schedule - cdn-edunex.itb.ac.id

65
Schedule No Subject Week References 1 Tujuan Peledakan 1 1 2 Pengenalan Bahan Peledak 2 1, 2, 3, 4 3 Karakteristik Bahan Peledak 3 1, 2, 3, 4 4 Interaksi Bahan Peledak & Batuan 4 1, 2, 5 5 Energi Peledakan 5 1, 2, 5, 6 6 Teknik Pengeboran 6 2, 8 7 Peledakan Tambang Terbuka 7-8 1, 5, 6 8 UTS 9 9 Peledakan Bawah Tanah 10-11 1, 2 10 Dampak Negatif Peledakan 12-13 1, 2, 5, 6, 7 11 Teknik Peledakan Terkontrol 14 1, 2, 6 12 Peraturan Operasi Peledakan 15 KepMen, SNI

Upload: others

Post on 14-Mar-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Schedule

No Subject Week References

1 Tujuan Peledakan 1 1

2 Pengenalan Bahan Peledak 2 1, 2, 3, 4

3 Karakteristik Bahan Peledak 3 1, 2, 3, 4

4 Interaksi Bahan Peledak & Batuan 4 1, 2, 5

5 Energi Peledakan 5 1, 2, 5, 6

6 Teknik Pengeboran 6 2, 8

7 Peledakan Tambang Terbuka 7-8 1, 5, 6

8 UTS 9

9 Peledakan Bawah Tanah 10-11 1, 2

10 Dampak Negatif Peledakan 12-13 1, 2, 5, 6, 7

11 Teknik Peledakan Terkontrol 14 1, 2, 6

12 Peraturan Operasi Peledakan 15 KepMen, SNI

6. Rancangan Peledakan

Jenjang

Ganda M. Simangunsong

Fakultas Teknik Pertambangan & Perminyakan ITB

Terminologi Peledakan Jenjang

4

Variabel Rancangan

▪ Pola pemboran

▪ Pemuatan

▪ Penyalaan

Peledakan Jenjang

5

6

Bidang Bebas (Free Face)

Three Free Faces

1

32

Two Free Faces

1

2

One Free Face

1

7

Kualitas Bidang Bebas

Pemilihan Diameter

Terlalu besar

▪ Distribusi energi dan Fragmentasi

▪ Batasan lingkungan

▪ Kerusakan batuan

Terlalu kecil

▪ Diameter kritis

▪ Biaya pemboran

▪ Target produksi

Adhikari, 1999

PemilihanDiameter

Hole diameter selection

While selecting the proper blasthole diameter, the average production per hour, or excavation, must be taken into account (Table 4). In addition, the type of material excavated must also be accounted. An important aspect when drilling is the drilling cost. The cost usually goes down as the diameter of the hole increases.

Hole diameter selection

Much of the same criteria for drilling parameters are the same for large diameter blasts as they are for small diameter blasts. The average production per hour and type of rock being fragmented is still the variables needed for consideration (Table 8)

12

Penentuan Burden (B)

Fly rock &throw

Less Burden

Cratering &

Fly rock

Poor Fragmentation

Excessive BurdenOptimum Burden

Contoh R.L. Ash

▪ Batuan standar - Bobot Isi 160 lb/ft3 (average rock).

▪ Bahan peledak standar - Berat Jenis (SG) = 1.2 & VOD (Ve) = 12.000 fps.

▪ KBstd = 30.

▪ Apabila peledakan dilakukan pada batuan yang bukan standar

dengan menggunakan bahan peledak yang bukan standar, maka

perlu dilakukan pengaturan kembali harga KB (nisbah burden yang

telah dikoreksi)

▪ KB = KBstd x AF1 x AF2

3

1

2

2BPBP

3

1

[12000] x 1.2

][VOD x

standar peledak bahan potensial Energi

dipakai yangpeledak bahan potensial EnergiAF1

=

=

3

1

Batuan

3

1

pcf 160

diledakkan ygbatuan Isi Bobot

standar batuan Isi BobotAF2

=

=

Penentuan Kb Empirik

▪ Light explosives in dense rocks KB = 20

▪ Heavy explosives in light rocks KB = 40

▪ Light explosives in average rocks KB = 25

▪ Heavy explosives in average rocks KB = 35

▪ B = Burden (ft)

▪ De = Diameter lubang tembak (inci)

KB = 12 [B/De]

Burden Determination

Anderson [1] developed the following empirical equation:

where:

▪ B = burden (m)

▪ K = a proportionality constant (1-6)

▪ Dh = blasthole diameter (mm)

▪ H = bench height (m)

▪ In the above equation, for a good fragmentation: H/B 4.

Burden Determination

Fraenkel [2] suggested the following more sophisticated equation:

where:

▪ K = experimental constant (between 1 to 6 for most rock types)

▪ h = length of the Charge in the blasthole (m).

Burden Determination

Lambooy and Jones [3] expressed the following formula for determination of burden:

where:

▪ S = spacing between the blastholes (m)

▪ We = weight of explosive in kg/m run in a blasthole

▪ q = weight of explosive to break unit volume of rock (kg/m3)

Burden Determination

Pearse (1955)

▪ Where,

▪ B = maximum burden (m)

▪ K = Constant, value varies from 0.7-1.0

▪ Ps = Detonation pressure of the explosives (Kg/cm2)

▪ σt = Tensile strength (Kg/cm2)

▪ d = Diameter of borehole

Burden Determination

The equation for maximum burden value proposed by Allsman (1960) is;

Where,

▪ PD= Mean adverse detonating Pressure, N/m2

▪ t= Duration of average detonation, sec

▪ ρ= Specific rock weight, N/m3

▪ u= minimum velocity which must be imparted to the rock, m/s

▪ g= acceleration due to gravity=9.81 m/s2

▪ D= Diameter of blasthole, m

Burden Determination

Langefors and Kihlstrom (1968)

Where,

▪ Bmax = Maximum burden for good fragmentation (m)

▪ D = diameter of hole (m)

▪ ρe =Density of the explosive in the borehole (Kg/m3)

▪ PRP = Relative Weight strength of the explosive

▪ f = Degree of confinement of the blasthole.

▪ S/B = Spacing to burden ratio

▪ Co = Corrected blastability factor (Kg/m3)

= C + 0.75 for B max =l.4-1.5m

= C + 0.07/B for B max < 1.4m

When C = rock constant (0.4 for average rock for first trial)

Burden Determination

Lopez Jimeno, E (1980) modifies the ash’s formula by incorporating the seismic velocity to the rock mass, resulting in

Where,

▪ B= Burden, m

▪ D= Diameter of blasthole, inches

▪ F= correction factor based on rock group = Fr× Fe

Lopez Jimeno, E (1980) cont.

Where,

▪ ρ'= specific gravity of rock, gm/cm3

▪ VC= seismic propagation velocity of the rock mass

▪ ρ''= specific gravity of explosive charge, gm/cm3

▪ VD= Detonation velocity of explosive, m/s

Burden Determination

Konya and Walter (1990)

Where,

▪ B = Burden, (ft)

▪ ρe = Specific gravity of explosive, (lb/in3)

▪ ρr = Specific gravity of rock, (lb/in3)

▪ D = Diameter of explosive, (in)

Konya & Walter (1990) cont.

Correction factor, Bc = Kd. Ks. Kr. B

Where, Bc = Corrected burden (ft);

Kd = Correction factor for rock deposition. Its value is as follows,

• for bedding steeply dipping into cut Kd = 1. 18

• for bedding steeply dipping into face Kd = 0.95

• for other cases Kd = 1.0

Ks = Correction factor for geologic structure. Its value is as follows,

• for heavily cracked, frequent weak joints, weakly cemented layers Ks = 1.30

• for thin well cemented layers with tight joints Ks=1.1

• for massive intact rock Ks = 0.95

Kr = correction factors for number of row. Its value is a follows,

• for one or two rows of blastholes Kr = 1.0

• for third or subsequent rows Kr = 0.95

Burden Determination

Konya and Walter also suggested the following empirical relationship-

Where,

▪ S ANFO = relative strength of explosive

▪ ρr = density of rock, gm/c.c.

▪ d = diameter of blast-hole, m

Burden Determination

Russians suggested [10] a variety of equations to relate burden and blasthole diameter. Amongst the most predominantly used are the ones as follows:

Russians cont.

where:

▪ 2x = length of the charge in the blasthole (m)

▪ r = radius of the fractured zone in rock (m)

▪ fp charge packing factor (see Table 1)

▪ d = decoupling = Dh/D e.

Burden Determination

Afrouz [11] presented an empirical formula to determine the burden in terms of a single impact force to cause rupture (F) and the dynamic tensile strength of rock (td) as follows:

where:

▪ n = a constant related to the effect of rate of explosion on the braking properties of the rock = 1.04 for limestone, and 1.39 for concrete.

▪ c = constant related to the type of loading, for direct impact it was evaluated to be 4.07.

Burden Determination

Hino [12] based on the propagation of the shock waves and its reflection at a free face suggested the following equation:

where:

▪ n = a constant = 1.5, on average,

▪ Pd = detonation pressure (MPa)

Mishra (2009)

A relationship between burden with blast hole diameter

Contoh Variasi Penentuan Burden

31

Pengaruh Kekar Pada Peledakan

(Dyno Nobel, 1995)

A

Orientasi bidang diskontinuitas ke arah pit :

- Ketidakmantapan lereng

- Backbreak berlebih

Orientasi bidang diskontinuitas ke arah

massa batuan :

- Toe tidak hancur

- Potensi batuan menggantung

B

Orientasi bidang diskontinuitas sejajar

bidang bebas :

- Lereng mantap

- Arah lemparan terkontrol

Orientasi bidang diskontinuitas menyudut

terhadap bidang bebas :

- Muka jenjang berblok-blok

- Hancuran berlebihCD

Pengaruh Struktur Pada Peledakan

Koreksi Geologi Untuk Burden

Koreksi Deposisi Batuan Kd

Bidang perlapisan curam agak miring menuju bukaan 1,18

Bidang perlapisan sedikit curam mendalam ke arah dalam 0,95

Kasus deposisi lainnya 1,00

Koreksi Struktur Geologi Ksg

Batuan banyak terekahkan, banyak bidang lemah, tingkat

sementasi lapisan lemah1,30

Lapisan batuan dengan tingkat sementasi kuat dan tipis dengan

rekahan halus 1,10

Batuan masif utuh 0,95

B’ = Kd x Ksg x B

Penentuan Spasi (S)

Sistem penyalaan Stiffness ratio L/B < 4 Stiffness ratio L/B 4

Serentak S = ( L + 2B )/3 S = 2B

Tunda S = ( L + 7B )/8 S = 1,4B

Waktu tunda Ks

Long interval delay 1

Short period delay 1 – 2

Normal 1,2 – 1,8

Penentuan Spasi Menurut RL Ash

Penentuan Spasi Menurut Konya

Pemilihan pola Spasi

Square pattern

Burden = spasinya. Posisi lubang tembak pada baris berikutnya berada tepat

sejajar di belakang lubang tembak pada baris di depannya.

Rectangular pattern

Spasi > burden. Dalam penerapannya di lapangan, pola ini memiliki jarak spasi

maksimal sebesar dua kali jarak burden.

Staggered Pattern

Posisi lubang tembak pada baris berikutnya berada di tengah spasi baris di

depannya. Keuntungan menghasilkan distribusi energi peledakan lebih baik &

cenderung memberikan keseragaman fragmentasi.

Penentuan Tinggi Jenjang (H)

▪ H > burden untuk menghindari terjadinya overbreak.

▪ Kh = H/B

▪ Kh = 1,5 – 4,0 (Burden Stiffness)

B H

Burden Stiffness > 2

B H

Burden Stiffness < 2• Difficult to break

Pengaruh Burden Stiffness(Konya, 1990)

Burden Stifness

(H/B)Fragmentasi Air Blast Fly Rock

Vibrasitanah

Keterangan

1 Buruk Berpotensi Berpotensi Berpotensi

Potensi terjadinyaback break dan toe.

Harus dihindari dandirancang ulang

2 Sedang Sedang Sedang SedangSebaiknya dirancang

ulang

3 Baik Baik Baik BaikTerkontrol dan

fragmentasi memuaskan

4 Sangat baikSangat

baikSangat

baikSangat

baik

Tidak menambahkeuntungan bila

stifness ratio dinaikkan lebih dari 4

Pengukuran Kedalaman

41

Penentuan Subdrilling (J)

▪ Lubang tembak yang dibor sampai melebihi batas lantai

jenjang bagian bawah

▪ Kj (subdrilling ratio) ≥ 0,2 & untuk batuan masif Kj = 0,3

▪ Lubang bor miring perlu KJ lebih kecil.

▪ Kj = J/B

▪ J = Subdrilling (ft)

▪ Pada peledakan lapisan penutup diatas lapisan batubara tidak

diperlukan subdrilling, tetapi justru harus diberi jarak antara

ujung lubang tembak dgn lapisan batubara yg disebut dgn

standoff, maksudnya untuk menghindari penghancuran

batubara akibat peledakan & diharapkan batubara yg tergali

akan bersih.

No sub drilling

Penentuan Stemming (T)

▪ Stemming = collar, bagian lubang tembak bagian atas yg tidak diisi

BP, tapi diisi oleh material hasil pemboran & kerikil yg dipadatkan

& berfungsi sebagai pemampat & menentukan "stress balance"

dalam lubang bor.

▪ Untuk memampatkan gas-gas peledakan agar tidak keluar terlalu

dini melalui lubang tembak sehingga gas-gas peledakan tersebut

terlebih dahulu dapat mengekspansi rekahan-rekahan pada batuan

yang disebabkan gelombang kejut.

▪ Untuk mendapatkan "stress balance" → T = B.

▪ Pada batuan kompak, jika KT < 1 terjadi "cratering" atau "back

breaks", terutama pada "collar priming"

▪ Kt = T/B = 0,7 B nilai ini cukup untuk mengontrol air blast & fly rock.

Pemilihan Material Stemming

▪ Drill cuttings – sangat umum digunakan – dapat dimampatkan

▪ Batu belah – menghasilkan lebih baik fragmentasi – tapi tidak boleh

dimampatkankan karena runcing & dapat memotong NONEL atau

kabel detonator elektrik atau merusak sumbu ledak

▪ Stemming ideal – relatif halus & seragam, closely sized stone that

will pack tightly in the hole

Diameter lubang Ukuran fragment

1½ in holes 3/8 in minus chips

2 - 3 ½ in holes 3/8 - ½ in chips

4 – 5 in holes 5/8 in chips

> 5 in holes ¾ in chips

Stemming

46

Pengaruh Stemming Pada Kinerja Peledakan

Alternatif penggunaan Stemtite

▪ Alat bantu pemampat untuk menjalankan fungsinya sebagai penyumbat atau penyangga energi peledakan.

▪ Terbuat dari high impact polystyrene dgn kuat tekan 103,4 MPa berbentuk kerucut berdiameter beragam.

▪ Diameter stemtite yg dipilih disesuaikan dgn diameter lubang tembak yg digunakan.

(a) (b) (c) (d) (e)

Penentuan Powder Factor (PF)

▪ Powder Factor - bilangan untuk menyatakan jumlah

material yg diledakkan atau dibongkar oleh sejumlah

tertentu bahan peledak; biasanya dinyatakan dalam

kg/bcm.

No. Batuan PF - kg/m3

1 Fat soft clay, heavy clay, morainic clay, slate clay, heavy loam, coarse grit 0,3 - 0,5

2Marl, brown coal, gypsum, tuff, pumice stone, anthracite, soft limestone, diatomite

0,35 - 0,55

3Clayey sandstone, conglomerate, hard clay shale, marly limestone, anhydrite, micaceous shale

0,45 - 0,6

4Granites, gneisses, synites, limestone, sandstone, siderite, magnesite, dolomite, marble

0,6 - 0,7

5Coarse-grained granite, serpentine, audisite and basalt, weathered gneiss, trachyte

0,7 - 0,75

6 Hard gneiss, diabase, porphyrite, trachyte, granite-gneiss, diorite, quartz 0,85

7 Andesite, basalt, hornfels, hard diabase, diorite, gabbro, gabbro diabase 0,9

Tahapan Inisiasi & Waktu Tunda

▪ Pola penyalaan adalah suatu urutan waktu peledakan antara lubang bor dalam satu baris dan antara baris yang satu dengan yg lainnya.

▪ Pola penyalaan beruntun dalam satu baris

▪ Pola penyalaan serentak dalam satu baris tetapi beruntun antara baris satu dengan baris lainnya

▪ Tr = TR x B

✓ Tr = waktu tunda antar baris (ms)

✓ TR = waktu konstanta antar baris, some references use TH

✓ B = burden (m).

Pemilihan Waktu Tunda

TR Konstanta (ms/m)

Hasil

6,25 Air blast berlebih, backbreak

6,25 – 9,4 Muckpile tinggi menutupi face, airblast cukup, backbreak

9,4 – 12,5 Tinggi muckpile sedang, airblast dan backbreak sedang

12,5 – 18,8 Rockpile tersebar dengan bacbreak minimum

Tipe Batuan TH Konstan

(ms/m)

Batu pasir, marls, batubara, lempung 5,7 – 6,6

Batu gamping, salt, shales 4,7 – 5,7

Batu gamping kompak, marmer, granit, kuarsa, gneiss, dan gabro

3,8 – 4,7

Diabas, diabas porphirite, gneiss kompak dan magnetit 2,8 – 3,8

Pengaruh Waktu Tunda Terhadap KondisiTumpukan

material lepas

tersebar

rapat

kompak

rapat

material terlempar

kembali ke jenjang

backbreak

berlebih

sukar digali

fragmentasi

buruk

Interval tunda antar baris

< 6 ms/m dari burden

Interval tunda antar baris

6<t<12 ms/m dari burden,

penggalian cocok dengan

menggunakan shovel

Interval tunda antar baris

lama (12-30 ms/m dari

burden), material lepas yg

tersebar memudahkan

excavator utk operasi post

blasting

Fungsi Delay Dalam Lemparan

Insufficient delay between rows Perfect delay between rows

Timing Design Guideline

55

Range of Delay Intervals between Rows min max

rock mass

massive 3 33

blocky 9 15

highly jointed 6 12

weak seams, slip planes 6 9

water filled blastholes 6 9

explosive density > 1.3 6 12

muckpile

compact 6 9

loose 9 18

spread out 15 33

improved fragmentation 9 24

limit back break 12 33

control flyrock 9 33

minimise airblast 9 18

minimise ground vibration 15 33

Delay Interval (milliseconds per metre of burden)

0 3 6 9 12 15 18 21 3624 27 30 33

56

Urutan Penyalaan – Baris per Baris

▪ Free face

▪ Good forward movement and low profile

▪ Fragmentation? Can be slabby

▪ Soft and friable rocks

▪ Higher Vibrations

109ms

Cord

57

Urutan Penyalaan V

▪ Free face

▪ Restricted forward movement

▪ High muckpile profile

▪ Good fragmentation

42ms

176ms

42ms

176ms

58

Urutan Penyalaan – Echelon

▪ More free faces

▪ Side movement

▪ Fragmentation

▪ Simple

42ms

109ms

42ms

176ms

59

Centre Lift Patterns

▪ Top free face

▪ Good for box cut

▪ Restricted forward movement

▪ Top movement

▪ Big heave

▪ Damage?

42ms109ms

42ms109ms

Merancang Fragmentasi PeledakanBatuan – Kuz Ram

▪ Tingkat fragmentasi batuan yang diinginkan dapat diperoleh dari percobaan

peledakan di lapangan dengan mengevaluasi perubahan variabel-variabel

peledakan.

▪ Variabel tersebut adalah sifat-sifat batuan, pola peledakan, dan jumlah

pengisian bahan peledak.

▪ Sebuah model yang banyak dipakai oleh para ahli untuk memperkirakan

fragmentasi hasil peledakan adalah model Kuz-Ram.

▪ Kuznetsov (1973) telah melakukan penelitian untuk mengukur fragmentasi,

yang hasilnya dikenal dengan persamaan Kuznetsov:

1/60,8

0 QQ

VA X

=

▪ X - Rata-rata ukuran fragmen, cm

▪ A - Faktor batuan, diperoleh dari pembobotan batuan berdasarkan nilai

blasting index (Lilly, 1986) yang merupakan fungsi dari deskripsi massa

batuan, jarak antar kekar, orientasi kekar, berat jenis batuan, dan kekerasan

Mohs.

▪ V0 - Volume batuan pecah per lubang tembak, Vo = B x S x Hjenjang

▪ Q - Jumlah bahan peledak TNT (kg) pada setiap lubang tembak

▪ Qe - massa bahan peledak per lubang tembak

▪ E : Relatif weight strength bahan peledak, ANFO = 100, TNT = 115

▪ Qe x E = Q x 115

0,81/61/6

e

0,8

e

0

115

E

115

E Q

Q

V AX

=

Untuk menentukan fragmentasi batuan hasil peledakan digunakan persamaan Rosin-Rammler yaitu:

3kg/m Chargecific Factor/Spe Powder kebalikankQ

V

e

0 ===

( )19/30

1/6e

0,8

E

115QkAX

=

n

x

x

ceR

=

▪ R - material yang tidak lolos ayakan ukuran x

▪ X - ukuran ayakan (cm) menjadi Xc jika R = 0,5

▪ n - index of uniformity

▪ B - burden (m)

▪ d - diameter lubang (mm)

▪ W - standar deviasi dari keakuratan pengeboran (m)

▪ A - rasio spasi/ burden

▪ L - panjang muatan/kedalaman lubang tembak (m)

▪ H - tinggi jenjang (m)

▪ n - menaik 10% jika pola pengeboran lubang tembaknya staggered (indek keseragaman, sehingga semakin besar nilai n fragmentasi akan semakin seragam

( )1/nc0,693

xX =

( )H

L

2

1A1

B

W1

d

B142,2n

−+

−=

Parameter Klasifikasi dan Pembobotan Batuan(Lily, 1986)

Parameter Pembobotan untuk Blasting Index

BobotParameter

1.Rock Mass description ( RMD )

1.1 Powdery / Friable 10

1.2 Blocky 20

1.3 Totally Massive 50

Dipilih 30

2. Joint plane spacing ( JPS )

2.1 close ( < 0.1m ) 10

2.2 Intermediate ( 0.1 - 1m ) 20

2.3 Wide ( > 1m ) 50

Dipilih 50

3. Joint plane Orientation ( JPO )

3.1 Horizontal 10

3.2 Dip out of Face 20

3.3 Strike Normal to Face 30

3.4 Dip into Face 40

Dipilih 25

Parameter Pembobotan untuk Blasting Index

BobotParameter

1.Rock Mass description ( RMD )

4. Specific Gravity Influence (SGI)

SGI = 25 x SG – 50

SG 2,65

SGI 16,25

5. Hardness (H)

Rating of 1-10

Dipilih 3,95

Blasting Index (BI) = 0,5x(RMD+JPS+JPO+SGI+H)

Sehingga, BI = 62,6

Rock Factor = BI x 0,15

Sehingga, RF = 9,39

Klasifikasi Kualitas & RQD Batuan (Terzaghi, 1946)

No. Kondisi Batuan RQD (%)

1. Hard and Intact 95 – 100

2. Hard stratified or Schistose 90 – 99

3. Massive moderately jointed 85 – 95

4. Moderately blocky and seamy 75 – 85

5. Very blocky and seamy 30 – 75

6. Crushed but chemically intact 3 – 30

7. Sand and gravel 0 – 3

Koreksi Jarak Kekar & Orientasi Kekar

Joint Spacing Close ( < 0,1 meter ) Intermediate (0,1–1m) Wide ( > 1 meter )

Bobot 10 20 50

Joint Orientation

Horizontal Dip Out of Face

Strike Normal to Face Dip Into Face

Bobot 10 20 30 40

Skala Kekerasan Mohs

Mineral % volume Kekerasan Mohs %V x Mohs

Plagioklas 20.2 1.5 30.30

Kuarsa 26.8 7.0 187.60

Fragmen Batuan 23.4 4.2 98.28

Karbonat 5.6 3.5 19.60

Mika 9.2 2.5 23.00

Mineral Lempung 12.5 2.5 31.25

Mineral Bijih 2.3 2.5 5.75

jumlah 100 395.78

Kekerasan batuan = {[Σ (% volume x kekerasan)] / (Σ% volume)} = 3.96

END

Discussion …..