pohon(tree) matematika diskrit

52
1 Pohon Bahan Kuliah Matematika Diskrit Program Studi Teknik Informatika Unimal

Upload: said-zulhelmi

Post on 16-Apr-2017

2.764 views

Category:

Education


42 download

TRANSCRIPT

Page 1: Pohon(tree) matematika diskrit

1

Pohon

Bahan Kuliah Matematika Diskrit

Program Studi Teknik Informatika Unimal

Page 2: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 2

Definisi Pohon adalah graf tak-berarah terhubung

yang tidak mengandung sirkuit

p o h o n p o h o n b u k a n p o h o n b u k a n p o h o n

a b

c d

e f

a b

c d

e f

a b

c d

e f

a b

c d

e f

Page 3: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 3

H u t a n ( f o r e s t ) a d a l a h - k u m p u l a n p o h o n y a n g s a l i n g l e p a s , a t a u - g r a f t i d a k t e r h u b u n g y a n g t i d a k m e n g a n d u n g s i r k u i t . S e t i a p

k o m p o n e n d i d a l a m g r a f t e r h u b u n g t e r s e b u t a d a l a h p o h o n .

H u t a n y a n g t e r d i r i d a r i t i g a b u a h p o h o n

Page 4: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 4

Sifat-sifat (properti) pohon Teorema. Misalkan G = (V, E) adalah graf tak-berarah

sederhana dan jumlah simpulnya n. Maka, semua pernyataan di bawah ini adalah ekivalen: 1. G adalah pohon. 2. Setiap pasang simpul di dalam G terhubung dengan

lintasan tunggal. 3. G terhubung dan memiliki m = n – 1 buah sisi. 4. G tidak mengandung sirkuit dan memiliki m = n – 1 buah

sisi. 5. G tidak mengandung sirkuit dan penambahan satu sisi

pada graf akan membuat hanya satu sirkuit. 6. G terhubung dan semua sisinya adalah jembatan.

Teorema di atas dapat dikatakan sebagai definisi lain dari

pohon.

Page 5: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 5

Pohon Merentang (spanning tree)

P o h o n m e r e n t a n g d a r i g r a f t e r h u b u n g a d a l a h u p a g r a f m e r e n t a n g y a n g b e r u p a p o h o n .

P o h o n m e r e n t a n g d i p e r o l e h d e n g a n m e m u t u s s i r k u i t d i d a l a m g r a f .

G T 1 T 2 T 3 T 4

Page 6: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 6

Setiap graf terhubung mempunyai paling sedikit satu buah pohon merentang.

Graf tak-terhubung dengan k komponen mempunyai k buah

hutan merentang yang disebut hutan merentang (spanning forest).

Page 7: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 7

Aplikasi Pohon Merentang1 . J u m la h r u a s j a la n s e m in im u m m u n g k in y a n g

m e n g h u b u n g k a n s e m u a k o ta s e h in g g a s e t i a p k o ta t e ta p te r h u b u n g s a tu s a m a la in .

2 . P e r u te a n ( r o u t in g ) p e s a n p a d a j a r in g a n k o m p u te r .

(a) (b)Router

Subnetwork

( a ) J a r in g a n k o m p u te r , ( b ) P o h o n m e r e n ta n g m u l t ic a s t

Page 8: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 8

Pohon Merentang Minimum G r a f t e r h u b u n g - b e r b o b o t m u n g k i n m e m p u n y a i l e b i h d a r i 1

p o h o n m e r e n t a n g . P o h o n m e r e n t a n g y a n g b e r b o b o t m i n i m u m – d i n a m a k a n p o h o n

m e r e n t a n g m i n i m u m ( m i n i m u m s p a n n i n g t r e e ) .

a

bc

d

e

f

g

h55

5

40

25

45

30

5020

15

35 10

a

bc

d

e

f

g

h

5

40

25 30

20

15

10

Page 9: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 9

Algoritma Prim Langkah 1: ambil sisi dari graf G yang berbobot minimum,

masukkan ke dalam T. Langkah 2: pilih sisi (u, v) yang mempunyai bobot minimum dan

bersisian dengan simpul di T, tetapi (u, v) tidak membentuk sirkuit di T. Masukkan (u, v) ke dalam T.

Langkah 3: ulangi langkah 2 sebanyak n – 2 kali.

Page 10: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 10

procedure Prim(input G : graf, output T : pohon) { Membentuk pohon merentang minimum T dari graf terhubung-berbobot G. Masukan: graf-berbobot terhubung G = (V, E), dengan V = n Keluaran: pohon rentang minimum T = (V, E’) } Deklarasi i, p, q, u, v : integer Algoritma Cari sisi (p,q) dari E yang berbobot terkecil T {(p,q)} for i1 to n-2 do Pilih sisi (u,v) dari E yang bobotnya terkecil namun bersisian dengan simpul di T T T {(u,v)} endfor

Page 11: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 11

Contoh:

1 2

3

4

5

6

1050

4530

2015

35

55

25

40

Page 12: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 12

L an gk ah S is i B o b o t P o ho n ren tang

1 (1, 2) 101 210

2 (2, 6) 25

1 2

6

10

25

3 (3, 6) 151

3

6

10

15

25

4 (4, 6) 201 2

3

4

6

10

2015

25

5 (3, 5) 351 2

3

4

5

6

10

45

2015

35

55

25

Page 13: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 13

Pohon merentang minimum yang dihasilkan:

Bobot = 10 + 25 + 15 + 20 + 35 = 105

1 2

3

4

5

6

10

45

2015

35

55

25

Page 14: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 14

Pohon merentang yang dihasilkan tidak selalu unik meskipun bobotnya tetap sama.

Hal ini terjadi jika ada beberapa sisi yang

akan dipilih berbobot sama.

Page 15: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 15

Contoh:

Tiga buah pohon merentang minimumnya:

a b c d

ef g h

i j k l

3 2

4 2 3

5 4

4 2

4

a b c d

ef h

i j k l

3 2

4 2 3

5 3 4

4 2

4

a b c d

ef g h

i j k l

3 4 2

4 2 3

5 3 4

2

43

Bobotnya sama yaitu = 36

a b c d

ef g

h

i j k l

3

5

6

5 3 5 4

4 2

4 4

4 2

6324

Page 16: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 16

Algoritma Kruskal ( Langkah 0: sisi-sisi dari graf sudah diurut menaik berdasarkan bobotnya – dari bobot kecil ke bobot besar) Langkah 1: T masih kosong Langkah 2: pilih sisi (u, v) dengan bobot minimum yang tidak

membentuk sirkuit di T. Tambahkan (u, v) ke dalam T.

Langkah 3: ulangi langkah 2 sebanyak n – 1 kali.

Page 17: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 17

procedure Kruskal(input G : graf, output T : pohon) { Membentuk pohon merentang minimum T dari graf terhubung –berbobot G. Masukan: graf-berbobot terhubung G = (V, E), dengan V = n Keluaran: pohon rentang minimum T = (V, E’) } Deklarasi i, p, q, u, v : integer Algoritma ( Asumsi: sisi-sisi dari graf sudah diurut menaik berdasarkan bobotnya – dari bobot kecil ke bobot besar) T {} while jumlah sisi T < n-1 do Pilih sisi (u,v) dari E yang bobotnya terkecil if (u,v) tidak membentuk siklus di T then T T {(u,v)} endif endfor

Page 18: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 18

Contoh: 1 2

3

4

5

6

1050

4530

2015

35

55

25

40

Page 19: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 19

S i s i - s i s i d i u r u t m e n a i k :

S i s i ( 1 , 2 ) ( 3 , 6 ) ( 4 , 6 ) ( 2 , 6 ) ( 1 , 4 ) ( 3 , 5 ) ( 2 , 5 ) ( 1 , 5 ) ( 2 , 3 ) ( 5 , 6 ) B o b o t 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5

L a n g k a h S i s i B o b o t H u t a n m e r e n t a n g

1 (1, 2) 10

2 (3, 6) 15

3 (4, 6) 20

0 1 2 3 4 5 6

1 2

1 2 3

6

4 5

1 2 3

6

4

5

4 (2, 6) 251 2 3

4

5

Page 20: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 20

Pohon m erentang m inim um yang dihasilkan:

Bobot = 10 + 25 + 15 + 20 + 35 = 105

4 (2, 6) 251 2 3

4

5

5 (1, 4) 30 ditolak

6 (3, 5) 351 2

3

6

4

5

1 2

3

4

5

6

10

45

2015

35

55

25

Page 21: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 21

Pohon berakar (rooted tree) Pohon yang satu buah simpulnya diperlakukan sebagai akar dan

sisi-sisinya diberi arah sehingga menjadi graf berarah dinamakan pohon berakar (rooted tree).

(a) Pohon berakar (b) sebagai perjanjian, tanda panah pada sisi dapat

dibuang

a

bc

d

ef g

h i j

a

bc

d

ef g

h i j

Page 22: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 22

b s e b a g a i a k a r e se b a g a i a k a r

P o h o n d a n d u a b u a h p o h o n b e ra k a r y a n g d ih a s ilk a n d a r i p e m ilih a n d u a s im p u l b e rb e d a se b a g a i a k a r

a

b

c

d

e f

g

h

f

g

a

b

cd

e

f

g h

d

e

hb

a c

Page 23: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 23

Terminologi pada Pohon Berakar

Anak (child atau children) dan Orangtua (parent) b, c, dan d adalah anak-anak simpul a, a adalah orangtua dari anak-anak itu

a

b

k

g

j

f

c d

ml

i

e

h

Page 24: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 24

2. Lintasan (path) Lintasan dari a ke j adalah a, b, e, j. Panjang lintasan dari a ke j adalah 3. 3. Saudara kandung (sibling) f adalah saudara kandung e, tetapi g bukan saudara kandung e, karena orangtua mereka berbeda.

a

b

k

g

j

f

c d

ml

i

e

h

Page 25: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 25

4. Upapohon (subtree)

a

b

k

g

j

f

c d

ml

i

e

h

Page 26: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 26

5. Derajat (degree) Derajat sebuah simpul adalah jumlah upapohon (atau jumlah anak) pada simpul tersebut. Derajat a adalah 3, derajat b adalah 2, Derajat d adalah satu dan derajat c adalah 0. Jadi, derajat yang dimaksudkan di sini adalah derajat-keluar. Derajat maksimum dari semua simpul merupakan derajat pohon itu sendiri. Pohon di atas berderajat 3

a

b

k

g

j

f

c d

ml

i

e

h

Page 27: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 27

6. Daun (leaf) Simpul yang berderajat nol (atau tidak mempunyai anak) disebut daun. Simpul h, i, j, f, c, l, dan m adalah daun. 7. Simpul Dalam (internal nodes) Simpul yang mempunyai anak disebut simpul dalam. Simpul b, d, e, g, dan k adalah simpul dalam. a

b

k

g

j

f

c d

ml

i

e

h

Page 28: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 28

8. Aras (level) atau Tingkat

9. Tinggi (height) atau Kedalaman (depth) Aras maksimum dari suatu pohon disebut tinggi atau kedalaman pohon tersebut. Pohon di atas mempunyai tinggi 4.

a

b

k

g

j

f

c d

ml

i

e

h

0

1

2

3

4

Aras

Page 29: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 29

Pohon Terurut (ordered tree)Pohon berakar yang urutan anak-anaknya penting disebut pohon terurut (ordered tree).

(a) (b)

(a) dan (b) adalah dua pohon terurut yang berbeda

1

2

6 87

34

9

10

5

1

2

68 7

3 4

9

10

5

Page 30: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 30

Pohon n-ary Pohon berakar yang setiap simpul cabangnya mempunyai

paling banyak n buah anak disebut pohon n-ary. < sentence>

<subject> <verb> <object> <article> <noun phrase> wears <article> <noun> A <adjective> <noun> a <adjective> <noun> tall boy red hat

Gambar Pohon parsing dari kalimat A tall boy wears a red hat

Pohon n-ary dikatakan teratur atau penuh (full) jika setiap simpul cabangnya mempunyai tepat n anak.

Page 31: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 31

Pohon Biner (binary tree) Adalah pohon n-ary dengan n = 2. Pohon yang paling penting karena banyak

aplikasinya. Setiap simpul di adlam pohon biner mempunyai

paling banyak 2 buah anak. Dibedakan antara anak kiri (left child) dan anak

kanan (right child) Karena ada perbedaan urutan anak, maka pohon

biner adalah pohon terurut.

Page 32: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 32

a

b c

d

a

b c

d

Gambar Dua buah pohon biner yang berbeda

Page 33: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 33

Gambar (a) Pohon condong-kiri, dan (b) pohon condong kanan

a

b

c

d

a

b

c

d

Page 34: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 34

Gambar Pohon biner penuh

Page 35: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 35

P o h o n B i n e r S e i m b a n g P a d a b e b e r a p a a p l i k a s i , d i i n g i n k a n t i n g g i u p a p o h o n k i r i d a n t i n g g i u p a p o h o n k a n a n y a n g s e i m b a n g , y a i t u b e r b e d a m a k s i m a l 1 .

T 1 T 2 T 3

G a m b a r T 1 d a n T 2 a d a l a h p o h o n s e i m b a n g , s e d a n g k a n T 3 b u k a n p o h o n s e i m b a n g .

Page 36: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 36

Terapan Pohon Biner1. Pohon Ekspresi

Gambar Pohon ekspresi dari (a + b)*(c/(d + e))

*

+ /

a b+

d e

c

daun operandsimpul dalam operator

Page 37: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 37

2. Pohon Keputusan

Gambar Pohon keputusan untuk mengurutkan 3 buah elemen

a : b

a : c b : c

b : c c > a > b a : c c > b > a

a > b > c a > c > b b > a > c b > c > a

a > b b > a

a >c c > a

b > c c > b

b > c c > b

a >c c > a

Page 38: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 38

3. Kode Awalan

Gambar Pohon biner dari kode prefiks { 000, 001, 01, 10, 11}

1

11

1

0

0

0

0

111001

001000

Page 39: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 39

4. Kode Huffman

Tabel Kode ASCII

Simbol Kode ASCII A 01000001 B 01000010 C 01000011 D 01000100 rangkaian bit untuk string ‘ABACCDA’:

01000001010000010010000010100000110100000110100010001000001

atau 7 8 = 56 bit (7 byte).

Page 40: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 40

Tabel Tabel kekerapan (frekuensi) dan kode Huffman untuk string ABACCDA

Simbol Kekerapan Peluang Kode Huffman A 3 3/7 0 B 1 1/7 110 C 2 2/7 10 D 1 1/7 111

Dengan kode Hufman, rangkaian bit untuk ’ABACCDA’:

0110010101110

hanya 13 bit!

Page 41: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 41

Algoritma pembentukan pohon Huffman1. Pilih dua simbol dengan peluang (probability) paling

kecil (pada contoh di atas simbol B dan D). Kedua simbol tadi dikombinasikan sebagai simpul orangtua dari simbol B dan D sehingga menjadi simbol BD dengan peluang 1/7 + 1/7 = 2/7, yaitu jumlah peluang kedua anaknya.

2. Selanjutnya, pilih dua simbol berikutnya, termasuk simbol baru, yang mempunyai peluang terkecil.

3. Ulangi langkah 1 dan 2 sampai seluruh simbol habis.

Page 42: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 42

A = 0, C = 10, B = 110, D = 111

A BCD , 7 /7

A , 3/7 CBD , 4 /7

C , 2/7 BD , 3/7

B , 3 /7 D , 3/7

1

1

1

0

0

0

Page 43: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 43

5. Pohon Pencarian Biner

R

T1 T2

Kunci( T1) < Kunci( R )

Kunci( T2) > Kunci( R )

Page 44: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 44

Data: 50, 32, 18, 40, 60, 52, 5, 25, 70

50

32

4018

50

52 70

5 25

Page 45: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 45

Penelusuran (traversal) Pohon Biner1. Preorder : R, T1, T2 - kunjungi R - kunjungi T1 secara preorder - kunjungi T2 secara preorder 2. Inorder : T1 , R, T2 - kunjungi T1 secara inorder - kunjungi R - kunjungi T2 secara inorder 3. Postorder : T1, T2 , R - kunjungi T1 secara postorder - kunjungi T2 secara postorder - kunjungi R

Page 46: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 46

( a ) p re o r d e r (b ) in o rd e r

( c ) p o s to rd e r

R

T1 T2

Langkah 3: kunjungi R

Langkah 1: kunjungi T1secara postorder

Langkah 2: kunjungi T2secara postorder

R

T1 T2

Langkah 1: kunjungi R

Langkah 2: kunjungi T1secara preorder

Langkah 3: kunjungi T2secara preorder

R

T1 T2

Langkah 2: kunjungi R

Langkah 1: kunjungi T1secara inorder

Langkah 3: kunjungi T2secara inorder

Page 47: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 47

preorder : * + a / b c - d * e f (prefix) inorder : a + b / c * d - e * f (infix) postorder : a b c / + d e f * - * (postfix)

*

+ -

a / d *

b c e f

Page 48: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 48

Soal latihan1. Diketahui 8 buah koin uang logam. Satu dari

delapan koin itu ternyata palsu. Koin yang palsu mungkin lebih ringan atau lebih berat daripada koin yang asli. Misalkan tersedia sebuah timbangan neraca yang sangat teliti. Buatlah pohon keputusan untuk mencari uang palsu dengan cara menimbang paling banyak hanya 3 kali saja.

Page 49: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 49

2. Tentukan hasil kunjungan preorder, inorder, dan postorder pada pohon 4-ary berikut ini:

a

b c d

e f g h i j k l m

n o p q

Page 50: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 50

3. Gunakan pohon berakar untuk menggambarkan semua kemungkinan hasil dari pertandingan tenis antara dua orang pemain, Anton dan Budi, yang dalam hal ini pemenangnya adalah pemain yang pertama memenangkan dua set berturut-turut atau pemain yang pertama memenangkan total tiga set.

Page 51: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 51

4. Tentukan dan gambarkan pohon merentang minimum dari graf di bawah ini (tahapan pembentukannya tidak perlu ditulis).

a b c

de

f

g h i

5 4

2 3 5 6 37 1

6 8 3 4 4

4 2

Page 52: Pohon(tree) matematika diskrit

Rinaldi M/IF2091 Strukdis 52

6. Diberikan masukan berupa rangkaian karakter dengan urutan sebagai berikut:

P, T, B, F, H, K, N, S, A, U, M, I, D, C, W, O

(a) Gambarkan pohon pencarian (search tree) yang terbentuk. (b) Tentukan hasil penelusuran preorder, inorder, dan postorder,

dari pohon jawaban (a) di atas.