gunung es di

    bagian terluarnya. Tanpa proses ini, maka semua air akan menjadi es di daerah kutub.

    2. SalinitasSeperti telah disebutkan di atas, air laut mengandung 3,5% garam-garaman, gas-gas

    terlarut, bahan-bahan organik dan partikel-partikel tak terlarut. Keberadaan garam-garaman

    mempengaruhi sifat fisis air laut (densitas, kompresibilitas, titik beku, temperatur dimana

    densitas menjadi maksimum) beberapa tingkat tetapi tidak menentukannya. Beberapa sifat

    (viskositas, daya serap cahaya) tidak terpengaruh secara signifikan oleh salinitas. Dua sifat

    yang sangat ditentukan oleh jumlah garam di laut adalah daya hantar listrik (konduktivitas)

    dan tekanan osmosis. Garam-garaman utama yang terdapat dalam air laut adalah klorida

    (55%), natrium (31%), sulfat (8%), magnesium (4%), kalsium (1%), potasium (1%) dan

    sisanya (kurang dari 1%) teridiri dari bikarbonat, bromida, asam borak, strontium dan

    florida. Tiga sumber utama dari garam-garaman di laut adalah pelapukan batuan di darat,

    gas-gas vulkanik dan sirkulasi lubang-lubang hidrotermal (hydrothermal vents) di lautdalam.

    Secara ideal, salinitas merupakan jumlah dari seluruh garam-garaman dalam gram pada

    setiap kilogram air laut. Secara praktis, untuk mengukur salinitas adalah susah, oleh karena

    itu penentuan harga salinitas dilakukan dengan meninjau komponen yang terpenting saja

    yaitu klorida (Cl). Kandungan klorida ditetapkan pada tahun 1902 sebagai jumlah dalam

    gram ion klorida pada satu kilogram air laut jika semua halogen digantikan oleh klorida.

    Penetapan ini mencerminkan proses kimiawi titrasi untuk menentukan kandungan klorida.

    Salinitas ditetapkan pada tahun 1902 sebagai jumlah total dalam gram bahan-bahan terlarut

    dalam satu kilogram air laut jika semua karbonat dirubah menjadi oksida, semua bromida

    dan yodium dirubah menjadi klorida dan semua bahan-bahan organik dioksidasi.

    Selanjutnya hubungan antara salinitas dan klorida ditentukan melalui suatu rangkaianpengukuran dasar laboratorium berdasarkan pada sampel air laut di seluruh dunia dan

    dinyatakan sebagai:

    S (o/oo) = 0.03 +1.805 Cl (o/oo) (1902)

    Lambang o/oo (dibaca per mil) adalah bagian per seribu. Kandungan garam 3,5%

    sebanding dengan 35o/oo atau 35 gram garam di dalam satu kilogram air laut.

    Persamaan tahun 1902 di atas akan memberikan harga salinitas sebesar 0,03o/oo jika

    klorinitas sama dengan nol dan hal ini sangat menarik perhatian dan menunjukkan adanya

    masalah dalam sampel air yang digunakan untuk pengukuran laboratorium. Oleh karena

    itu, pada tahun 1969 UNESCO memutuskan untuk mengulang kembali penentuan dasar

    hubungan antara klorinitas dan salinitas dan memperkenalkan definisi baru yang dikenal

  • 5/26/2018 Sifat Fisik Air Laut

    13/20

    sebagai salinitas absolut dengan rumus:

    S (o/oo) = 1.80655 Cl (o/oo) (1969)

    Namun demikian, dari hasil pengulangan definisi ini ternyata didapatkan hasil yang sama

    dengan definisi sebelumnya.

    Definisi salinitas ditinjau kembali ketika tekhnik untuk menentukan salinitas dari

    pengukuran konduktivitas, temperatur dan tekanan dikembangkan. Sejak tahun 1978,

    didefinisikan suatu satuan baru yaitu Practical Salinity Scale (Skala Salinitas Praktis)dengan simbol S, sebagai rasio dari konduktivitas. "Salinitas praktis dari suatu sampel air

    laut ditetapkan sebagai rasio dari konduktivitas listrik (K) sampel air laut pada temperatur

    15oC dan tekanan satu standar atmosfer terhadap larutan kalium klorida (KCl), dimana

    bagian massa KCl adalah 0,0324356 pada temperatur dan tekanan yang sama. Rumus dari

    definisi ini adalah:

    S = 0.0080 - 0.1692 K1/2 + 25.3853 K + 14.0941 K3/2 - 7.0261 K2 + 2.7081 K5/2

    Sebagai catatan: dari penggunaan definisi baru ini, dimana salinitas dinyatakan sebagai

    rasio, maka satuan o/oo tidak lagi berlaku, nilai 35o/oo berkaitan dengan nilai 35 dalam

    satuan praktis. Beberapa oseanografer menggunakan satuan "psu" dalam menuliskan harga

    salinitas, yang merupakan singkatan dari "practical salinity unit". Karena salinitas praktis

    adalah rasio, maka sebenarnya ia tidak memiliki satuan, jadi penggunaan satuan "psu"sebenarnya tidak mengandung makna apapun dan tidak diperlukan. Pada kebanyakan

    peralatan yang ada saat ini, pengukuran harga salinitas dilakukan berdasarkan pada hasil

    pengukuran konduktivitas.

    Salinitas di daerah subpolar (yaitu daerah di atas daerah subtropis hingga ke mendekati

    kutub) rendah di permukaan dan bertambah secara tetap (monotonik) terhadap kedalaman.

    Di daerah subtropis (atau semi tropis, yaitu daerah antara 23,5o - 40oLU atau 23,5o -

    40oLS) salinitas di permukaan lebih besar daripada di kedalaman akibat besarnya

    evaporasi (penguapan). Di kedalaman sekitar 500 sampai 1000 meter harga salinitasnya

    rendah dan kembali bertambah secara monotonik terhadap kedalaman. Sementara itu, di

    daerah tropis salinitas di permukaan lebih rendah daripada di kedalaman akibatnya

    tingginya presipitasi (curah hujan) ( lihat gambar).3. Temperatur

    Dalam oseanografi dikenal dua istilah untuk menentukan temperatur air laut yaitu

    temperatur dan temperatur potensial. Temperatur adalah sifat termodinamis cairan karena

    aktivitas molekul dan atom di dalam cairan tersebut. Semakin besar aktivitas (energi),

    semakin tinggi pula temperaturnya. Temperatur menunjukkan kandungan energi panas.

    Energi panas dan temperatur dihubungkan oleh energi panas spesifik. Energi panas spesifik

    sendiri secara sederhana dapat diartikan sebagai jumlah energi panas yang dibutuhkan

    untuk menaikkan temperatur dari satu satuan massa fluida sebesar 1o. Jika kandungan

    energi panas nol (tidak ada aktivitas atom dan molekul dalam fluida) maka temperaturnya

    secara absolut juga nol (dalam skala Kelvin). Jadi nol dalam skala Kelvin adalah suatu

    kondisi dimana sama sekali tidak ada aktivitas atom dan molekul dalam suatu fluida.Temperatur air laut di permukaan ditentukan oleh adanya pemanasan (heating) di daerah

    tropis dan pendinginan (cooling) di daerah lintang tinggi. Kisaran harga temperatur di laut

    adalah -2o s.d. 35oC.

    Tekanan di dalam laut akan bertambah dengan bertambahnya kedalaman. Sebuah parsel air

    yang bergerak dari satu level tekanan ke level tekanan yang lain akan mengalami

    penekanan (kompresi) atau pengembangan (ekspansi). Jika parsel air mengalamai

    penekanan secara adiabatis (tanpa terjadi pertukaran energi panas), maka temperaturnya

    akan bertambah. Sebaliknya, jika parsel air mengalami pengembangan (juga secara

    adiabatis), maka temperaturnya akan berkurang. Perubahan temperatur yang terjadi akibat

    penekanan dan pengembangan ini bukanlah nilai yang ingin kita cari, karena di dalamnya

  • 5/26/2018 Sifat Fisik Air Laut

    14/20

    tidak terjadi perubahan kandungan energi panas. Untuk itu, jika kita ingin membandingkan

    temperatur air pada suatu level tekanan dengan level tekanan lainnya, efek penekanan dan

    pengembangan adiabatik harus dihilangkan. Maka dari itu didefinisikanlah temperatur

    potensial, yaitu temperatur dimana parsel air telah dipindahkan secara adiabatis ke level

    tekanan yang lain. Di laut, biasanya digunakan permukaan laut sebagai tekanan referensi

    untuk temperatur potensial. Jadi kita membandingkan harga temperatur pada level tekanan

    yang berbeda jika parsel air telah dibawa, tanpa percampuran dan difusi, ke permukaanlaut. Karena tekanan di atas permukaan laut adalah yang terendah (jika dibandingkan

    dengan tekanan di kedalaman laut yang lebih dalam), maka temperatur potensial (yang

    dihitung pada tekanan permukaan) akan selalu lebih rendah daripada temperatur

    sebenarnya.

    Satuan untuk temperatur dan temperatur potensial adalah derajat Celcius. Sementara itu,

    jika temperatur akan digunakan untuk menghitung kandungan energi panas dan transpor

    energi panas, harus digunakan satuan Kelvin. 0oC = 273,16K. Perubahan 1oC sama

    dengan perubahan 1K. Seperti telah disebutkan di atas, temperatur menunjukkan

    kandungan energi panas, dimana energi panas dan temperatur dihubungkan melalui energi

    panas spesifik. Energi panas persatuan volume dihitung dari harga temperatur

    menggunakan rumus Q = densitas*energi panas specifik*temperatur (temperatur dalamsatuan Kelvin). Jika tekanan tidak sama dengan nol, perhitungan energi panas di lautan

    harus menggunakan temperatur potensial. Satuan untuk energi panas (dalam mks) adalah

    Joule. Sementara itu, perubahan energi panas dinyatakan dalam Watt (Joule/detik). Aliran

    (fluks) energi panas dinyatakan dalam Watt/meter2 (energi per detik per satuan luas).

    4. Konduktivitas

    Konduktivitas air laut bergantung pada jumlah ion-ion terlarut per volumenya dan

    mobilitas ion-ion tersebut. Satuannya adalah mS/cm (milli-Siemens per centimeter).

    Konduktivitas bertambah dengan jumlah yang sama dengan bertambahnya salinitas sebesar

    0,01, temperatur sebesar 0,01 dan kedalaman sebesar 20 meter. Secara umum, faktor yang

    paling dominan dalam perubahan konduktivitas di laut adalah temperatur.5. Densitas

    Densitas merupakan salah satu parameter terpenting dalam mempelajari dinamika laut.

    Perbedaan densitas yang kecil secara horisontal (misalnya akibat perbedaan pemanasan di

    permukaan) dapat menghasilkan arus laut yang sangat kuat. Oleh karena itu penentuan

    densitas merupakan hal yang sangat penting dalam oseanografi. Lambang yang digunakan

    untuk menyatakan densitas adalah

    Densitas air laut bergantung pada temperatur (T), salinitas (S) dan tekanan (p).

    Kebergantungan ini dikenal sebagai persamaan keadaan air laut (Equation of State of Sea

    Water):

    = (T,S,p)

    Penentuan dasar pertama dalam membuat persamaan di atas dilakukan oleh Knudsen danEkman pada tahun 1902. Pada persamaan mereka, dinyatakan dalam g cm-3. Penentuan

    dasar yang baru didasarkan pada data tekanan dan salinitas dengan kisaran yang lebih

    besar, menghasilkan persamaan densitas baru yang dikenal sebagai Persamaan Keadaan

    Internasional (The International Equation of State, 1980). Persamaan ini menggunakan

    temperatur dalam oC, salinitas dari Skala Salinitas Praktis dan tekanan dalam dbar (1 dbar

    = 10.000 pascal = 10.000 N m-2). Densitas dalam persamaan ini dinyatakan dalam kg m-3.

    Jadi, densitas dengan harga 1,025 g cm-3 dalam rumusan yang lama sama dengan densitas

    dengan harga 1025 kg m-3 dalam Persamaan Keadaan Internasional.

    Densitas bertambah dengan bertambahnya salinitas dan berkurangnya temperatur, kecuali

    pada temperatur di bawah densitas maksimum. Densitas air laut terletak pada kisaran 1025

  • 5/26/2018 Sifat Fisik Air Laut

    15/20

    kg m-3 sedangkan pada air tawar 1000 kg m-3. Oseanografer biasanya menggunakan

    lambang t (huruf Yunani sigma dengan subskrip t, dan dibaca sigma-t) untuk menyatakan

    densitas air laut. dimana t = - 1000 dan biasanya tidak menggunakan satuan (seharusnya

    menggunakan satuan yang sama dengan ). Densitas rata-rata air laut adalah t = 25 (lihat

    gambar). Aturan praktis yang dapat kita gunakan untuk menentukan perubahan densitas

    adalah: t berubah dengan nilai yang sama jika T berubah 1oC, S 0,1, dan p yang

    sebanding dengan perubahan kedalaman 50 m.Perlu diperhatikan bahwa densitas maksimum terjadi di atas titik beku untuk salinitas di

    bawah 24,7 dan di bawah titik beku untuk salinitas di atas 24,7. Hal ini mengakibatkan

    adanya konveksi panas.

    * S < 24.7: air menjadi dingin hingga dicapai densitas maksimum, kemudian jika air

    permukaan menjadi lebih ringan (ketika densitas maksimum telah terlewati) pendinginan

    terjadi hanya pada lapisan campuran akibat angin (wind mixed layer) saja, dimana

    akhirnya terjadi pembekuan. Di bagian kolam (basin) yang lebih dalam akan dipenuhi oleh

    air dengan densitas maksimum.

    * S > 24.7: konveksi selalu terjadi di keseluruhan badan air. Pendinginan diperlambat

    akibat adanya sejumlah besar energi panas (heat) yang tersimpan di dalam badan air. Hal

    ini terjadi karena air mencapai titik bekunya sebelum densitas maksimum tercapai. c. Sirkulasi Laut

    Sirkulasi laut adalah pergerakan massa air di laut. Sirkulasi laut di permukaan

    dibangkitkan oleh stres angin yang bekerja di permukaan laut dan disebut sebagai sirkulasi

    laut yang dibangkitkan oleh angin (wind driven ocean circulation). Selain itu, ada juga

    sirkulasi yang bukan dibangkitkan oleh angin yang disebut sebagai sirkulasi termohalin

    (thermohaline circulation) dan sirkulasi akibat pasang surut laut. Sirkulasi termohalin

    dibangkitkan oleh adanya perbedaan densitas air laut. Istilah termohalin sendiri berasal dari

    dua kata yaitu thermo yang berarti temperatur dan haline yang berarti salinitas. Penamaan

    ini diberikan karena densitas air laut sangat dipengaruhi oleh temperatur dan salinitas.

    Sementara itu, sirkulasi laut akibat pasang surut laut disebabkan oleh adanya perbedaan

    distribusi tinggi muka laut akibat adanya interaksi bumi, bulan dan matahari.Sirkulasi di permukaan membawa massa air laut yang hangat dari daerah tropis menuju ke

    daerah kutub. Di sepanjang perjalanannya, energi panas yang dibawa oleh massa air yang

    hangat tersebut akan dilepaskan ke atmosfer. Di daerah kutub, air menjadi lebih dingin

    pada saat musim dingin sehingga terjadi proses sinking (turunnnya massa air dengan

    densitas yang lebih besar ke kedalaman). Hal ini terjadi di Samudera Atlantik Utara dan

    sepanjang Antartika. Air laut dari kedalaman secara perlahan-lahan akan kembali ke dekat

    permukaan dan dibawa kembali ke daerah tropis, sehingga terbentuklah sebuah siklus

    pergerakan massa air yang disebut Sabuk Sirkulasi Laut Global (Global Conveyor Belt).

    Semakin efisien siklus yang terjadi, maka akan semakin banyak pula energi panas yang

    ditransfer dan iklim di bumi akan semakin hangat.

    Akibat bumi yang berotasi, maka aliran massa air (arus) yang terjadi akan dibelokkan kearah kanan di belahan bumi utara (BBU) dan ke kiri di belahan bumi selatan (BBS). Efek

    ini dikenal sebagai gaya semu Coriolis. Pembelokkan ini menjadikan tinggi dan rendahnya

    elevasi muka laut berbanding secara langsung dengan kecepatan arus permukaan.

    Perubahan elevasi muka laut yang diakibatkan aliran massa air ini disebut sebagai

    topografi laut dan saat ini dapat diamati dengan menggunakan satelit TOPEX/Poseidon.

    Dengan bantuan data dari satelit ini, maka para ahli dapat memetakan pola arus laut

    global.

    Variasi yang terjadi pada sirkulasi laut mengakibatkan variasi pada transpor energi panas

    dan pola musim. Seperti diketahui bahwa laut memiliki peranan yang sangat penting dalam

    mendsitribusikan energi panas dari daerah ekuator ke daerah kutub karena kemampuan air

  • 5/26/2018 Sifat Fisik Air Laut

    16/20

    untuk menyimpan energi panas dalam waktu yang sangat lama (bandingkan dengan tanah

    yang cepat menjadi dingin ketika matahari sudah tidak menyinarinya lagi). Hal ini menjadi

    bagian yang sangat vital dalam menentukan pola cuaca/iklim di bumi. Menurut penelitian

    yang dilakukan di University of Bern dengan menggunakan model iklim dengan perata-

    rataan ke arah zonal (zonally averaged climate model), pemanasan global yang terjadi saat

    ini akibat adanya efek gas rumah kaca bisa merubah dan bahkan mematikan sabuk

    sirkluasi laut global (Stocker and Schmittner, 1997). Pembahasan lebih rinci tentang hal inidapat dilihat di bagian laut dan iklim.

    d. Angin

    Angin (wind) adalah pergerakan masa udara yang disebabkan karena adanya perbedaan

    tekanan dari tekanan tinggi ke tekanan rendah. Atau bisa dikatakan juga bahwa angin

    terjadi karena adanya perbedaan suhu/temperatur yaitu angin bergerak dari temperatur

    rendah ke temperatur tinggi.Meskipun pada kenyataan angin tidak dapat dilihat bagaimana

    wujudnya, namun masih dapat diketahui keberadaannya melalui efek yang ditimbulkan

    pada bendabenda yang mendapat hembusan angin. Seperti ketika kita melihat dahan

    dahan pohon bergerak atau bendera yang berkibar kita tahu bahwa ada angin yang

    berhembus. Dari mana angin bertiup dan berapa kecepatannya dapat diketahui dengan

    menggunakan alatalat pengukur angin. Alatalat pengukur angin tersebut adalah :1. Anemometer, yaitu alat yang mengukur kecepatan angin.

    2. Wind vane, yaitu alat untuk mengetahui arah angin.

    3. Windsock, yaitu alat untuk mengetahui arah angin dan memperkirakan besar kecepatan

    angin. Biasanya ditemukan di bandarabandara.

    Selain dengan menggunakan alatalat pengukur angin, arah dan kecepatan angin juga

    dapat diukur/diperkirakan dengan menggunakan tabel Skala Beaufort.

    e. Gelombang

    Gelombang selalu menimbulkan sebuah ayunan air yang bergerak tanpa henti-hentinya

    pada lapisan permukaan laut dan jarang dalam keadaan sama sekali diam. Hembusan angin

    sepoi-sepoi pada cuaca yang tenang sekalipun sudah cukup untuk dapat menimbulkan riakgelombang. Sebaliknya dalam keadaan dimana terjadai badai yang besar dapat

    menimbulkan suatu gelombang besar. Susunan gelombangdi laut baik bentuk maupun

    macamnya sangat bervariasi dan kompleks, sehingga mengakibatkan mereka ini hamper

    tidak dapat diuraikan. Bagian-bagian gelombang adalah:

    a. Crest: titik tertinggi (puncak) gelombang

    b. Trough: titik terendah (lembah) gelombang

    c. Wave height: jarak vertikal antara crest dan trough

    d. Panjang gelombang (wavelength): jarak berturut-turut antara dua buah crest atau dua

    buah trough

    e. Periode gelombang (wave period): waktu yang dibutuhkan crest untuk kembali pada titik

    semula secara berturut-turutf. Kemiringan gelombang (wave steepness): perbandingan antara panjang gelombang

    dengan tinggi gelombang.

    Angin yang bertiup diatas permukaan laut merupakan pembangkit utama gelombang.

    Bentuk gelombang yang dihasilkan cenderung tidak tertentu dan tergantung pada

    bermacam-macam sifat seperti tinggi, periode dimana daerah yang yang dibentuk.

    Kenyataanya gelombang kebanyakan berjalan pada jarak yang luas, sehingga mereka

    bergerak makin jauh dari tempat aslinya dan tidak lagi dipengaruhi langsung oleh angin,

    maka mereka akan berbentuk lebih teratur. Bentuk ini dikenal sebagai swell.

    Sifat-sifat gelombang dipengaruhi oleh tiga bentuk angin, yaitu:

    a. Kecepatan angin. Umunya makin kencang angin yang bertiup maka besar gelombang

  • 5/26/2018 Sifat Fisik Air Laut

    17/20

    yang terbentuk dan gelombang ini mempunyai kecepatan yang tinggi dan panjang

    gelombang yang besar. Tetapi gelombang yang terbentuk dengan cara ini puncaknya

    kurang curam dengan dibandingkan dengan yang dibangkitkan oleh angin yang

    berkecepatan lebih lemah.

    b. Waktu dimana angin sedang bertiup. Tinggi, kecepatan dan panjang gelombang

    seluruhnya cenderung untuk meningkat sesuai dengan meningkatnya waktu pada saat

    angin pembangkit gelombang mulai bertiup.c. Jarak tanpa rintangan dimana angin sedang bertiup (fetch). Pentingnya fetch dapat

    digambarkan dengan membandingkan gelombang yang terbentuk pada kolom air yang

    relative kecil.

    A. Kandungan Fisik Air Laut

    Kandungan fisik dan kimia air laut merupakan akibat dari struktur atom air. Air merupakan

    gabungan dari hydrogen dan oksigen yang berhubungan dengan covalen bond (covalen

    bond hubungan antara 2 atom dalam molekul hasil pembagian dari electron). Covalen bond

    ada ketika elemen membagi elektronnyake dalam bentuk campuran.di dalam air, hydrogen

    dan oksigen berhubungan langsung dengan sudut 105.

    Masing-masing atom hydrogen dan oksigen memiliki electron yang didistribusikan tidak

    sama, dengan cara itulah masing-masing atom hydrogen bermuatan positif dan atomoksigen bermuatan negative. Air yang bersifat positif dan negative secara bersama-sama

    memberikan struktur molekul dipolar. Masing-masing sumbu positif (atom II) saling tarik

    menarik dan membentuk hubungan yang lemah, sumbu negative (atom B) dimolekul lain.

    Hubungan antara hydrogen ke atom oksigen disebut hydrogen bond. Karena merupakan

    agregasi cairan, jika ada molekul yang lebih banyak yang dapat diindikasikan dari jumlah

    H2O, jenis kandungan air terlihat tidak normal ketika dibandingkan dengan zat non polar

    seperti methane (cha) atau hydrogen sulfide (H2S), karena adanya hydrogen bond, air

    mempunyai titik didih (100 C) lebih tinggi dari yang diperkirakan.

    B. Konduktifitas

    Konduktifitas merupakan kapasitas dari air laut untuk memindahan arah aliran elektris dan

    bergantung pada konsentrasi ion-ion dan kecepatannya. Muatan atom disebut ion. Ion-ionyang lebih dalam setiap unit volume air. Teori kimia konduktifitas : ketika garam (sodium

    klorida/UaCl) dilarutkan dalam air, ion klorida negative menarik hydrogen positif dalam

    molekul air. Dengan cars ill,ion klorida atau klorit(Cl%) sebagai basis dapat ditentukan

    dengan rumus : S%=1,8 X Cl%.

    Salinitas ditentukan berdasarkan kandungan klorida agak akurat. Salininitas dari air laut

    akan ditentukan pula denan arus listrik. Dengan arus listrik kita dapat mengetahui

    temperature dan besarnya salinitas.

    C. Salinitas

    Salinitas adalah kandungan garam yang ada dilaut dan biasanya diperhitungkan sebagai

    jumlah gram garam terlarut pada 1000 gram air laut.

    Ahli ocenografi dari analisis intensif mereka berdasarkan air laut yang tenang dan terbukadapat diketahui bahwa setiap 1 kg air laut terdapat 35 gram kandungan garamnya.

    Konsentrasi ini umumnya dinyatakan 35 bagian perseribu atau 35%. Salinitas dari lautan

    berfatiasi, mulai 33% sampai 38% dengan rata-rata 35 %. Salinitas dari air laut yang luas

    tergantung pada perbedaan antar evaporasi dan presipitasi, panjang dari aliran runoff,

    pembekuan dan es yang mencair. Dalam area yang evaporasinya tinggi seperti laut merah

    salinitasnya mendekati mendekati 40%tapi didekat muara sungai biasanya hanya 20%.

    Pada umumnya salinitas yang tersebar berada pada zone daerah kering.

    Sebaran salinitas di laut dipengaruhi oleh berbagai faktor seperti pola sirkulasi air,

    penguapan, curah hujan dan aliran sungai. Perairan dengan tingkat curah hujan tinggi dan

    dipengaruhi oleh aliran sungai memiliki salinitas yang rendah sedangkan perairan yang

  • 5/26/2018 Sifat Fisik Air Laut

    18/20

    memiliki penguapan yang tinggi, salinitas perairannya tinggi. Selain itu pola sirkulasi juga

    berperan dalam penyebaran salinitas di suatu perairan.

    Secara vertikal nilai salinitas air laut akan semakin besar dengan bertambahnya kedalaman.

    Di perairan laut lepas, angin sangat menentukan penyebaran salinitas secara vertikal.

    Pengadukan di dalam lapisan permukaan memungkinkan salinitas menjadi homogen.

    Terjadinya upwelling yang mengangkat massa air bersalinitas tinggi di lapisan dalam juga

    mengakibatkan meningkatnya salinitas permukaan perairan.Sistem angin muson yang terjadi di wilayah Indonesia dapat berpengaruh terhadap sebaran

    salinitas perairan, baik secara vertikal maupun secara horisontal. Secara horisontal

    berhubungan dengan arus yang membawa massa air, sedangkan sebaran secara vertikal

    umumnya disebabkan oleh tiupan angin yang mengakibatkan terjadinya gerakan air secara

    vertikal. Menurut Wyrtki (1961), sistem angin muson menyebabkan terjadinya musim

    hujan dan panas yang akhirnya berdampak terhadap variasi tahunan salinitas perairan.

    Perubahan musim tersebut selanjutnya mengakibatkan terjadinya perubahan sirkulasi

    massa air yang bersalinitas tinggi dengan massa air bersalinitas rendah. Interaksi antara

    sistem angin muson dengan faktor-faktor yang lain, seperti run-off dari sungai, hujan,

    evaporasi, dan sirkulasi massa air dapat mengakibatkan distribusi salinitas menjadi sangat

    bervariasi. Pengaruh sistem angin muson terhadap sebaran salinitas pada beberapa bagiandari perairan Indonesia telah dikemukakan oleh Wyrtki (1961). Pada Musim Timur terjadi

    penaikan massa air lapisan dalam (upwelling) yang bersalinitas tinggi ke permukaan di

    Laut Banda bagian timur dan menpengaruhi sebaran salinitas perairan. Selain itu juga di

    pengaruhi oleh arus yang membawa massa air yang bersalinitas tinggi dari Lautan Pasifik

    yang masuk melalui Laut Halmahera dan Selat Torres. Di Laut Flores, salinitas perairan

    rendah pada Musim Barat sebagai akibat dari pengaruh masuknya massa air Laut Jawa,

    sedangkan pada Musim Timur, tingginya salinitas dari Laut Banda yang masuk ke Laut

    Flores mengakibatkan meningkatnya salinitas Laut Flores. Laut Jawa memiliki massa air

    dengan salinitas rendah yang diakibatkan oleh adanya run-off dari sungai-sungai besar di

    P. Sumatra, P. Kalimantan, dan P. Jawa.

    D. Suhu

    Laut tropik memiliki massa air permukaan hangat yang disebabkan oleh adanya

    pemanasan yang terjadi secara terus-menerus sepanjang tahun. Pemanasan tersebut

    mengakibatkan terbentuknya stratifikasi di dalam kolom perairan yang disebabkan oleh

    adanya gradien suhu. Berdasarkan gradien suhu secara vertikal di dalam kolom perairan,

    Wyrtki (1961) membagi perairan menjadi 3 (tiga) lapisan, yaitu: a) lapisan homogen pada

    permukaan perairan atau disebut juga lapisan permukaan tercampur; b) lapisan

    diskontinuitas atau biasa disebut lapisan termoklin; c) lapisan di bawah termoklin dengan

    kondisi yang hampir homogen, dimana suhu berkurang secara perlahan-lahan ke arah dasar

    perairan.

    Menurut Lukas and Lindstrom (1991), kedalaman setiap lapisan di dalam kolom perairandapat diketahui dengan melihat perubahan gradien suhu dari permukaan sampai lapisan

    dalam. Lapisan permukaan tercampur merupakan lapisan dengan gradien suhu tidak lebih

    dari 0,03 oC/m (Wyrtki, 1961), sedangkan kedalaman lapisan termoklin dalam suatu

    perairan didefinisikan sebagai suatu kedalaman atau posisi dimana gradien suhu lebih dari

    0,1 oC/m (Ross, 1970).

    Suhu permukaan laut tergantung pada beberapa faktor, seperti presipitasi, evaporasi,

    kecepatan angin, intensitas cahaya matahari, dan faktor-faktor fisika yang terjadi di dalam

    kolom perairan. Presipitasi terjadi di laut melalui curah hujan yang dapat menurunkan suhu

    permukaan laut, sedangkan evaporasi dapat meningkatkan suhu permukaan akibat adanya

    aliran bahang dari udara ke lapisan permukaan perairan. Menurut McPhaden and Hayes

  • 5/26/2018 Sifat Fisik Air Laut

    19/20

    (1991), evaporasi dapat meningkatkan suhu kira-kira sebesar 0,1 oC pada lapisan

    permukaan hingga kedalaman 10 m dan hanya kira-kira 0,12 oC pada kedalaman 1075

    m. Disamping itu Lukas and Lindstrom (1991) mengatakan bahwa perubahan suhu

    permukaan laut sangat tergantung pada termodinamika di lapisan permukaan tercampur.

    Daya gerak berupa adveksi vertikal, turbulensi, aliran buoyancy, dan entrainment dapat

    mengakibatkan terjadinya perubahan pada lapisan tercampur serta kandungan bahangnya.

    Menurut McPhaden and Hayes (1991), adveksi vertikal dan entrainment dapatmengakibatkan perubahan terhadap kandungan bahang dan suhu pada lapisan permukaan.

    Kedua faktor tersebut bila dikombinasi dengan faktor angin yang bekerja pada suatu

    periode tertentu dapat mengakibatkan terjadinya upwelling. Upwelling menyebabkan suhu

    lapisan permukaan tercampur menjadi lebih rendah. Pada umumnya pergerakan massa air

    disebabkan oleh angin. Angin yang berhembus dengan kencang dapat mengakibatkan

    terjadinya percampuran massa air pada lapisan atas yang mengakibatkan sebaran suhu

    menjadi homogen.

    Suhu juga dapat mempengaruhi fotosintesa di laut baik secara langsung maupun tidak

    langsung. Pengaruh secara langsung yakni suhu berperan untuk mengontrol reaksi kimia

    enzimatik dalam proses fotosintesa. Tinggi suhu dapat menaikkan laju maksimum

    fotosintesa (Pmax), sedangkan pengaruh secara tidak langsung yakni dalam merubahstruktur hidrologi kolom perairan yang dapat mempengaruhi distribusi fitoplankton

    (Tomascik et al., 1997 b).

    Secara umum, laju fotosintesa fitoplankton meningkat dengan meningkatnya suhu

    perairan, tetapi akan menurun secara drastis setelah mencapai suatu titik suhu tertentu. Hal

    ini disebabkan karena setiap spesies fitoplankton selalu berdaptasi terhadap suatu kisaran

    suhu tertentu.

    Temperature adalah kekayaan yang penting dari air laut. Temperature dari air laut yang

    sangat luas di dunia. Temperature dibawah permukaan yang sangat dalam, sirkulasi udara,

    turbelensi, lokasi geografis dan jarak dari sumbu pusat panas adalah vulkanik. Pada

    umumnya temperature air laut bervariasi mulai dibawah5 C sampai 33% titik

    pembekuan dari air asin adalah 1,9C.Lautan adalah pompa raksasa yang memindahkan panas dari ekuator menuju ke kutub.

    Panas dari matahari bergerak dari lintang rendah ke lintang tinggi, dimana hal itu lepas dari

    atmosfer. Pemindahan ini adalah efektif dipermukaan air dari lautan dengan keadaan yang

    hebat (sebagai contoh aliran gulf ) yang bergerak dari daerah tropis yang panas ke daerah

    kutub). Kedalaman air (7500 m) terdapat di lintang tinggi. Temperature dari lautan jatuh

    pada 3 zone, yaitu:

    1. Permukaan (campuran) lapisan dimana pantulan rata-rata temperature pada lintang.

    2. Kedalaman (bawah) lapisan yang memantul pada sumber air dilintang tinggi.

    3. Thermodhine antara 100-1500 m. kedalamannya yang temperatunya berasal dari

    pengurangan dari berbagai macam-macam bentuk dari nilai permukaan tinggi sampai nilai

    kedalaman rendah.Thermodine mengindikasikan pemindahan vertical dari permukaan air ke dalam

    kedalaman air maupun perpindahan jalur air horizontal. Meskipun beberapa dari

    perpindahan ini terjadi dengan difusi molekul, banyak dilahirkan diselesaikan dengan

    aliran pusat air kecil yang membawa air vertical (Pencampuran salinitas maupun

    temperature dari garam Cua + dan Cl) terbebas dari lainnya dan membawa hubungan

    dengan molekul air. Jika electron positif dan negative terkandung oleh air, ion sodium

    positifdan ion klorida negative akan menarik muatan elektroda yang berlawanan. Selama

    ion terus bergerak disekitar molekul air menuju elektroda mereka menghasilkan gerakan

    elektrik air laut dapat digunakan untuk menentukan salinitas.

  • 5/26/2018 Sifat Fisik Air Laut

    20/20

    E. Densitas Air Laut

    Distribusi densitas dalam perairan dapat dilihat melalui stratifikasi densitas secara vertikal

    di dalam kolom perairan, dan perbedaan secara horisontal yang disebabkan oleh arus.

    Distribusi densitas berhubungan dengan karakter arus dan daya tenggelam suatu massa air

    yang berdensitas tinggi pada lapisan permukaan ke kedalaman tertentu. Densitas air laut

    tergantung pada suhu dan salinitas serta semua proses yang mengakibatkan berubahnya

    suhu dan salinitas. Densitas permukaan laut berkurang karena ada pemanasan, presipitasi,run off dari daratan serta meningkat jika terjadi evaporasi dan menurunnya suhu

    permukaan.

    Sebaran densitas secara vertikal ditentukan oleh proses percampuran dan pengangkatan

    massa air. Penyebab utama dari proses tersebut adalah tiupan angin yang kuat. Lukas and

    Lindstrom (1991), mengatakan bahwa pada tingkat kepercayaan 95 % terlihat adanya

    hubungan yang positif antara densitas dan suhu dengan kecepatan angin, dimana ada

    kecenderungan meningkatnya kedalaman lapisan tercampur akibat tiupan angin yang

    sangat kuat. Secara umum densitas meningkat dengan meningkatnya salinitas, tekanan atau

    kedalaman, dan menurunnya suhu.

    F. Warna Air Laut

    Warna air laut ditentukan oleh kekeruhan air laut itu sendiri dari kandungan sedimen yangdibawa oleh aliran sungai. Pada laut yang keruh, radiasi sinar matahari yang dibutuhkan

    untuk proses fotosintesis tumbuhan laut akan kurang dibandingkan dengan air laut jernih.

    Pada perairan laut yang dalam dan jernih, fotosintesis tumbuhan itu mencapai 200 meter,

    sedangkan jika keruh hanya mencapai 1540 meter. Laut yang jernih merupakan

    lingkungan yang baik untuk tumbuhnya terumbu karang dari cangkang binatang koral.

    Air laut juga menampakan warna yang berbeda-beda tergantung pada zat-zat organik

    maupun anorganik yang ada.

    Ada beberapa warna-warna air laut karena beberapa sebab:

    a. Pada umumnya lautan berwarna biru, hal ini disebabkan oleh sinar matahari yang

    bergelombang pendek (sinar biru) dipantulkan lebih banyak dari pada sinar lain.

    b. Warna kuning, karena di dasarnya terdapat lumpur kuning, misalnya sungai kuning diCina.

    c. Warna hijau, karena adanya lumpur yang diendapkan dekat pantai yang memantulkan

    warna hijau dan juga karena adanya planton-planton dalam jumlah besar.

    d. Warna putih, karena permukaannya selalu tertutup es seperti di laut kutub utara dan

    selatan.

    e. Warna ungu, karena adanya organisme kecil yang mengeluarkan sinar-sinar fosfor

    seperti di laut ambon.

    f. Warna hitam, karena di dasarnya terdapat lumpur hitam seperti di laut hitam

    g. Warna merah, karena banyaknya binatang-binatang kecil berwarna merah yang

    terapung-apung.