perancangan single buoy mooring system fso … · • bagaimana cara menghitung tegangan maksimum...

24
PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO KAKAP NATUNA I GUSTI PUTU SUANTARA 4108 100 034 4108 100 034 JURUSAN TEKNIK PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Upload: lenhu

Post on 18-May-2019

261 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO KAKAP NATUNA

I GUSTI PUTU SUANTARA4108 100 0344108 100 034

JURUSAN TEKNIK PERKAPALANFAKULTAS TEKNOLOGI KELAUTANINSTITUT TEKNOLOGI SEPULUH NOPEMBERSURABAYA

Page 2: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

LATAR BELAKANG

• Kegiatan eksplorasi diperairan laut dalam.

• Anjungan terpancang kurang ekonomis apabila dibandingkan

dengan anjungan terapung (floating platform) pada perairan

yang dalam.yang dalam.

• FSO mengalami gerakan yang disebabkan oleh beban

lingkungan (arus, angin dan gelombang) sehingga tali tambat

mengalami tegangan. Sehingga analisa kekuatan mooring

system perlu dilakukan.

Page 3: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

RUMUSAN MASALAH

• Bagaimana memprediksi karakteristik motion FSO Kakap

Natuna?

• Bagaimana cara menghitung tegangan maksimum chain

pada sistem single buoy mooring FSO Kakap Natuna?pada sistem single buoy mooring FSO Kakap Natuna?

• Bagaimana cara memprediksi excursion/offset FSO Kakap

Natuna?

• Bagaimana layout single buoy mooring untuk FSO Kakap

Natuna yang paling optimum?

Page 4: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

MAKSUD DAN TUJUAN

• Menghitung karakteristik motion FSO Kakap Natuna.

• Melakukan analisa line tension dan excursion dari mooring

system FSO Kakap Natuna pada kondisi saat ini.

• Mencari layout dari mooring system FSO Kakap Natuna• Mencari layout dari mooring system FSO Kakap Natuna

dengan line tension dan excursion yang lebih optimum.

Page 5: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

BATASAN MASALAH

• Pembahasan hanya dilakukan untuk perairan dimana FSO

Kakap Natuna beroperasi.

• Pembahasan studi hanya mengenai pengaruh beban lingkungan

terhadap FSO Kakap Natuna.

• Jumlah rantai dalam pembahasan ini seperti pada kondisi saat ini

sebanyak 6 rantai dengan panjang rantai secara keseluruhan

454 meter.

• Kajian hanya mengikuti rule Biro Klasifikasi Indonesia & standar

API

Page 6: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

SISTEM TAMBAT (1)

Internal Turret

Spread Mooring

Page 7: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

SISTEM TAMBAT (2)

Single Buoy Mooring

External Turret

Page 8: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

SISTEM TAMBAT (3)

Single Buoy Mooring dengan Yooke Arm

Page 9: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

METODOLOGI PENELITIAN

Data FSO

Perhitungan dengan teori difraksi

Pemodelan hull FSO

RAO

Simulasi time

Variasi sistem tambat

Data sistem tambat awal

No

Yes Yes

No

Data LingkunganSimulasi time

domainSimulasi time

domain

Line tension & Excursion

Line tension & Excursion

Unity check

Unity check

Minimum line tension

Sistem tambat baru

Page 10: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

PEMODELAN INTACT CONDITION

Page 11: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

PEMODELAN ONE LINE DAMAGE CONDITION

Page 12: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

SUSUNAN MOORING LINE

Mooring

Line

SpecificationLine Working

Pre-TensionSegmen A (at buoy) Segmen B (at pile)

L1 Approx. 165 m in length Approx. 289 m in length 31.9 MT

L2 Approx. 165 m in length Approx. 289 m in length 31.9MTL2 Approx. 165 m in length Approx. 289 m in length 31.9MT

L3 Approx. 165 m in length Approx. 289 m in length 31.9 MT

L4 Approx. 165 m in length Approx. 289 m in length 31.9 MT

L5 Approx. 165 m in length Approx. 289 m in length 31.9 MT

L6 Approx. 165 m in length Approx. 289 m in length 31.9 MT

Page 13: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

RAO FSO KONDISI FULL LOAD

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.00 0.10 0.20 0.30

Dis

tan

ce

Frequency (Hz)

Surge Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00 0.10 0.20 0.30

Dis

tan

ceFrequency (Hz)

Sway Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.00 0.10 0.20 0.30

Dis

tan

ce

Frequency (Hz)

Heave Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.10 0.20 0.30

De

gre

e

Frequency (Hz)

Roll Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.00 0.10 0.20 0.30

De

gre

e

Frequency (Hz)

Pitch Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00 0.10 0.20 0.30

De

gre

e

Frequency (Hz)

Yaw Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

Page 14: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

RAO FSO KONDISI BALLAST

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.00 0.10 0.20 0.30

Dis

tan

ce

Frequency (Hz)

Surge Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00 0.10 0.20 0.30

Dis

tan

ceFrequency (Hz)

Sway Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.10 0.20 0.30

Dis

tan

ce

Frequency (Hz)

Heave Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.00 0.10 0.20 0.30

De

gre

e

Frequency (Hz)

Roll Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.00 0.10 0.20 0.30

De

gre

e

Frequency (Hz)

Pitch Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00 0.10 0.20 0.30

De

gre

e

Frequency (Hz)

Yaw Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

Page 15: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

RAO BUOY

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00 0.10 0.20 0.30

Dis

tan

ce

Frequency (Hz)

Surge Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00 0.10 0.20 0.30D

ista

nce

Frequency (Hz)

Sway Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.00 0.10 0.20 0.30

Dis

tan

ce

Frequency (Hz)

Heave Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

Frequency (Hz) Frequency (Hz) Frequency (Hz)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00 0.10 0.20 0.30

De

gre

e

Frequency (Hz)

Roll Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00

0.50

1.00

1.50

2.00

2.50

0.00 0.10 0.20 0.30

De

gre

e

Frequency (Hz)

Pitch Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00 0.10 0.20 0.30

De

gre

e

Frequency (Hz)

Yaw Motion RAO (Response Amplitude Operators)

0 deg. Direction

45 deg. Direction

90 deg. Direction

135 deg. Direction

180 deg. Direction

Page 16: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

ANALISA LINE TENSION PADA KONDISI SAAT INI

Full Load Condition

Computed Allowable Line

Chain Grade

Segmen

Normal ConditionAfter Corrosion

(12 years)Intact Damage

Nominal dia.

(mm)

Breaking Load(ton)

Nominal dia.

(mm)

Breaking Load(ton)

Safety Factor

Allowable Line

Tension (ton)

Safety Factor

Allowable Line

Tension (ton)

KI-R4 A 76 612.78 71.2 535.37 1.7 314.924 1.3 411.823

ORQ B 103.9 829.05 99.1 752.44 1.7 442.618 1.3 578.800

Segmen

Computed

Maximum Line

Tension

(Tonnes)

Allowable Line

Tension

(Tonnes)

Status

From “E”

A173.618

(at line #2)314.924 OK

B169.488

(at line #2)442.618 OK

Damage at Line #1

A

258.464

(at line #3)

(from “E”)

411.823 OK

B

253.692

(at line #3)

(from “E”)

578.800 OK

Page 17: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

VARIASI ROTASI KOORDINAT PILE

1

26

15o

15o

15o

15o

5

4

3

Page 18: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

DISTRIBUSI MAKSIMUM LINE TENSION DARI SEGALA ARAH

100

150

200

250

Lin

e T

en

sio

n (

to

nn

es)

Line Tension Distribution

N

NE

E

SE

S

SW

WSEGMENT B

0

50

0 10 20 30 40 50 60 70

Rotation (degree)

W

NW

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Lin

e T

en

sio

n (

to

nn

es)

Rotation (degree)

Line Tension Distribution

N

NE

E

SE

S

SW

W

NW

SEGMENT A

SEGMENT B

Page 19: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

DISTRIBUSI MAKSIMUM LINE TENSION DARI ARAH NORTH EAST DAN EAST

180

200

220

Lin

e T

en

sio

n (

ton

ne

s)

Line Tension Distribution

NE (segmen A)

100

120

140

160

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

Lin

e T

en

sio

n (

ton

ne

s)

Rotation (degree)

NE (segmen A)

E (segmen A)

NE (segmen B)

E (segmen B)

Page 20: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

PERBANDINGAN MAXIMUM LINE TENSION

Condition SegmenT

Computed Maximum Line

Tension (Tonnes) Difference

(tonnes)Existing pile 10o rotation

Intact

A

173.618

(at line #2)

(from “NE”)

144.514

(at line #3)

(from “E”)

29.104

Intact

B

169.488

(at line #2)

(from “NE”)

140.506

(at line #3)

(from “E”)

28.982

One line damage

A

258.464

(at line #3)

(from “E”)

246.737

(at line #2)

(from “NE”)

11.727

B

253.692

(at line #3)

(from “E”)

239.863

(at line #2)

(from “NE”)

13.829

Page 21: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

Chain Grade

Segment

Normal ConditionAfter Corrosion

(12 years)Intact Damage

Nominal dia.

(mm)

Breaking Load(ton)

Nominal dia.

(mm)

Breaking Load(ton)

Safety Factor

Allowable Line

Tension (ton)

Safety Factor

Allowable Line

Tension (ton)

KI R4 A 60 394.19 55.2 331.119 1.7 194.776 1.3 254.707

ORQ B 68 383.44 63.2 329.306 1.7 193.710 1.3 253.312

Full Load Condition

Computed

ANALISA LINE TENSION PADA KONDISI HASIL OPTIMASI

Segmen

Computed

Maximum Line

Tension

(Tonnes)

Allowable Line

Tension

(Tonnes)

Status

From “E”

A144.514

(at line #3)194.776 OK

B140.506

(at line #3)193.710 OK

Damage at Line

#1

A

246.737

(at line #2)

(from “NE”)

254.707 OK

B

239.863

(at line #2)

(from “NE”)

253.312 OK

Page 22: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

KESIMPULAN

1. Karakteristik motion• Gearakan surge maksimum disebabkan gelombang datang dari

arah 0o dan 180o

• Gerakan sway dan heave maksimum disebabkan gelombangdatang dari arah 90o

• Gerakan roll maksimum disebabkan gelombang datang dari arah90o

• Gerakan pitch dan yaw maksimum disebabkan gelombang datangdari arah 45o dan 135o

2. Maksimum line tension• 173.618 ton (segmen A) dan 169.488 ton (segmen B) pada kondisi

intact.• 258.464 ton (segmen A) dan 253.692 ton (segmen B) pada kondisi

one line damage

Page 23: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

KESIMPULAN

3. ExcursionBesar excursion FSO tidak mengalami perubahan yang signifikanpada kondisi saat ini sebesar -34.002 m (sb. X) dan -25.545 m (sb. Y)sedangkan pada posisi hasil optimasi sebesar -33.74 m (sb. X) dan -25.605 m (sb. Y)

4. Maksimum line tension hasil optomasi• 144.514 ton (segmen A) dan 140.506 ton (segmen B) pada kondisi

intact.• 246.737 ton (segmen A) dan 239.863 ton (segmen B) pada kondisi

one line damage5. Didapatkan diameter yang lebih kecil dengan diameter 60 mm pada

segmen A dan 68 mm pada segmen B

Page 24: PERANCANGAN SINGLE BUOY MOORING SYSTEM FSO … · • Bagaimana cara menghitung tegangan maksimum chain pada sistem single buoy mooring FSO Kakap Natuna? ... Tension (ton) Safety

SEKIAN, DAN TERIMA KASIH......SEKIAN, DAN TERIMA KASIH......