penentuan dosis

154

Click here to load reader

Upload: muhammad-khusnul-huda

Post on 03-Sep-2015

307 views

Category:

Documents


15 download

DESCRIPTION

Cara penentuan dosis internal dan dosis permukaan

TRANSCRIPT

  • UNIVERSITAS INDONESIA

    PENENTUAN DOSIS INTERNAL BERBAGAI ORGAN PADA PEMERIKSAAN BONE SCAN 99Tcm-MDP

    DENGAN METODE MIRD

    TESIS

    RINI SURYANTI 0906600131

    FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM MAGISTER FISIKA KEKHUSUSAN FISIKA MEDIS

    JAKARTA JULI 2011

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • ii

    UNIVERSITAS INDONESIA

    PENENTUAN DOSIS INTERNAL BERBAGAI ORGAN PADA PEMERIKSAAN BONE SCAN 99Tcm-MDP

    DENGAN METODE MIRD

    TESIS

    Diajukan sebagai salah satu syarat untuk memperoleh gelar Master Sains

    RINI SURYANTI 0906600131

    FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM MAGISTER FISIKA KEKHUSUSAN FISIKA MEDIS

    JAKARTA JULI 2011

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • iii

    HALAMAN PERNYATAAN ORISINALITAS

    Tesis ini adalah hasil karya saya sendiri,

    dan semua sumber baik yang dikutip maupun dirujuk

    telah saya nyatakan dengan benar.

    Nama : Rini Suryanti

    NPM : 0906600131

    Tanda Tangan :

    Tanggal : 14 Juli 2011

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • iv

    HALAMAN PENGESAHAN

    Tesis ini diajukan oleh Nama : Rini Suryanti NPM : 0906600131 Program Studi : Magister Fisika Kekhususan : Fisika Medis Judul Tesis : Pengukuran Dosis Internal Berbagai Organ Pada

    Pemeriksaan Bone Scan 99Tcm-MDP Dengan Metode MIRD

    Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Master Sains pada Program Studi Magister Fisika Kehususa Fisika Medis, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia.

    DEWAN PENGUJI

    Pembimbing : Prof. Dr. Djarwani Soeharso Soejoko ()

    Penguji I : Dr. Mussadiq Musbach

    Penguji II : Seruni Udyaningsih Freisleben, Ph.D

    Penguji III : Prof. Ng Kwang Hong, Ph.D

    Ditetapkan di : Jakarta Tanggal : 14 Juli 2011

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • v

    KATA PENGANTAR

    Dengan menyebut nama Allah Yang Maha Pengasih lagi Maha Penyayang. Puji syukur saya panjatkan kepada Allah SWT, karena atas berkat dan rahmat-Nya, saya dapat menyelesaikan tesis ini. Penulisan tesis ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Magister Sains pada program studi Magister Fisika Kekhususan Fisika Medis Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia. Saya menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan tesis ini, sangatlah sulit bagi saya untuk menyelesaikan tesis ini. Oleh karena itu, saya mengucapkan terimakasih kepada: 1. Prof. Dr. Djarwani Soeharso Soejoko, selaku dosen pembimbing yang telah

    menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan tesis ini.

    2. Dr. Mussadiq Musbach, selaku dosen penguji yang telah memberikan masukan dalam penyusunan tesis ini.

    3. DR. Seruni Udyaningsih, Freisleben, selaku dosen penguji yang telah memberikan masukan dalam penyusunan tesis ini.

    4. Prof. Ng Kwang Hoong, Ph.D, selaku dosen penguji yang telah memberikan masukan dalam penyusunan tesis ini.

    5. Para Dosen dan Staf Administrasi Departemen Fisika Universita Indonesia. 6. Direktur RSPP Pertaminan Jakarta Pusat atas izin yang telah diberikan

    untuk penelitian di RSPP Pertamina. 7. Kepala unit Kedokteran Nuklir, Dr. Chafied Varuna, Sp.KN yang telah

    memberikan keleluasaan dan fasilitas dalam pengambilan data di unit Kedokteran Nuklir RSPP Pertaminan Jakarta Pusat.

    8. Dr. Bambang yang telah memberikan fasilitas untuk pengambilan data di unit radioterapi RSPP Pertamina.

    9. Dr. Fadil Nasir, Sp.KN yang telah banyak meluangkan waktu memberikan informasi dan diskusi mengenai hal hal yang terkait dengan tesis ini.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • vi

    10. Bapak Tetratma KSW, sebagai staf senior di unit Kedokteran Nuklir yang telah banyak membantu dalam menyediakan pasien untuk pelaksanaan pengambilan data scanning pasien.

    11. Bapak Erwin dan Duta Kamesworo sebagai staf di unit Kedokteran Nuklir yang telah memberikan waktu dan tenaga untuk membantu mempersiapkan radiofarmaka dan pelaksanaan scanning pasien.

    12. Suami ku tercinta yang telah memberikan bantuan secara material dan dukungan moral serta kritik-kritik yang membangun.

    13. Mr. Kitiwat Khamhan yang telah banyak memberikan informasi terkait metode MIRD.

    14. Teman seperjuangan ku Arreta Rei atas semangat 101 mCi nya sehingga kita bisa melewati semua ini dengan baik.

    15. Teman Fisika Medis angkatan 2009 dan 2010 yang telah berkesempatan hadir pada saat sidang.

    16. Orang tua dan kakak-kakak yang telah memberikan dorongan semangat dan semua pihak yang telah membantu dalam menyelesaikan tesis ini.

    Saya mengharapkan saran dan kritik yang membangun untuk kemajuan dan perbaikan di masa yang akan datang. Akhir kata, saya berharap Allah SWT berkenan membalas segala kebaikan semua pihak yang telah membantu dan semoga tesis ini membawa manfaat bagi pengembangan ilmu.

    Penulis

    2011

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • vii

    HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

    Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

    Nama : Rini Suryanti NPM : 0906600131 Program Studi : Magister Fisika Departemen : Fisika Fakultas : Matematika dan Ilmu Pengetahuan Alam Jenis karya : Tesis

    Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (Non-exclusive Royalty-Free Right) atas karya ilmiah saya yang berjudul: Penentuan Dosis Internal Berbagai Organ Pada Pemeriksaan Bone Scan 99Tcm-MDP Dengan Metode MIRD

    beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/format-kan, mengelola dalam bentuk pangkalan data (database), merawat, dan mempublikasikan tugas akhir saya tanpa meminta izin dari saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

    Demikian pernyataan ini saya buat dengan sebenarnya.

    Dibuat di : Depok Pada tanggal : 14 Juli 2011

    Yang menyatakan

    (Rini Suryanti)

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • viii

    ABSTRAK

    Nama : Rini Suryanti Program Studi : Magister Fisika Kekhususan : Fisika Medis Judul : Penentuan Dosis Internal Berbagai Organ Pada Pemeriksaan

    Bone Scan 99Tcm-MDP Dengan Metode MIRD

    Telah dilakukan penelitian penentuan dosis internal berbagai organ pada pemeriksaan bone scan dengan radiofarmaka 99Tcm-MDP yang bertujuan untuk menentukan dosis internal yang diterima oleh permukaan tulang rangka, sumsum tulang, dinding jantung, ginjal, dinding kandung kemih dan total tubuh, dan untuk mengetahui waktu tinggal (residence time) 99Tcm di dalam organ. Penelitian dilakukan terhadap 20 pasien dengan usia 20 70 tahun dengan melakukan beberapa sesi pengambilan data melalui scanning planar AP dan PA pada organ yang menjadi objek dalam penelitian ini. Selanjutnya dari setiap citra planar scanning organ dibuat region of interest (ROI) untuk menentukan aktivitas 99Tcm yang terendap dalam organ sehingga dapat dibuat sebuah kurva aktivitas kumulatif pada setiap organ, kemudian diolah dengan program Maple untuk mendapatkan suatu nilai aktivitas kumulatif yang digunakan dalam penentuan dosis internal sesuai dengan metode MIRD. Berdasarkan data pengamatan selama 3 - 4 jam setelah penyuntikan diperoleh dosis serap paling tinggi terjadi pada dinding kandung kemih 5,8 1,6 Gy/MBq, yang diikuti berturut-turut pada ginjal 4,7 1,0 Gy/MBq, pada dinding jantung 4,0 0,8 Gy/MBq, pada permukaan tulang 2,1 0,2 Gy/MBq, pada sumsum tulang 1,7 0,2 Gy/MBq, dan pada total tubuh 0,8 0,1 Gy/MBq. Khusus untuk sumsum tulang, nilai masih lebih rendah dibandingkan dengan nilai batas dosis yang direkomendasikan oleh ICRP dalam publikasi ICRP nomor 103. Sedangkan waktu tinggal 99Tcm dalam permukaan tulang mendekati sama dengan pada total tubuh sekitar 1,9 jam, kemudian diikuti kandung kemih sekitar 1,4 jam, dan dalam jantung dan ginjal masing-masing sekitar 0,2 jam. Disamping perhitungan dosis internal juga diakukan pengukuran dosis permukaan pada tiga titik pengukuran yang berada pada daerah sternum (a), daerah ginjal kanan (b) dan kandung kemih (c). Pengukuran dilakukan sampai dengan dua jam setelah penyuntikan, diperoleh hasil sekitar 4,3 Gy/jam per 1 MBq pada titik pengukuran a, dan sekitar 3,9 Gy/jam per 1 MBq masing-masing pada titik pengukuran b dan c.

    Kata kunci : dosis internal, bonescan, MIRD, 99Tcm-MDP xiii + 141 halaman : 20 Gambar; 16 Tabel; 14 Lampiran Daftar Acuan : 36 (1975 2009)

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • ix

    ABSTRACT

    Name : Rini Suryanti Study Program : Physics Master Major : Medical Physics Title : Estimation of Internal Dose in Bone Scan Examination

    using 99Tcm-MDP for Various Organs By MIRD Method

    The Study of estimation of the internal dose for various organs in bone scan using 99Tcm-MDP have been conducted, the aim of this study are to determine the internal dose for bone surfaces, bone marrow, heart wall, kidneys, bladder wall and total body, and to found the residence time of 99Tcm in the organ. The study conducted on 20 patients with age 20-70 years by doing several session of data collection through scanned AP and PA planar the organ which is the object in this study. The Region of Interest (ROI) from the planar images of the organ were made to determine the activity of 99Tcm deposited in the organ than can be made a cumulated activity curve for each organ. Then the data were processed with the Maple Program to obtain cumulated activity values that are used in estimation of the internal dose according to the MIRD method. With observational data for 3 - 4 hours obtained the highest internal dose in the bladder wall is 5.8 1.6 Gy/MBq and then followed the kidney is 4.7 1.0 Gy/MBq, the heart wall is 4.0 0.8 Gy/MBq, the bone surfaces is 2.1 0.2 Gy/MBq, bone marrow is 1.7 0.2 Gy/MBq, and the total body is 0.8 0.6 Gy/MBq. Special to the bone marrow, the value is still lower than the value of the threshold in the ICRP publication number 103. The residence time 99Tcm in the bone surfaces equal to the total body about 1.9 hours, followed the bladder about 1.4 hours, and the heart and the kidney each about 0.2 hours. In this study also measured the surface dose at three points in the region on the sternum (a), on the right kidney (b) and on the bladder (c). Measurements were made up to two hours after injection, the result obtained about 4.3 Gy/h per 1 MBq at the point a and about 3.9 Gy/h per 1 MBq each at the point b and c.

    Keyword : Internal dose, bonescan, MIRD, 99Tcm-MDP xiii + 141 pages : 20 Figures; 16 Tables; 14 Appendics References : 36 (1975 2009)

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • x

    DAFTAR ISI

    HALAMAN JUDUL HALAMAN PERNYATAAN ORISINALITAS. HALAMAN PENGESAHAN KATA PENGANTAR . LEMBAR PERSETUJUAN PUBLIKASI KARYA ILMIAH.. ABSTRAK . ABSTRACT .. DAFTAR ISI DAFTAR GAMBAR . DAFTAR TABEL .. DAFTAR LAMPIRAN

    1. PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah 1.3. Batasan Penelitian 1.4. Tujuan Penelitian 1.5. Manfaat Penelitian

    2. TINJAUAN PUSTAKA 2.1. Kamera Gamma 2.2. Radiofarmaka yang Digunakan 2.3. Dosis Radiasi Internal 2.4. Metode MIRD . 2.5. Dosis Efektif Ekivalen .

    3. METODE PENELITIAN 3.1. Peralatan, Bahan dan Penentuan Sampel .. 3.2. Metode

    3.2.1. Penentuan Faktor Konversi Organ ... 3.2.2. Penentuan Dosis Internal Organ .. 3.2.3. Pengukuran Dosis Permukaan ...

    4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.2. Pembahasan

    5. KESIMPULAN DAN SARAN

    DAFTAR ACUAN

    ii iii iv v

    vii viii ix x

    xi xii xiii

    1 2 3 3 3

    5 6 8

    12 16

    18 19 19 21 25

    27 37

    48

    50

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • xi

    DAFTAR GAMBAR

    Gambar 2.1 Skema Kamera Gamma 6 Gambar 2.2 Hubungan Fisis yang Mungkin Antara Organ Sumber dan

    Organ Target

    9 Gambar 2.3 Kurva Aktivitas Kumulatif 14 Gambar 3.1 Kamera Gamma Merk SkyLight-Philips 18 Gambar 3.2 Contoh Irisan a: sagital b: axial . 20 Gambar 3.3 Skema Posisi Fantom, Radionuklida dan Kamera Gamma

    dalam Penentuan Faktor Konversi ..

    21 Gambar 3.4 Contoh ROI untuk Ginjal dan Kandung Kemih .... 22 Gambar 3.5 Titik Pengukuran TLD . 26 Gambar 4.1 Kurva Aktivitas Kumulatif 99Tcm Dalam Berbagai Organ Salah

    Satu Pasien ..

    29 Gambar 4.2 Eliminasi 99Tcm di Dalam Berbagai Organ Salah Satu Pasien 30 Gambar 4.3 Grafik Rata-rata Waktu Tinggal 99Tcm dalam Berbagai Organ.. 31 Gambar 4.4 Sebaran Aktivitas Kumulatif Berbagai Organ pada Ke20

    Pasien ..

    32 Gambar 4.5 Bagan Waktu Tinggal () 99Tcm dan Dosis Serap (D) Berbagai

    Organ .

    34 Gambar 4.6 Sebaran Dosis Serap Berbagai Organ pada Ke20 pasien .. 35 Gambar 4.7 Bagan Dosis Permukaan Pada Setiap Titik Pengukuran 36 Gambar 4.8 Perbandingan Waktu Terjadinya Aktivitas 99Tcm Maksimum

    pada Setiap Organ

    39 Gambar 4.9 Citra Dinamika 99Tcm di Dalam Tubuh Setelah Penyuntikan .... 40 Gambar 4.10 Grafik Dosis Serap Berbagai Organ Dalam Penelitian Ini .. 42 Gambar 4.11 Perbandingan Penelitian Ini dengan Penelitian Lain . 45 Gambar 4.12 Dosis Permukaan pada Pemeriksaan Bone Scan . 46

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • xii

    DAFTAR TABEL

    Tabel 2.1 Persen Aktivitas 99Tcm Berdasarkan Waktu Elusi .. 8 Tabel 2.2 Rekomendasi ICRP 103 untuk Faktor Kualitas Radiasi 17 Tabel 2.3 Rekomendasi Faktor Bobot Jaringan 17 Tabel 3.1 Jadwal Pengambilan Citra .. 22 Tabel 4.1 Kedalaman Organ dari AP dan PA Tubuh 27 Tabel 4.2 Faktor Konversi Laju Cacah menjadi Aktivitas Sumber . 28 Tabel 4.3 Rentang Aktivitas Kumulatif, Rata-rata Waktu Tinggal,

    Dalam Berbagai Organ

    31 Tabel 4.4 Nilai S untuk Berbagai Organ ... 33 Tabel 4.5 Dosis Serap dan Dosis Efektif Ekivalen Berbagai Organ 33 Tabel 4.6 Rentang Dosis Permukaan pada Ketiga Titik Pengukuran 36 Tabel 4.7 Dosis Permukaan dalam 1 MBq pada Ketiga Titik

    Pengukuran .

    36 Tabel.4.8 Perbandingan Waktu Tinggal Dengan Penelitian Lain .. 41 Tabel 4.9 Perbandingan antara Rentang Dosis Hasil Penelitian dengan

    Batasan ICRP 103 ..

    43 Tabel 4.10 Kemungkinan Terjadinya Kasus Kanker dari Pemeriksaan

    Bone Scan ..

    43 Tabel 4.11 Perbandingan Hasil Penelitian ini Dengan Penelitian Lain ... 45 Tabel 4.12 Perbandingan Dosis Permukaan setelah 6, 9, 48 dan 60 jam.. 47

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • xiii

    DAFTAR LAMPIRAN

    Lampiran 1 Hasil Observasi CT Scan... 53 Lampiran 2 Hasil Perhitungan Faktor Konversi Laju Cacah Menjadi

    Aktivitas . 57

    Lampiran 3 Aktivitas Tcm yang Disuntikkan Kepada Pasien ... 59 Lampiran 4 Tabel dan Kurva Hasil Perhitungan .. 60 Lampiran 5 Aktivitas Kumulatif Pada Organ .. 100 Lampiran 6 Aktivitas Kumulatif dan Waktu Tinggal 99Tcm dalam

    Organ ..

    101 Lampiran 7 Perhitungan Nilai S. 106 Lampiran 8 Hasil Perhitungan Dosis Internal Organ ... 107 Lampiran 9 Hasil Perhitungan Dosis Permukaan .. 113 Lampiran 10 Waktu Terjadinya Aktivitas Maksimum pada Setiap Organ 115 Lampiran 11 Perbandingan Waktu Pengamatan dalam Penelitian ini

    dengan Waktu Pada Saat Aktivitas Mendekati Aktivitas Latar ..

    121 Lampiran 12 Perbandingan Hasil Penelitian ini dengan Hasil

    Ekstrapolasi

    122 Lampiran 13 Demografi Pasien dalam Penelitian ini .... 123 Lampiran 14 Persetujuan Tindakan Medis . 125

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 1 Universitas Indonesia

    BAB 1

    PENDAHULUAN

    1.1 Latar Belakang

    Untuk memastikan keselamatan penggunaan radionuklida yang digunakan dalam pemeriksaan kedokteran nuklir, sangat perlu untuk mengevaluasi dosis radiasi yang diterima oleh pasien. Dosis radiasi ini berasal dari radionuklida yang berada di dalam tubuh, karenanya disebut dengan dosis internal. Berbeda dengan dosis yang diterima dari sumber radiasi yang berada di luar tubuh seperti sinar-X, dosis internal tidak akan pernah dapat diukur secara langsung, karenanya dosis internal dihitung dari asumsi-asumsi dan prosedur standar. Metode yang umum digunakan untuk menghitung dosis internal adalah metode yang dikembangkan oleh komite masyarakat kedokteran nuklir yaitu Medical Internal Radiation Dosimetry (MIRD).

    Berdasarkan analisis yang dilakukan oleh UNSCEAR (United Nations Scientific Committee on the effect of Atomic), pemeriksaan bone scan merupakan jenis pemeriksaan diagnostik kedokteran nuklir yang mempunyai kontribusi terbesar terhadap jumlah total tahunan pemeriksaan kedokteran nuklir disusul oleh thyroid scan dan cardiovasculer [12].

    Dalam pemeriksaan bone scan, radionuklida yang digunakan adalah Technitium-99m (99Tcm) dengan senyawa kimia pembawanya adalah MDP (methylene diphosponate). MDP sebagai senyawa kimia pembawa akan membawa 99Tcm mengikuti metabolisme tubuh menuju organ tulang. Aktivitas 99Tcm yang disuntikkan ke pasien pada pemeriksaan bone scan cukup tinggi yaitu 10 - 20 mCi atau sekitar 320 MBq - 740 MBq, jika dibandingkan dengan pemeriksaan renogram yang hanya sekitar 3 mCi atau 111 MBq. Pemeriksaan bone scan merupakan pemeriksaan rutin yang dilakukan pada setiap pasien post kanker untuk mengetahui penyebaran sel kanker pada tulang rangka secara dini dan juga untuk pasien kanker yang telah diduga terjadi metastase pada tulang. Selain itu

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 2

    Universitas Indonesia

    pemeriksaan bone scan juga dilakukan pada pasien yang menderita kelainan pada tulang karena infeksi atau fraktur. Karena pemeriksaan bone scan merupakan pemeriksaan yang rutin dengan aktivitas 99Tcm yang cukup tinggi maka dianggap perlu untuk mengetahui dosis internal organ dan waktu tinggal 99Tcm di dalam organ pada pemeriksaan bone scan. Selain itu perlu juga diketahui dosis permukaan untuk keperluan proteksi radiasi.

    Dalam model biokinetik 99Tcm MDP yang disuntikkan melalui vena kemudian mengikuti metabolisme tubuh, masuk ke dalam jantung, selanjutnya dipompakan dari jantung ke seluruh tubuh, akan ditahan di dalam tulang rangka sebanyak 50 % dan kemudian diekskresikan 50% ke dalam kandung kemih melalui sistem ginjal[5][8]. Untuk itu organ yang diamati dalam penelitian ini adalah tulang rangka, jantung, ginjal, kandung kemih dan total tubuh.

    Pada prinsipnya karena pemeriksaan bone scan ditujukan agar pasien memperoleh manfaat langsung, maka dosis pasien tidak dibatasi. Tetapi setiap pemeriksaan sebaiknya mengikuti prinsip dasar yang diberikan oleh ICRP bahwa semua dosis radiasi harus diusahakan as low as reasonably achievable (ALARA). Artinya dosis pasien diusahakan rendah, tetapi tidak sampai mengganggu tujuan untuk memperoleh diagnosa optimal yang diperlukan pasien [11], [12].

    1.2 Rumusan Masalah

    Pemeriksaan bone scan merupakan pemeriksaan rutin secara berkala yang dilakukan pada setiap pasien post kanker, pemeriksaan wajib untuk pasien dengan kasus metastase dan juga pemeriksaan pendahuluan bagi pasien menderita kanker untuk melanjutkan ke tahap tindakan selanjutnya. Mengingat pemeriksaan bone scan menggunakan radiofarmaka dengan aktivitas tinggi, ditambah lagi kemungkinan individu menjalani pemeriksaan lebih dari satu kali, maka dosis internal pada berbagai organ penting untuk diketahui. Begitu pula dosis permukaan perlu diketahui untuk proteksi radiasi.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 3

    Universitas Indonesia

    1.3 Batasan Penelitian

    Penelitian ini dibatasi pada pembahasan mengenai evaluasi terhadap dosis di permukaan tulang rangka, sumsum tulang, jantung, ginjal, kandung kemih dan total tubuh pada pemeriksaan bone scan dan membahas waktu tinggal 99Tcm di dalam organ-organ tersebut, selain itu juga membahas dosis permukaan pada pasien. Untuk perhitungan dosis internal menggunakan metode Medical Internal Radiation Dosimetry (MIRD).

    1.4 Tujuan Penelitian

    Tujuan penelitian ini adalah menentukan dosis internal yang diterima oleh permukaan tulang rangka, sumsum tulang, jantung, ginjal, kandung kemih dan total tubuh berdasarkan citra kedokteran nuklir pada pemeriksaan bone scan dengan radiofarmaka 99Tcm MDP dan mengetahui waktu tinggal 99Tcm di dalam organ tersebut. Selain itu dengan melalui pengukuran dosis pada titik permukaan tubuh tertentu dengan menggunakan TLD akan diperoleh informasi mengenai dosis permukaan.

    1.5 Manfaat Penelitian

    Penelitian ini bermanfaat bagi unit kedokteran nuklir sebagai masukan mengenai dosis yang diterima organ dalam pemeriksaan bone scan. Disamping itu juga dapat diketahui waktu tinggal 99Tcm dalam tubuh dan tulang rangka, jantung, ginjal dan kandung kemih pada pemeriksaan bone scan. Begitu pula dengan diketahuinya dosis permukaan maka dapat melakukan tindakan optimisasi proteksi radiasi terhadap masyarakat di sekitar.

    Sedangkan bagi pasien dapat mengetahui dosis organ secara kumulatif atau secara tunggal karena pemeriksaan bone scan merupakan pemeriksaan rutin

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 4

    Universitas Indonesia

    secara berkala yang dilakukan oleh pasien yang telah menderita kanker. Dengan demikian dosis yang diterima organ dapat dibandingkan dengan batasan yang dipublikasikan oleh ICRP nomor 103.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 5 Universitas Indonesia

    BAB 2 TINJAUAN PUSTAKA

    2.1. Kamera Gamma

    Kamera gamma merupakan peralatan untuk mencitrakan distribusi radionuklida secara statik atau dinamik pada pemeriksaan in vivo kedokteran nuklir sehingga nantinya dapat diketahui jumlah radionuklida yang mengendap di dalam suatu organ. Gambar 2.1 memperlihatkan skema kamera gamma dan peralatan sehingga didapatkan suatu citra dalam kedokteran nuklir. Kolimator pada kamera gamma berfungsi untuk mengarahkan radiasi sinar gamma yang masuk ke dalam kristal scintilasi (NaI(Tl)). Sinar yang dipancarkan di dalam kristal berjalan ke semua arah dan di deteksi oleh array Photo Multiplier Tube (PMT) dan kemudian diubah ke dalam bentuk signal elektronik. Sistem penjumlahan menggabungkan sinyal ke dalam posisi sinyal x dan y dengan mencari centroid distribusi cahaya. Sinyal-sinyal ini harus dinormalisasi di sirkuit rasio yang membagi mereka dengan sinyal energi. Sinyal yang diproses lebih lanjut hanya sinyal yang masuk ke dalam rentang energi sesuai dengan energi sinar gamma dari radionuklida yang dipilih. Akhirnya informasi posisi x dan y diproses digunakan untuk membentuk gambar (kejadian per kejadian) dari distribusi radionuklida baik pada tampilan analog sebagai CRT atau dalam memori digital [27].

    Kolimator Parallel hole umum digunakan untuk kedokteran nuklir akhir-akhir ini, mempunyai sensitifitas yang lebih tinggi daripada kolimator pin hole, mempunyai field of view yang konstan sama dengan diameter scintilasi kamera [27].

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 6

    Universitas Indonesia

    Gambar 2.1. Skema Kamera Gamma [23] Telah diolah kembali dari http://www.nuclearonline.org/PI/BRACCO%20MDP%20doc.pdf

    2.2. Radiofarmaka yang Digunakan

    Radiofarmaka yang digunakan dalam kedokteran nuklir harus mudah diproduksi, tidak mahal, tersedia untuk semua pengguna, mempunyai waktu paruh pendek dan tidak toksik. Waktu paruh sangat pendek berguna untuk pemeriksaan yang memerlukan aktivitas yang cukup tinggi. Radiofarmaka terkumpul dalam organ yang akan diperiksa melalui berbagai mekanisme seperti penghalang

    kristal detektor

    komponen kamera gamma Photo Multiplier Tube

    komputer dan elektronik

    kolimator

    citra yang tertampil di

    layar komputer

    lead housing memastikan hanya sinar gamma dari pasien yang

    terdeteksi

    peralatan kamera gamma

    elektronik dan komputer

    kolimator memberikan citra yang tajam melalui seleksi sinar gamma yang hanya dapat

    melewati kolimator

    setiap sinar gamma diubah mejadi cahaya

    sensor mengubah sinar menjadi signal elektronik

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 7

    Universitas Indonesia

    kapiler, pagositosis, transportasi aktif, pertukaran ion dan lokalisasi secara farmakologi [34].

    Radiofarmaka yang digunakan dalam pemeriksaan bone scan adalah radionuklida 99Tcm dengan senyawa kimia pembawa methylene diphosponate (MDP). Technitium-99m (99Tcm)-MDP cepat di hilangkan dari dalam darah dan selanjutnya sebagaian besar terakumulasi di dalam sistem rangka. Mekanisme uptake adalah pertukaran ion dan chemisorption (serapan kimia) dalam matrik inorganic tulang, dalam ionic hydroxyapatite (Ca10(PO4)6(OH)2). Kelompok phosphate dari permukaan matrik tulang bereaksi dengan kelompok PO3H2 dari MDP yang terikat dengan Technitium. Kemudian hasil reaksi pertukaran ion ini terlihat dari aktivitas 99Tcm di dalam matrik tulang [33]. Secara signifikan jumlah terkecil dari radiofarmaka yang disuntikkan ketubuh pasien, diikat oleh protein plasma darah yang menghasilkan latar seluruh tubuh yang rendah. Radiofarmaka yang tidak terikat oleh plasma darah tetapi terdistribusi di semua organ akan diekskresikan melalui urin, sedangkan ekskresi melalui sistem hepatobilliary biasanya diabaikan. Pemberian 99Tcm-MDP dikeluarkan dari dalam darah ada tiga langkah yaitu fase cepat, dengan T1/2 adalah 3,5 menit, fase moderat dengan T1/2 adalah 27 menit dan fase lambat dengan T1/2 adalah 144 menit. Dalam fase cepat, 99Tcm-MDP dibersihkan dari darah ke daerah extravascular. Fase moderat ekuivalen dengan proses uptake oleh tulang, dalam fase lambat 99Tcm-MDP terikat ke plasma protein dari darah. Uptake tulang terhadap 99Tcm-MDP pada 1 sampai 2 jam setelah penyuntikan menunjukkan nilai tertinggi, dan selanjutnya 99Tcm-MDP diekskresikan melalui urin [33]. Technitium-99m (99Tcm) akan terbentuk di dalam generator sebagai akibat peluruhan 99Mo sebagai radionuklida induk dengan memancarkan sinar beta, sedang 99Tcm selanjutnya akan meluruh menjadi 99Tc dengan memancarkan sinar gamma dengan waktu paruh 99Tcm adalah 6 jam. 99Tc merupakan radioisotop yang memiliki waktu paruh sangat panjang (2,13x105 tahun) akan meluruh dengan memancarkan sinar beta menjadi 99Ru yang stabil. Lebih jelasnya reaksi peluruhan dapat dilihat sebagai berikut [34].

    RuTcTcMo m 99439943

    9943

    9942

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 8

    Universitas Indonesia

    Jumlah aktivitas 99Tcm yang dihasilkan dari generator 99Mo tergantung pada selang waktu dari elusi terakhir. Kira-kira 44% dari maksimum 99Tcm yang didapat setelah 6 jam dari elusi terakhir dan 87% setelah 24 jam dari elusi terakhir. Untuk 99Tcm setelah dielusi (berada di luar generator) akan meluruh sesuai dengan konstanta peluruhannya dengan waktu paruh 6 jam. Tabel 2.1 memperlihatkan waktu elusi yang baik untuk 99Tcm [35].

    Tabel 2.1. Persen Aktivitas 99Tcm Berdasarkan Waktu Elusi [35]

    Waktu elusi (jam)

    Aktivitas 99Tcm (% dari aktivitas 99Mo)

    1 9,8 2 18 3 26 4 32 5 39 6 44 7 49 8 54 9 58

    10 61 11 65 12 68 18 80

    24 87

    2.3. Dosis Radiasi Internal

    Dosis radiasi internal tidak bisa diukur, tetapi harus dikalkulasi berdasarkan pada pengukuran atau estimasi intake atau estimasi kuantitas aktivitas

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 9

    Universitas Indonesia

    sumber di dalam organ atau jumlah yang dieliminasi dari tubuh [26]. Perhitungan dosis radiasi internal dimulai dengan definisi dosis serap, yaitu energi (joule atau erg) yang terdeposit per unit massa. Dalam perhitungan terdapat beberapa asumsi, pertama diasumsikan bahwa deposit radionuklida (yang diekspresikan sebagai aktivitas dalam Ci atau Bq) terdistribusi seragam melalui massa jaringan dari organ sumber. Kedua, radionuklida memancarkan energi ketika di dalam organ sumber S yang diserap oleh organ target T yang disebut dengan fraksi yang terserap AF(TS). Organ sumber juga bisa sebagai organ target, dan jika yang terdeposit adalah radionuklida yang memancarkan sinar murni alfa dan beta, radiasi hanya diserap oleh organ target dan semua energi terdeposit di dalam organ target itu sendiri AF(TS) = 1,0. Untuk sinar-X dan sinar Gamma, AF(TS) umumnya akan lebih kecil dari 1 dan akan bervariasi tergantung pada energi photon dan massa dari organ sumber dan organ target [26].

    Fraksi-fraksi yang terserap ini dapat dihitung dengan menerapkan metode monte carlo pada interaksi-interaksi dan kemungkinan foton atau elektron setelah partikel-partikel tersebut dipancarkan dari radionuklida yang diendapkan.

    Gambar 2.2. Hubungan Fisis yang Mungkin antara Organ Sumber (S) dan Organ Target (T)

    Telah diolah kembali dari buku Introduction to Health Physics karangan Herman Chember

    S=T

    S=T S

    S=T

    T

    S=T

    S S=T

    T S=T

    S

    S=T

    T

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 10

    Universitas Indonesia

    Dalam penyelesaian dengan menggunakan metode monte carlo, foton-foton yang tersimulasi secara tersendiri diikuti dalam suatu komputer dari interaksi yang satu ke interaksi berikutnya. Karena radionuklida diasumsikan bersifat tersebar secara merata diseluruh volume tertentu, dan karena transformasi radioaktif merupakan suatu proses random (acak) yang terjadi pada suatu angka menengah yang bersifat karakteristik bagi suatu isotop tertentu, maka kita dapat memulai proses tersebut dengan mengajukan suatu transformasi radioaktif secara acak (baik dalam ruang dan waktu dalam kendala-kendala batas volume serta konstanta laju transformasi yang diketahui dari radionuklida). Untuk sembarang transformasi ini, kita mengetahui besarnya energi radiasi yang dipancarkan, titik awalnya, serta arah awalnya. Karena jumlah energi awal dari partikel-partikel ini diketahui, maka energi pancaran yang diserap oleh jaringan target dapat dihitung [6]:

    sumberolehndipancarkayangenergiettolehdiserapyangenergi

    terserapyangFraksi arg== (2.1)

    Karena lintasan bebas rata-rata dari foton biasanya cukup besar relatif terhadap dimensi organ dimana isotop pemancar foton tersebar, maka fraksi foton yang terserap selalu kurang dari 1 (satu). Untuk radiasi yang bersifat tidak menembus, fraksi yang terserap biasanya satu atau nol, yang tergantung pada apakah organ sumber dan organ target merupakan organ yang sama atau berbeda.

    Dalam perhitungan dosis internal, angka pancaran energi oleh radionuklida dalam sumber tersebut dalam sembarang waktu yang dibawa oleh partikel ke-i dinyatakan dengan [6]:

    (2.2)

    Xei adalah angka pancaran energi dalam satuan J/det, As merupakan aktivitas dalam sumber dalam satuan Bq, Ei adalah energi partikel ke-i dalam satuan MeV, sedangkan ni adalah jumlah partikel jenis ke-i per peluruhan.

    sec/106.1/106.1///1

    13

    13

    JnEAXMeVJtpartnpartMeVEBqtpsBqAX

    iisei

    iisei

    =

    =

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 11

    Universitas Indonesia

    Jika fraksi energi yang dipancarkan yang terserap oleh target tersebut disebut i, maka jumlah energi yang terserap oleh target karena adanya emisi dari sumber tersebut dinyatakan dengan [6]:

    det/106,1 13 JnEAXX iiisieiei == (2.3)

    Karena 1 gray bersesuaian dengan penyerapan 1 joule per kg, maka angka dosis dari partikel ke-i terhadap target yang beratnya m kilogram dinyatakan dengan:

    kgmGykgJ

    JnEAD iiisi

    =

    1

    det/106.1 13 &

    (2.4)

    Jika kita menganggap

    det106.1 13

    BqGykg

    En iii =

    (2.5)

    Kemudian persamaan dapat ditulis sebagai berikut

    det/Gym

    AD ii

    s

    i = & (2.6)

    i merupakan angka dosis dalam suatu massa jaringan homogen yang tak berhingga besarnya yang memuat suatu radionuklida yang tersebar secara merata

    dengan konsentrasi 1 Bq/kg. Nilai-nilai numeris bagi i untuk masing-masing radiasi yang ditimbulkan oleh radionuklida dalam suatu massa jaringan yang tak berhingga besarnya dimasukkan dalam bagian Data Masukan pada skema peluruhan serta parameter-parameter nuklir untuk dipergunakan dalam penafsiran

    dosis radiasi yang telah dipublikasikan oleh Komite Dosis Radiasi Internal Medis (MIRD) dari Lembaga Kedokteran Nuklir. Dengan mempertimbangkan semua tipe partikel yang dipancarkan dari sumber tersebut, maka angka dosis bagi organ target tersebut adalah [6]:

    iis

    m

    AD = & (2.7)

    Karena merupakan suatu fungsi dari As yang mana As merupakan suatu fungsi

    waktu, maka juga merupakan suatu fungsi waktu. Dosis total yang disebabkan

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 12

    Universitas Indonesia

    oleh peluruhan lengkap dari radionuklida yang terendap, didapat dengan mengintegrasi angka dosis terhadap waktu [6]:

    ==

    00

    )()( dttAm

    dttDD sii

    & (2.8)

    Jika kita menyebut integral waktu dari radioaktivitas yang diendapkan sebagai aktivitas kumulatif ,

    =

    0

    )(~ dttAA s (2.9)

    maka dosis total bagi organ target dapat dinyatakan dengan [6]

    = iim

    AD ~

    (2.10)

    Tiga faktor dalam menentukan dosis radiasi internal adalah aktivitas radionuklida yang digunakan, energi dan massa dari organ dimana radionuklida tersebut mengendap [1,2,3,13].

    2.4. Metode MIRD

    Radionuklida buatan mulai tersedia untuk kedokteran pada akhir tahun 1930 dan 1940, dan metode perhitungan dosis serap jaringan juga mulai dikembangkan pada tahun-tahun tersebut. Pada tahun 1948, Marinelli dkk, mempubilkasikan tiga artikel tentang dosimetri radionuklida, makalah ini merupakan tanda dimulainya dosimetri radiasi modern dalam kedokteran nuklir. Akhir tahun 1948 ada beberapa kontribusi pada dosimetri radionuklida, dengan ringkasan penting oleh beberapa nama penting dalam fisika medis diantaranya L.H. Gray and W.V. Mayneord di United Kingdom dan R.D. Evans, G. Failla, L.D. Marinelli dan E.H. Quimby di United State, semua kontibusi mengikuti pendekatan dasar Marinelli dkk. Pada tahun 1964 dan 1965 pendekatan marinelli berkontribusi dalam dua artikel yang dibuat oleh Ellet dkk, mereka mendefinisikan fraksi serapan sebagai fraksi energi yang dipancarkan oleh sumber sinar gamma yang diserap dalam volume atau jaringan tertentu. Mereka melakukan perhitungan montecarlo untuk sumber foton berbagai energi dan untuk

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 13

    Universitas Indonesia

    volume organ target berbagai ukuran dan bentuk. Ini merupakan aplikasi pertama metode montecarlo dalam perhitungan dosimetri radionuklida. Konsep fraksi serapan yang dikerjakan oleh Ellet dkk menyederhanakan persamaan dosimetri. Distimulasi oleh Ellet dkk, Loevinger dan Berman mengakui bahwa persamaan untuk dosimetri internal dapat dirumuskan secara umum. Pada tahun 1968 mereka di rekrut sebagai anggota baru Komite Dosis Radiasi Internal Medis (MIRD) dan skema MIRD yang pertama kali dipublikasikan dalam MIRD pamplet no.1[22] .

    Ellet dkk menggunakan persamaan yang terkait dengan fraksi serapan dosis serap, dan persamaan tersebut merupakan titik awal dari perkembangan metode MIRD. Persamaan dosis serap untuk sinar gamma dapat ditulis dalam persamaan MIRD seperti berikut [22]:

    ( ) ( ) =i v

    iis

    m

    svAsvD

    ~

    (2.11)

    ( )svD adalah dosis serap rata-rata untuk volume v dari radionuklida dalam sumber s, symbol s menunjukkan integral kurva waktu-aktivitas yang dalam metode MIRD disebut aktivitas kumulatif. s merupakan jumlah total transformasi nuklir di dalam sumber selama waktu yang dikehendaki. i menunjukkan energi radiasi jenis i yang dipancarkan pertransformasi inti, i merupakan fraksi serapan untuk radiasi i yang dipancarkan oleh sumber dan diserap oleh target v dan mv massa target v. Kemudian Ellet dkk menghilangkan simbol gamma pada persamaan diatas menjadi.

    ( ) ( ) =i v

    iis

    m

    svAsvD

    ~ (2.12)

    Persamaan ini menunjukkan dosis serap ke volume target v dari semua radiasi oleh organ sumber apapun jenis radiasinya. Agar persamaan tersebut berlaku secara umum bukan saja untuk organ target yang mempunyai volume tetapi juga untuk organ target berbentuk titik, garis atau permukaan maka dibuat suatu istilah fraksi serapan jenis yang didefinisikan sebagai fraksi serapan dan massa target seperti persamaan dibawah ini[22].

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 14

    Universitas Indonesia

    ( ) ( )vm

    svsv

    = (2.13)

    Dalam MIRD, fraksi serapan jenis dapat ditulis seperti ( )hk rr sebagai fraksi dari serapan energi per unit massa pada daerah organ target rk dari berbeagi organ sumber rs. Sehingga dosis serap rata-rata pada target dapat ditulis lebih umum seperti berikut [22].

    ( ) ( ) =i

    hkiihhk rrArrD~

    (2.14)

    Persamaan 2.14 adalah persamaan penuh dalam metode MIRD untuk dosis organ target rk dari radiasi i yang dipancarkan oleh organ sumber rh [22]. Pada tahun 1988 Loevinger dkk menyederhanakan persamaan 2.14 menjadi [1,2]:

    SASAD == 0.~

    (2.15)

    Aktivitas kumulatif () diwakili oleh daerah yang berada di bawah kurva pada Gambar 2.3. Aktivitas kumulatif tergantung pada dua faktor yaitu jumlah aktivitas maksimum pada waktu tertentu (A0) dan waktu tinggal radionuklida dalam tubuh atau organ yang diteliti (). Sehingga karakteristik faktor fisika dan biologi akan mempengaruhi aktivitas kumulatif [1,2,3,19,22].

    Gambar 2.3 Kurva Aktivitas Kumulatif

    aktivitas

    waktu

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 15

    Universitas Indonesia

    Satuan aktivitas kumulatif yang digunakan adalah Ci-jam, jika aktivitas dalam satuan Bq dan waktu dalam satuan detik maka aktivitas kumulatif akan mempunyai satuan Bq-detik. Faktor S merupakan kombinasi dari beberapa faktor, massa organ target, jenis dan jumlah ionisasi radiasi yang dipancarkan perpeluruhan, dan kombinasi fraksi dari pancaran radiasi yang mencapai dan yang diserap organ sumber dan organ target [2]. Umumnya faktor S diberikan dalam tabel untuk radionuklida yang umum digunakan dalam diagnostik atau terapi. Dalam MIRD Pamplet No.11, nilai S ini sudah ditabulasikan untuk 117 radionuklida dan 20 organ sumber dan organ target[13]. Jika aktivitas kumulatif dapat diestimasi, dosis serap untuk organ target dapat ditentukan dengan persamaan berikut.

    =h

    rhrkhrhrk SAD )()(~

    (2.16)

    Sigma dalam persamaan 2.16 merupakan jumlah dosis serap yang diperkirakan dapat diterima oleh suatu organ target, karena organ target (rk) dapat menerima radiasi yang berasal dari beberapa organ sumber (rh) [13,22].

    Sesuai persamaan 2.15 waktu tinggal () dari radionuklida dalam organ sumber didefinisikan sebagai berikut [2,3,22].

    0

    ~

    AA

    = (2.17)

    Karena itu waktu tinggal () radionuklida dapat dikatakan umur rata-rata atau umur efektif dari radionuklida yang terendap di dalam organ dan perlu diingat bahwa waktu tinggal radionuklida memperhitungkan peluruhan fisika dan metabolisme biologi.

    Metode MIRD ini secara siknifikan memperbaiki metode sebelumnya yang direkomendasikan oleh ICRP dalam publikasinya nomor 2 tahun 1959. Meskipun demikian bukan berarti MIRD sempurna tetapi MIRD juga mempunyai batasan, asumsi dan penyederhaan dalam perhitungan, diantaranya radionuklida diasumsikan terdistribusi secara merata pada organ sumber, deposisi energi setara dengan seluruh massa dari organ target, untuk memperkirakan anatomi manusia digunakan geometri dan interkoneksi antara satu organ dengan organ lain dalam

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 16

    Universitas Indonesia

    bentuk sederhana, fantom menggunakan referensi manusia dewasa, remaja, anak-anak yang mendekati dimensi fisik pada individu tertentu, setiap organ diasumsikan mempunyai komposisi dan densitas yang homogen, radiasi bremsstrahlung diabaikan dan energi rendah foton serta semua partikel radiasi diasumsikan diserap secara lokal [27]. Meskipun demikian metode MIRD ini cukup akurat karena mempunyai model yang tetap dan perhitungan dapat dibuat setepat yang diinginkan, fraksi serapan jenis atau fraksi serapan yang dihitung dengan montecarlo, dalam prakteknya batasan ketepatan diatur dengan standar deviasi dari fraksi serapan selama perhitungan. Nama model berhubungan dengan nama organ sehingga dapat membandingkan hasil dosis serap dengan respon klinis.

    2.5. Dosis Efektif Ekivalen

    Untuk mengukur atau mengetahui efek biologi dari radiasi, publikasi ICRP nomor 2 memperkenalkan konsep dosis ekivalen yang didefinisikan sebagai berikut [36].

    NQDH T = (2.18) Dalam hubungan ini, dosis serap DT diukur dalam rads atau Grays dan keefektifan dosis serap ini dalam jaringan atau organ dimodifikasi oleh faktor kualitas Q dan factor kerusakan N. Q menunjukkan relative biological effectiveness (RBE). N adalah relatif faktor kerusakan yang ditunjukkan melalui distribusi spasial dari radionuklida. Sebagai contoh faktor kualitas Q untuk radiasi alfa adalah 10 dan untuk radiasi gamma adalah 1. N mempunyai nilai 1 untuk distribusi spasial yang seragam, nilai 5 untuk distribusi spasial yang tidak seragam seperti radium dalam tulang. Semenjak RBE tergantung kepada LET (Linear Energy Transfer) maka sangat beralasan menyatakan bahwa LET menunjukkan efektifitas biologi dari radiasi [29,36]. Untuk N, faktor kerusakan distribusi spasial dikaitkan dengan konsep Spesific Effective Energy (SEE) yang direkomendasikan oleh publikasi ICRP nomor 26 adalah 1. Rekomendasi ICRP 103 untuk Faktor kualitas radiasi diberikan dalam Tabel 2.2 [9].

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 17

    Universitas Indonesia

    Tabel 2.2 Rekomendasi ICRP 103 untuk Faktor Kualitas Radiasi

    Jenis Radiasi Faktor Kualitas (Q)

    Sinar X, sinar Gamma, partikel beta, dan elektron 1 Netron termal 10 Netron cepat, proton, partikel alfa. 20

    Dosis efektif ekivalen (HE) diperoleh dari perkalian dosis ekivalen (HT) dengan faktor bobot jaringan (WT) seperti persamaan berikut[1,6].

    TTE HWH = (2.19)

    WT yang merupakan faktor bobot jaringan menunjukkan resiko organ terkena efek stokastik atau resiko kanker dan efek non stokastik. Faktor bobot jaringan yang direkomendasikan oleh ICRP 103 [3,9] diberikan dalam Tabel 2.3.

    Tabel 2.3. Rekomendasi Faktor Bobot Jaringan

    Jaringan WT WT

    Sumsum tulang (merah), usus besar, paru-paru, lambung, payudara, remainder tissues*

    0,12 0,72

    Gonads 0,08 0,08 Kandung kemih, Oesophagus, hati, tiroid 0,04 0,16 Permukaan tulang, otak, kelenjar ludah, kulit 0,01 0,04

    Total 1,00

    *Remainder tissue: Adrenal, daerah Extrathoracic (ET), Kandung empedu, Jantung, Ginjal, Lymphatic nodes, Otot, mukosa mulut, Pankreas, Prostat, usus halus, spleen, Thymus, Uterus/leher rahim.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 18 Universitas Indonesia

    BAB 3 METODE PENELITIAN

    3.1. Peralatan, Bahan dan Penentuan sampel

    Peralatan utama yang digunakan dalam penelitian ini adalah 1 unit kamera gamma merk SkyLight Philips milik RSPP Pertamina Jakarta dan Pegasys Blade dari ADAC yang terintergrasi ke unit kamera gamma untuk melakukan proses citra, kalibrator dosis radionuklida merk Capintec CRC 15R S/N 158459 dengan tipe dosimeter ionisasi chamber untuk mengukur aktivitas sumber radiasi 99Tcm, fantom acrylic perpex untuk menentukan faktor atenuasi jaringan. Dosimeter Thermo Luminisence Dosimetry (TLD), type TLD 100, produksi Harshaw digunakan untuk mengukur dosis permukaan dekat organ spesifik antara lain sternum, ginjal dan kandung kemih.

    Gambar. 3.1 Kamera Gamma Merk SkyLight - Philips

    detektor atas

    detektor bawah

    konsul monitor

    meja pemeriksaan

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 19

    Universitas Indonesia

    Sesuai dengan penggunaan klinis radionuklida yang digunakan adalah 99Tcm yang dielusi dari generator 99Mo produksi Batan Teknologi Indonesia dan senyawa kimia pembawa MDP buatan dari GE Healthcare United Kingdom.

    Sampel dipilih dari pasien pemeriksaan bone scan dengan kriteria usia di atas 20 tahun, tidak hamil, tidak sedang menyusui dan tidak menderita penyakit atau kelainan jantung. Jumlah sampel ditentukan dengan menggunakan Nomogram Harry King [20]. Dengan diketahui jumlah populasi pasien bone scan kira-kira 73 orang perbulan, maka jumlah minimum untuk tingkat kepercayaan 85% dan tingkat kesalahan 15% ditentukan sebagai 0.28 x 73 = 20 orang. Demografi data pasien diberikan dalam Lampiran 13 dalam Tabel. 13.1.A dan 13.2.A.

    3.2. Metode

    3.2.1 Penentuan Faktor Konversi Organ.

    Untuk keperluan ini dilakukan observasi pada citra CT Scan dari pasien radioterapi RSPP Pertamina yang ditujukan untuk memperoleh informasi kedalaman Antero Posterior (AP) dan Postero Anterior (PA) berbagai organ bagi pasien pada umumnya. Organ yang diobservasi adalah tulang rangka, kandung kemih, ginjal dan jantung. Untuk organ tulang rangka dipilih sternum untuk atenuasi AP dan tulang belakang untuk atenuasi PA, mengingat keduanya dekat dengan permukaan kulit, sehingga faktor konversi menjadi lebih rendah dan atenuasi lebih kecil sehingga cacahan lebih tinggi.

    Kedalaman organ ditentukan dari citra irisan sagital dan axial dan dipilih pada irisan melalui pertengahan organ yang dianggap sebagai kedalaman rata-rata. Kedalaman AP dan PA organ dinyatakan sebagai rata-rata dari irisan sagital dan axial. Gambar 3.2 adalah contoh citra CT Scan irisan sagital dan axial.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 20

    Universitas Indonesia

    a b Gambar 3.2. Contoh Irisan a: sagital dan b: axial

    Selanjutnya data ini diperlukan untuk melakukan pengukuran faktor konversi dengan simulasi organ pada fantom acrylic. Fantom terbuat dari susunan lapisan acrylic perspex dengan ukuran 30 x 30 cm yang ketebalan disesuaikan dengan organ yang akan diamati. Nomor atom efektif acrylic perspex adalah 7,55 mendekati nomor atom efektif air yaitu 7,4 [25]. Posisi radionuklida dalam fantom merupakan simulasi organ dalam tubuh yang kedalaman AP dan PA mengikuti hasil observasi pada citra CT Scan. Khusus untuk simulasi total tubuh, radionuklida di dalam syringe dideteksi langsung tanpa menggunakan fantom.

    Untuk memperoleh faktor konversi laju cacah menjadi satuan aktivitas, radionuklida 99Tcm dengan aktivitas yang bervariasi 10 mCi s/d 20 mCi dengan interval 2,5 mCi di dalam syringe diletakkan pada posisi organ di dalam fantom. Selanjutnya radionuklida dalam fantom dideteksi dengan kamera gamma selama tiga menit. Hasil cacahan ditayangkan langsung pada monitor control panel. Skema pengukuran cacahan radionuklida dalam fantom dapat dilihat dalam Gambar 3.3.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 21

    Universitas Indonesia

    Gambar 3.3. Skema Posisi Fantom, Radionuklida 99Tcm dan Kamera Gamma dalam Penentuan Faktor Konversi

    3.2.2 Penentuan Dosis Internal Organ

    Persiapan radiofarmaka 99TCm MDP dilakukan oleh pelaksana RSPP Pertamina, pada umumnya setiap pasien untuk pemeriksaan bone scan memerlukan 12 mCi 17 mCi dengan volume sesuai dengan umur Molibdenum (Mo99). Pada prakteknya sebagian volume Radiofarmaka akan tertinggal di dalam syringe pada proses penyuntikan pasien. Dengan demikian aktivitas 99Tcm yang masuk ke dalam tubuh perlu dikoreksi dengan aktivitas 99Tcm yang tersisa dalam syringe.

    Pengambilan citra planar dengan mengatur waktu scanning seperti yang tercantum dalam Tabel 3.1.

    detektor bawah

    detektor atas

    Syiringe berisi 99Tcm

    meja pemeriksaan

    jarak organ ke permukaan anterior tubuh (AP) sesuai hasil observasi CT Scan

    jarak organ ke permukaan posterior tubuh (PA) sesuai

    hasil observasi CT Scan

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 22

    Universitas Indonesia

    Tabel 3.1. Jadwal Pengambilan Citra

    Sesi Waktu (detik)

    Peruntukan Citra Keterangan

    1 36 Jantung dan ginjal Sesi pertama dilakukan sesaat setelah penyuntikan dan dilakukan secara dinamik dari 36 s.d 180 detik untuk citra jantung dan ginjal.

    72 Jantung dan ginjal 108 Jantung dan ginjal 114 Jantung dan ginjal 180 Jantung dan ginjal 300 Ginjal dan kandung kemih Dilakukan secara statik 600 Seluruh tubuh Dilakukan secara statik 1500 Jantung dan ginjal Dilakukan secara statik

    2 3600 Ginjal dan kandung kemih Sesi ke dua dilakukan 1 jam setelah penyuntikan dan dilakukan secara statik 3900 Seluruh tubuh

    3 7200 Ginjal dan kandung kemih Sesi ke tiga dilakukan 2 jam setelah penyuntikan dan dilakukan secara statik 7500 Seluruh tubuh

    4 9800 Ginjal dan kandung kemih Sesi ke empat dilakukan 3 jam setelah penyuntikan dan dilakukan secara statik 10100 Seluruh tubuh

    5 14400 Ginjal dan kandung kemih Sesi ke lima dilakukan 4 jam setelah penyuntikan dan dilakukan secara statik 14700 Seluruh tubuh

    Yang termasuk Region Of Interest (ROI) adalah seluruh daerah organ yang dimaksud baik hot area maupun cold area. Cacahan dari ROI akan ditayangkan langsung secara otomatis pada layar monitor. Gambar 3.4 adalah contoh ROI untuk ginjal dan kandung kemih.

    Gambar 3.4. ROI untuk Ginjal dan Kandung Kemih

    ROI ginjal

    ROI kandung kemih

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 23

    Universitas Indonesia

    Selanjutnya aktivitas 99Tcm dalam organ (A) dikalkulasi berdasarkan nilai cacahan AP (CA) dan PA (Cp) dengan mengikuti formula berikut ini.

    ( ) ( )posteriorPanteriorA xFKCxxFKCA = (3.1)

    Aktivitas kumulatif dikalkulasi menggunakan program Maple dengan memasukkan data peluruhan sumber 99Tcm secara eksponensial.

    Aktivitas kumulatif untuk kandung kemih didapatkan dari imaging planar bukan dari perhitungan urin pasien yang seharusnya, hal ini dikarenakan metode tersebut agak sulit dilaksanakan di lapangan karena keterbatasan di rumah sakit sehingga untuk memudahkan pengambilan data maka aktivitas kumulatif kandung kemih didapat dari imaging planar dengan membuat ROI dari kandung kemih pada waktu waktu tertentu sesuai dengan jadwal scanning dalam Tabel 3.1. Dosis internal organ yang merupakan dosis serap organ berasal dari radionuklida yang berada di dalam organ itu sendiri ditambah dengan dosis yang berasal dari radionuklida yang berada di dalam organ lain dengan mengikuti metode MIRD. Untuk dosis serap permukaan tulang diperoleh dari radionuklida 99Tcm yang berada di dalam cortical bone dan trabecular bone, kandung kemih, kedua ginjal, jantung dan seluruh tubuh. Menurut ICRP no 30 [27] aktivitas kumulatif pada cortical bone dan trabecular bone adalah 50% dari aktivitas kumulatif tulang apabila radioaktif terkonsentrasi di permukaan tulang dan begitu juga dalam MIRD 11 [13] dan MIRD no.13 [14] menggunakan asumsi yang sama. Secara matematik dosis serap permukaan tulang dapat ditulis sebagai berikut.

    ( ) ( ) ( ) ( )TBBSHCBSKIDsBSBLDCBSTrabBBSCortBBSBS DDDDDDD +++++= )()(

    (3.2) ( ) ( ) ( ) ( )TBBSTBHCBSHCKidsBSKIDsBLDCBSBLDCTrabBBSBSCortBBSBSBS SASASASASASAD +++++=

    ~~~~~5,0~5,0 )()( (3.3)

    Dosis serap sumsum tulang diperoleh dari dosis pada cortical bone dan trabecular bone dan ditambah dengan dosis kandung kemih, kedua ginjal, jantung dan total tubuh, secara matematik dosis serap sumsum tulang dapat ditulis sebagai berikut.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 24

    Universitas Indonesia

    ( ) ( ) ( ) ( )TBRMHCRMKIDsRMBLDCRMTrabBRMCortBRMRM DDDDDDD +++++= )()( (3.4)

    ( ) ( ) ( ) ( )TBRMTBHCRMHCKidsRMKIDsBLDCRMBLDCTrabBRMBSCortBRMBSRM SASASASASASAD +++++=~~~~~5,0~5,0 )()(

    (3.5)

    Untuk dosis serap dinding kandung kemih diperoleh dari dosis yang berasal dari isi kandung kemih ditambah dengan dosis cortical dan trabecular bone, kedua ginjal, jantung dan total tubuh, sehingga mengikuti persamaan matematik berikut.

    ( ) ( ) ( ) ( )TBBWHCBWKIDsBWBLDCBWTrabBBWCortBBWBW DDDDDDD +++++= )()(

    (3.6)( ) ( ) ( ) ( )TBBWTBHCBWHCKidsBWKIDsBLDCBWBLDCTrabBBWBSCortBBWBSBW SASASASASASAD +++++=

    ~~~~~5,0~5,0 )()( (3.7)

    Untuk dosis serap kedua ginjal berasal dari kedua ginjal itu sendiri ditambah dengan dosis cortical dan trabecular bone, kandung kemih, jantung dan total tubuh, secara matematik dapat ditulis sebagai berikut.

    ( ) ( ) ( ) ( )TBGJHCGJKIDsGJBLDCGJTrabBGJCortBGJGJ DDDDDDD +++++= )()(

    (3.8) ( ) ( ) ( ) ( )TBGJTBHCGJHCKidsGJKIDsBLDCGJBLDCTrabBGJBSCortBGJBSGJ SASASASASASAD +++++=

    ~~~~~5,0~5,0 )()( (3.9)

    Untuk dosis serap dinding jantung yang diperhitungkan adalah dosis pada jantung itu sendiri ditambah dengan dosis yang berasal dari cortical dan trabecular bone, kandung kemih, jantung dan seluruh tubuh. Persamaan matematik dapat ditulis sebagai berikut.

    ( ) ( ) ( ) ( ) ( )TBHWHCHWKIDSHWBLDCHWTrabBHWCortBHWHW DDDDDDD +++++= )( (3.10)

    ( ) ( ) ( ) ( )TBHWTBHCHWHCKidsHWKIDsBLDCHWBLDCTrabBHWBSCortBHWBSHW SASASASASASAD +++++=~~~~~5,0~5,0 )()(

    (3.11)

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 25

    Universitas Indonesia

    Untuk dosis serap total tubuh berasal dari dosis total tubuh ditambah dengan dosis yang berasal dari cortical bone dan trabecular bone, kandung kemih, kedua ginjal dan jantung. Secara matematik dapat ditulis sebagai berikut.

    ( ) ( ) ( ) ( )TBTBHCTBKIDsTBBLDCTBTrabBTBCortBTBTB DDDDDDD +++++= )()(

    (3.12) ( ) ( ) ( ) ( )TBTBTBHCTBHCKidsTBKIDsBLDCTBBLDCTrabBTBBSCortBTBBSTB SASASASASASAD +++++=

    ~~~~~5,0~5,0 )()( (3.13)

    Nilai S untuk radionuklida yang berada di dalam permukaan tulang, kandung kemih, kedua ginjal dan seluruh tubuh menggunakan nilai yang ada di dalam tabel MIRD no.11. Sedangkan nilai S untuk radionuklida yang berada di dalam jantung di hitung dengan cara mengalikan fraksi serapan jenis dengan i dari 99Tcm yang berdasarkan referensi adalah 0,3029 [29]. Fraksi serapan jenis untuk 99Tcm dengan energi 140 KeV (0,14 MeV) didapat dari extrapolasi energi dengan fraksi serapan jenis yang terdapat di dalam tabel MIRD no.5[15].

    Selanjutnya dosis efektif ekivalen organ dapat diperkirakan sebagai perkalian dosis ekivalen (HT) dengan bobot jaringan (WT). Dosis ekivalen didapat dari perkalian dosis serap (D) dengan bobot kualitas radiasi (Q). Secara matematik dosis efektif ekivalen (HE) untuk setiap organ dapat ditulis sebagai berikut.

    organTTorganE HWH = (3.14)

    3.2.3 Pengukuran Dosis Permukaan

    Untuk keperluan proteksi radiasi dilakukan pengukuran dosis permukaan, tiga titik lokasi pengukuran TLD dipilih pada daerah depan di sternum (a) dan kandung kemih (c) dan pada daerah belakang di ginjal kanan (b), lebih jelas dapat dilihat dalam Gambar 3.5. Untuk setiap titik diletakkan 3 TLD yang sudah dikalibrasi oleh BATAN dengan foton 10,2 mmCu.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 26

    Universitas Indonesia

    Gambar 3.5. Titik Pengukuran TLD: a. daerah sternum, b. daerah ginjal kanan dan c. daerah kandung kemih

    a

    b s

    c

    depan belakang

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 27 Universitas Indonesia

    BAB 4 HASIL DAN PEMBAHASAN

    4.1 Hasil

    4.1.1 Faktor Konversi Laju Cacah menjadi Satuan Aktivitas

    Untuk mengetahui faktor konversi laju cacah menjadi satuan aktivitas radionuklida dalam organ, diperlukan informasi kedalaman organ. Dengan citra CT Scan dari 20 orang pasien telah diperoleh informasi kedalaman organ AP dan PA tulang, ginjal, kandung kemih, jantung. Hasil pengukuran dapat dilihat dalam Tabel. 4.1 dan data keseluruhan dari hasil observasi pada citra CT untuk setiap organ diberikan dalam Lampiran 1.

    Tabel. 4.1 Kedalaman Organ dari Antero Posterior dan Postero Anterior Tubuh

    ORGAN Kedalaman Organ (cm)

    AP PA

    Tulang 1,38 0,44 1,70 0,53

    Kandung Kemih 4,18 0,98 8,61 1,34

    Ginjal 11,04 1,21 3,97 0,96 Jantung 3,12 0,61 8,06 0,95

    Telah dilakukan pengukuran faktor konversi laju cacah menjadi satuan aktivitas untuk berbagai organ tertentu dengan menggunakan fantom acrylic yang ketebalannya berdasarkan data dalam Tabel 4.1. Seluruh hasil pengukuran aktivitas sumber 99Tcm dengan fantom simulasi organ tulang, kandung kemih, ginjal, jantung dan total tubuh dapat dilihat dalam Lampiran 2. Dari data dalam Lampiran 2 tersebut, diperoleh faktor konversi laju cacah dalam satuan count per

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 28

    Universitas Indonesia

    second (cps) menjadi satuan aktivitas untuk berbagai organ yang ditunjukkan dalam Tabel 4.2.

    Tabel 4.2. Faktor Konversi Laju Cacah menjadi Satuan Aktivitas

    Organ

    Faktor Konversi (mCi/cps)

    x 10-4

    AP PA

    Tulang 2,8 3,9 Kandung Kemih 4,2 9,4 Ginjal 8,6 5,2 Jantung 5,1 11,7 Total Tubuh 2,3 3,0

    4.1.2 Waktu Tinggal 99Tcm di Dalam Organ

    Aktivitas rata-rata sumber 99Tcm yang disuntikkan ke dalam tubuh 20 orang pasien pada pemeriksaan bone scan dalam penelitian ini 13,9 1,5 mCi atau dalam rentang 432 629 MBq. Data aktivitas sumber untuk masing-masing pasien dapat dilihat pada Lampiran 3 dalam Tabel 3.1.A. Hasil laju cacah (cps) pada ROI dan aktivitas hasil perhitungan berbagai organ untuk semua pasien dengan variasi waktu diberikan pada Lampiran 4 dalam Tabel 4.1.A s.d 4.20.A. Dengan data dalam tabel tersebut dibuat kurva aktivitas kumulatif sumber 99Tcm pada setiap organ untuk masing-masing pasien, yang dapat dlihat pada Lampiran 4 dalam Gambar 4.1.A s.d 4.20.A. Gambar 4.1. merupakan contoh kurva aktivitas kumulatif salah satu pasien untuk semua organ. Nilai t maksimum ditentukan dari kurva aktivitas kumulatif yang menunjukkan nilai akitivitas maksimum.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 29

    Universitas

    Indo

    nesia

    tAmax = 0,05 jam tAmax = 0,05 jam tAmax = 0,05 jam

    tAmax = 0,17 jam tAmax = 1,42 jam tAmax = 0,17 jam

    Gambar 4.1. Kurva Aktivitas Kumulatif 99Tcm dalam Berbagai Organ Salah Satu Pasien

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 30

    Universitas Indonesia

    Kemudian dengan program Excel ditentukan peluruhan eksponensial dari t maksimum sampai t akhir scanning. Contoh peluruhan eksponensial dari eliminasi 99Tcm dalam berbagai organ salah satu pasien dapat dilihat dalam Gambar 4.2.

    Gambar 4.2. Eliminasi 99Tcm di Dalam Berbagai Organ Salah Satu Pasien

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 31

    Universitas Indonesia

    Selanjutnya dengan program Maple, aktivitas kumulatif ditentukan dengan integrasi fungsi eksponensial tersebut mulai dari t maksimum sampai dengan waktu scanning terakhir. Aktivitas kumulatif dalam berbagai organ untuk ke 20 pasien dapat dilihat dalam Lampiran 5 pada Tabel 5.1.A. Dari tabel tersebut dapat dihitung waktu tinggal (residence time) 99Tcm di dalam organ yang ditunjukkan pada Tabel 6.1.A s.d Tabel 6.5.A dalam Lampiran 6. Rentang aktivitas kumulatif dan rata-rata waktu tinggal 99Tcm dalam berbagai organ dapat dilihat dalam Tabel 4.3. Grafik rata-rata waktu tinggal 99Tcm dalam berbagai organ ditunjukkan pada Gambar 4.3 dan sebaran aktivitas kumulatif dalam setiap organ untuk semua pasien diberikan pada Gambar 4.4 dalam grafik boxplot.

    Tabel 4.3. Rentang Aktivitas Kumulatif, Rata-Rata Waktu Tinggal 99Tcm dalam Berbagai Organ

    Organ Sumber Rata-rata Rentang (mCi-jam) (mCi-jam) (jam)

    Permukaan tulang 6,6 1,4 4,2 - 9,4 1,9 0,4 Kandung kemih 1,7 0,5 0,6 - 2,6 1,4 0,4 Ginjal 1,1 0,3 0,6 - 1,7 0,2 0,1 Jantung 2,0 0,4 1,3 - 2,6 0,2 0,04 Total Tubuh* 11,5 1,6 9,0 - 15,0 1,9 0,6

    *Tidak termasuk kandung kemih

    Gambar 4.3. Grafik Rata-rata Waktu Tinggal () 99Tcm dalam Berbagai Organ

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 32

    Universitas Indonesia

    Median 25%-75% 10%-90% permukaan tulang

    kandung kemihginjal

    jantungtotal tubuh

    0

    2

    4

    6

    8

    10

    12

    14

    16

    aktiv

    itas

    kum

    ula

    tif (m

    Ci-jam

    )

    Gambar 4.4. Sebaran Aktivitas Kumulatif Berbagai Organ pada Ke20 Pasien

    4.1.3 Dosis Internal

    Dosis internal yang merupakan dosis serap organ diperoleh dari perkalian aktivitas kumulatif dengan nilai S yang mengikuti persamaan 3.2 s.d 3.13. Adapun nilai S dalam perhitungan tersebut menggunakan nilai yang diberikan oleh MIRD 11 [13] (Tabel 4.4).

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 33

    Universitas Indonesia

    Tabel 4.4. Nilai S untuk Berbagai Organ Sumber dan Organ Target

    S (rad/Ci-jam) Organ Sumber Organ Target Rangka

    cortical bone

    trabecular bone

    Kandung Kemih Ginjal

    Total Tubuh Jantung

    Tulang 1,20E-05 1,00E-05 9,20E-07 1,40E-06 2,50E-06 1,60E-06*

    Sumsum tulang 4,10E-06 9,10E-06 2,20E-06 3,80E-06 2,90E-06 2,28E-06*

    Dinding kandung kemih 5,10E-07 5,10E-07 1,60E-04 2,80E-07 2,30E-06 5,86E-08*

    Ginjal 8,20E-07 8,20E-07 2,60E-07 1,90E-04 2,20E-06 1,07E-06* Total tubuh 2,00E-06 2,00E-06 1,90E-06 2,20E-06 2,00E-06 7,57E-07*

    Dinding jantung L 7,65E-07** 1,45E-06** 2,96E-08** 1,09E-06** 2,20E-06** 7,22E-05** Dinding jantung P 9,40E-07** 1,51E-06** 5,62E-08** 1,32E-06** 2,72E-06** 9,58E-05**

    *Nilai S dari ekstrapolasi energi, ditunjukkan pada Tabel 7.2.A dalam Lampiran 7. **Nilai S dari referensi nomor 30

    Nilai dosis serap dan dosis efektif ekivalen pada berbagai organ untuk semua pasien diberikan pada Tabel 8.1.A s.d Tabel 8.6.A dalam Lampiran 8. Rata-rata dosis serap untuk berbagai organ dapat dilihat dalam Tabel 4.5 dan Gambar 4.5 memperlihatkan waktu tinggal 99Tcm dan dosis serap pada berbagai organ dalam pemeriksaan bone scan pada penelitian ini dalam bentuk bagan tubuh manusia.

    Tabel 4.5. Dosis Serap dan Dosis Efektif Ekivalen Berbagai Organ

    Organ Target Dosis Serap

    Dosis Efektif Ekivalen Organ

    (mGy) (Gy/MBq) (mSv)

    Permukaan tulang 0,7 1,5 2,1 0,2 0,01 0,02 Sumsum tulang 0,6 - 1,2 1,7 0,2 0,08 0,14 Dinding kandung kemih 1,3 - 4,6 5,8 1,6 0,05 0,18 Ginjal 1,5 - 3,6 4,7 1,0 0,17 0,43 Dinding Jantung 1,2 - 2,9 4,0 0,8 0,14 0,35 Total Tubuh* 0,3 - 0,6 0,8 0,1 0,32 0,55

    * Tidak termasuk kandung kemih

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 34

    Universitas Indonesia

    Gambar 4.5. Bagan Waktu Tinggal () 99Tcm dan Dosis Serap (D) Berbagai Organ

    Sebaran nilai dosis serap berbagai organ untuk semua pasien dalam grafik box plot dapat dilihat dalam Gambar 4.6.

    Total tubuh (tidak termasuk kandung kemih) = 1,9 0,6 jam D = 0,8 0,1 Gy/MBq

    Ginjal = 0,2 0,1 jam D = 4,7 1,0 Gy/MBq

    Jantung = 0,2 0,04 jam D = 4,0 0,8 Gy/MBq

    Kandung kemih = 1,4 0,4 jam D = 5,8 1,6 Gy/MBq

    Permukaan tulang = 1,9 0,4 jam D = 2,1 0,2 Gy/MBq

    Sumsum tulang D = 1,7 0,2 Gy/Mq

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 35

    Universitas Indonesia

    Median 25%-75% 10%-90% permukaan tulang

    sumsum tulangdinding kandung kemih

    ginjaldinding jantung

    total tubuh

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    4,5

    dosis

    se

    rap

    (mG

    y)

    Gambar 4.6. Sebaran Dosis Serap Berbagai Organ pada Ke20 Pasien

    4.1.4 Dosis Permukaan

    Pemeriksaan bone scan merupakan pemeriksaan kedokteran nuklir yang menggunakan jumlah aktivitas yang tinggi, untuk itu perlu diketahui dosis permukaan pada pasien, agar dapat dilakukan tindakan proteksi radiasi terhadap masyarakat disekitar agar tidak terkena radiasi yang tidak perlu. Adapun dosis permukaan yang diperoleh dari penelitian untuk seluruh pasien dapat dilihat pada Tabel 9.1.A. dan Tabel 9.2.A.dalam Lampiran 9. Rentang dosis permukaan pada titik di daerah sternum (a), ginjal kanan (b) dan kandung kemih (c) pada 0, 1 dan 2 jam setelah penyuntikan dengan aktivitas yang disuntikkan pada pasien 446 629 MBq ditunjukkan dalam Tabel 4.6 dan rata-rata dosis permukaan per 1 MBq diberikan dalam Tabel 4.7 dan dalam bentuk bagan tubuh manusia diberikan dalam Gambar 4.7.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 36

    Universitas Indonesia

    Tabel 4.6. Rentang Dosis Permukaan pada Ketiga Titik Pengukuran dalam mGy/jam

    Titik Pengukuran

    waktu setelah penyuntikan (jam)

    0 1 2

    a 0,9 3,8 1,4 - 4,5 1,1 - 4,1 b 1,0 - 4,3 1,0 - 4,3 0,6 - 3,7 c 1,0 4,3 1,5 - 4,8 0,7 - 3,0

    Tabel 4.7. Dosis Permukaan dalam 1 MBq pada Ketiga Titik Pengukuran dalam Gy/jam per 1 MBq

    Titik Pengukuran

    waktu setelah penyuntikan (jam)

    0 1 2

    a 3,6 1,4 5,3 2,1 4,3 1,9 b 3,8 1,4 5,1 1,9 3,9 1,5 c 3,7 1,4 5,5 1,9 3,9 1,3

    Gambar 4.7. Bagan Dosis Permukaan Pada Setiap Titik Pengukuran

    a (Gy/jam per 1 MBq) 0 jam = 3,6 1,4 1 jam = 5,3 2,1 2 jam = 4,3 1,9

    b (Gy/jam per 1 MBq) 0 jam = 3,7 1,4 1 jam = 5,5 1,9 2 jam = 3,9 1,3

    c (Gy/jam per 1 MBq) 0 jam = 3,7 1,4 1 jam = 5,5 1,9 2 jam = 3,9 1,3

    depan belakang

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 37

    Universitas Indonesia

    4.2 Pembahasan

    Pemeriksaan bone scan merupakan pemeriksaan kedoktreran nuklir yang menggunakan aktivitas tinggi berkisar 10 20 mCi atau 370 MBq 740 MBq. Disamping itu pemeriksaan bone scan juga dilakukan secara berkala setiap enam bulan bagi pasien post kanker untuk mengecek adanya metastase pada tulang. Untuk itu perlu dilakukan evaluasi dosis pada pasien yang menjalani pemeriksaan bone scan. Mengingat pasien dalam kedokteran nuklir menjadi sumber radiasi maka informasi dosis permukaan pasien juga menjadi penting. Penelitian diawali dengan pengukuran kedalaman berbagai organ dalam tubuh dengan ukuran rata-rata tubuh pasien. Data kedalaman tersebut digunakan sebagai dasar pembuatan fantom guna memperoleh faktor konversi laju cacah menjadi satuan aktivitas. SPECT yang digunakan tidak dilengkapi dengan CT sehingga tidak dapat diperoleh informasi kedalaman organ di dalam tubuh, untuk mengatasi keterbatasan ini, kedalaman organ diambil dari citra CT pasien radiotherapi yang tersimpan dalam Treatment Planning System (TPS) di Rumah Sakit Pusat Pertamina

    Pada mulanya penentuan faktor konversi dirancang berasal dari sumber dengan volume sesuai volume organ, namun dengan percobaan menggunakan sumber dalam tabung suntik ternyata hasilnya sama dengan apabila sumber dalam volume sesuai dengan volume organ. Oleh karena itu penentuan faktor konversi dalam penelitian ini menggunakan sumber yang berada dalam tabung suntik yang diletakkan dalam fantom sesuai ketebalan AP dan PA organ dalam tubuh. Pada umumnya pengambilan citra pemeriksaan bone scan dilakukan satu kali pada dua jam setelah penyuntikan, untuk memperoleh data yang diperlukan dalam penelitian ini, pengambilan citra dilakukan beberapa kali sehingga perlu kerjasama khusus dengan pasien. Tidak semua pasien bersedia untuk menjadi sampel penelitian sehingga untuk pemperoleh dua puluh sampel membutuhkan empat bulan. Kalibrasi TLD yang digunakan dalam penelitian ini menggunakan sinar-X dengan HVL 10,2 mmCu, kualitas ini mendekati energi gamma yang dipancarkan oleh 99Tcm sebesar 140 KeV. Dalam penelitian ini pengamatan

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 38

    Universitas Indonesia

    difokuskan kepada waktu tinggal (residence time) 99Tcm dalam organ, dosis internal organ dan dosis permukaan.

    4.2.1 Waktu Tinggal 99Tcm-MDP Dalam Organ

    Dari penelitian ini sebagian besar 99Tcm-MDP diserap oleh tulang dan kemudian sedikit oleh ginjal dan diekskresikan melalui sistem urinaria melalui kandung kemih sebagai tempat penampungan sebelum dikeluarkan melalui uretra [8], hal ini diperlihatkan dalam penelitian ini dengan aktivitas kumulatif yang tinggi di permukaan tulang yaitu 6,6 1,4 mCi-jam dengan rentang 4,2 9,4 mCi-jam, sedangkan dalam kandung kemih 1,7 0,5 mCi-jam dengan rentang 0,6 2,6 mCi-jam, dalam ginjal 1,1 0,3 mCi-jam dengan rentang 0,6 1,7 mCi-jam. Untuk waktu tinggal 99Tcm dalam organ diperlihatkan dalam Gambar 4.3 dan Tabel 4.3, dari tabel tersebut terlihat bahwa waktu tinggal yang paling tinggi terjadi dalam permukaan tulang mendekati sama dengan total tubuh sekitar 1,9 jam dan diikuti oleh kandung kemih sekitar 1,4 jam dan yang paling rendah dalam ginjal mendekati sama dengan jantung sekitar 0,2 jam. Dalam metabolisme tubuh, 99Tcm disuntikkan melalui vena yang langsung menuju jantung, dan kemudian langsung dicurahkan kembali ke seluruh tubuh dengan kecepatan 5600 ml/menit [32]. Khusus curahan ke ginjal 1200 ml/menit [32]. Pergerakan 99Tcm sedemikian cepat dalam jantung dan ginjal, mengakibatkan waktu tinggal 99Tcm dalam kedua organ menjadi rendah begitu juga dengan waktu tinggal 99Tcm dalam kandung kemih. Berbeda dengan yang terjadi di dalam jantung dan ginjal, pergerakan 99Tcm sangat lambat dalam tulang, oleh karenanya waktu tinggal 99Tcm dalam tulang relatif jauh lebih tinggi.

    Temuan dalam penelitian ini mendukung hasil penelitian Peller dkk [24], yang menyatakan bahwa pada awalnya 99TcmMDP terakumulasi dalam jaringan lunak seperti jantung, paru-paru, liver, otot, mukosa mulut. Dalam penelitian ini diperoleh informasi jantung menyerap sumber 99Tcm maksimum pada 5 menit setelah peyuntikan dan ginjal menyerap sumber 99Tcm maksimum pada 4 menit setelah penyuntikan. Setelah sekitar 10-15 menit terjadi uptake maksimum pada kandung kemih yang menurun dengan lambat melalui uretra, begitu juga dengan

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 39

    Universitas Indonesia

    total tubuh terjadi uptake maksimum sekitar 10 - 15 menit setelah penyuntikan. Untuk tulang, uptake maksimum terjadi relatif lambat, maksimum sekitar 1 1,5 jam setelah penyuntikan yang sesuai dengan yang dinyatakan oleh ICRP 53 [8]. Pada Lampiran 10 dalam Tabel 10.1.A sampai dengan Tabel 10.6.A diberikan waktu terjadinya aktivitas maksimum pada setiap organ untuk semua pasien. Gambar 4.8 memperlihatkan grafik perbandingan waktu terjadinya aktivitas maksimum pada setiap organ dan Gambar 4.9 menunjukkan citra dinamika 99Tcm di dalam tubuh.

    Gambar 4.8. Perbandingan Waktu Terjadinya Aktivitas Maksimum pada Setiap Organ

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 40

    Universitas Indonesia

    a b c Gambar 4.9. Citra Dinamika 99Tcm di dalam Tubuh Setelah Penyuntikan.

    a. 36 Detik b. 180 Detik c. 25 Menit.

    Dalam Tabel 4.8 diberikan perbandingan waktu tinggal 99Tcm antara hasil penelitian ini dengan penelitian lain, jika dibandingkan dengan hasil penelitian lain, waktu tinggal 99Tcm dalam organ pada penelitian ini untuk beberapa organ seperti kandung kemih dan kedua ginjal mendekati sama sedangkan waktu tinggal 99Tcm dalam permukaan tulang berbeda. Perbedaan waktu tinggal 99Tcm dalam tulang antara hasil penelitian ini dengan penelitian lain diperkirakan karena perbedaan waktu pengamatan. Dalam penelitian ini pengamatan dilakukan hanya 3-4 jam setelah penyuntikan padahal pada waktu tersebut aktivitas pada tulang belum mendekati aktivitas latar, lain halnya dengan aktivitas yang ada di dalam kandung kemih, kedua ginjal dan jantung pada waktu tersebut sudah hampir mendekati aktivitas latar. Dalam Lampiran 11 Tabel 11.1.A diberikan perbandingan waktu pengamatan dalam penelitian ini dengan waktu pada saat aktivitas dalam organ mendekati nilai latar yang diperoleh dari ekstrapolasi dengan menggunakan konstanta peluruhan yang didapat dari penelitian ini, sedangkan Tabel 11.2.A dalam Lampiran 11 merupakan aktivitas latar dalam masing-masing organ. Dalam tabel 4.8, jika dibandingkan hasil ekstrapolasi dengan hasil penelitian ini terlihat bahwa waktu tinggal 99Tcm hasil ekstrapolasi untuk ginjal, jantung dan kandung kemih tidak berubah secara siknifikan, sedangkan permukaan tulang dan total tubuh terjadi kenaikan yang siknifikan dari hasil penelitian ini. Jika hasil ekstrapolasi dibandingkan dengan penelitian lain maka waktu tinggal 99Tcm hasil ekstrapolasi dalam organ ditemukan sedikit lebih

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 41

    Universitas Indonesia

    besar, hal ini disebabkan karena perbedaan metabolisme tubuh antara orang indonesia dengan orang eropa.

    Tabel 4.8. Perbandingan Waktu Tinggal (dalam jam) 99Tcm dalam Organ Sumber dengan Penelitian Lain

    Organ sumber Penelitian ini

    (2011) Extrapolasi

    (2011) MIRD 13[14]

    (1989) AAPM[30]

    (1988) ICRP 53[8]

    (1988)

    Permukaan Tulang:

    a. Trabecular bone b. Cortical bone

    1,9 0,4 4,0 0,9 1,36 1,36

    3,01

    3,01

    Kandung kemih 1,4 0,4 1,9 0,6 0,782 1,15 1,15 Kedua ginjal 0,2 0,1 0,3 0,1 0,148 0,13 Jantung 0,2 0,04 0,3 0,02 Total tubuh 1,9 0,6 2,5 0,3

    4.2.2 Dosis Internal Organ

    Dalam penentuan dosis internal atau dosis serap untuk masing-masing organ target yang diperhitungan bukan hanya dosis yang didapat dari organ target itu sendiri melainkan dosis yang berasal dari organ sumber lainnya, selain itu massa organ sumber juga termasuk dalam perhitungan. Dengan demikian dapat dimaklumi bahwa dosis serap yang tertinggi terjadi pada dinding kandung kemih 5,8 1,6 Gy/MBq, kemudian diikuti oleh ginjal 4,7 0,1 Gy/MBq, jantung 4,0 0,8 Gy/MBq, permukaan tulang 2,1 0,2 Gy/MBq, sumsum tulang 1,7 0,2

    Gy/MBq dan total tubuh 0,8 0,1 Gy/MBq (Tabel 4.5), meskipun aktivitas kumulatif tertinggi terjadi pada total tubuh, kemudian diikuti permukaan tulang, jantung, kandung kemih dan ginjal (Tabel 4.3), Gambar 4.10 memperlihatkan grafik dosis serap yang diperoleh dari penelitian ini.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 42

    Universitas Indonesia

    Gambar 4.10. Grafik Dosis Serap Berbagai Organ

    Dalam penelitian ini waktu pengamatan hanya 3-4 jam setelah penyuntikan, sedangkan pada waktu tersebut aktivitas di dalam organ belum mendekati aktivitas latar sehingga perhitungan dosis serap yang diperoleh belum optimal, untuk itu dilakukan ekstrapolasi untuk mendapatkan dosis serap yang optimal. Hasil ekstrapolasi dapat dilihat pada Lampiran 12 dalam Tabel 12.1.A.

    Dalam publikasi ICRP nomor 103 [9] disebutkan batas dosis yang menyebabkan efek terhadap jaringan untuk sumsum tulang yaitu penurunan proses pembentukan darah adalah 0,5 Gy sedangkan penyebab kematian untuk sel sumsum tulang adalah 2-3 Gy. Apabila dibandingkan dengan nilai tersebut maka sumsum tulang dalam pemeriksaan bone scan pada penelitian ini aman dari efek radiasi tersebut. Perbandingan rentang dosis yang didapat dari penelitian ini dengan nilai batas ambang diberikan dalam Tabel 4.9.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 43

    Universitas Indonesia

    Tabel 4.9. Perbandingan Rentang Dosis Serap Hasil Penelitian dengan Batasan Publikasi ICRP Nomor 103

    Organ Target

    Rentang Dosis Serap dalam Penelitian Ini

    Rentang Dosis Serap hasil ekstrapolasi

    Batas Ambang Kematian Sel (ICRP 103)

    Batas Ambang Penurunan

    Komponen Darah (ICRP 103)

    mGy mGy Gy Gy

    Permukaan Tulang 0,7 1,5 1,3 3,0 Sumsum tulang 0,6 - 1,2 1,1 2,2 2-3 0,5 Kandung kemih 1,3 - 4,6 2,8 6,1 Kedua ginjal 1,5 - 3,6 1,6 3,3 Jantung 1,2 - 2,9 2,1 2,7 Total Tubuh 0,3 - 0,6 0,5 0,9

    Dengan adanya angka koefisien risiko berdasarkan risiko kanker yang dipublikasikan oleh ICRP nomor 103 [9], dapat diketahui probabilitas kasus yang terjadi pada pemeriksaan bone scan, yang diberikan dalam Tabel 4.10. Kemungkinan organ terkena kanker untuk permukaan tulang terdapat 1 - 2 kasus dalam 100.000 orang, untuk sumsum tulang terdapat 6 - 11 kasus dalam 10.000 orang dan untuk kandung kemih terdapat 3 11 kasus dalam 10.000 orang. Dengan melihat hasil tersebut maka sekecil apapun dosis serap yang diperoleh organ kemungkinan akan terkena risiko selalu ada dan kenaikan dosis akan meningkatkan risiko.

    Tabel 4.10. Kemungkinan Terjadinya Kasus Kanker dalam Pemeriksaan Bone Scan pada Penelitian Ini.

    Organ Target

    Rentang Dosis Efektif Ekivalen dalam penelitian

    ini

    Rentang Dosis Efektif Ekivalen hasil ekstrapolasi

    Angka koefisien resiko kanker (ICRP 103)

    Kemungkin dalam 10.000 orang

    terkena kanker dari hasil ekstrapolasi

    mSv mSv kasus per 104 orang / mSv

    orang

    Permukaan Tulang 0,01 0,02 0,01 0,03 7 0,07 - 0,21 Sumsum tulang 0,08 0,14 0,12 0,26 42 5,0 - 10,9 Kandung kemih 0,05 0,18 0,06 0,25 43 2,6 10,8 Kedua ginjal 0,17 0,43 0,19 0,45 - Jantung 0,14 0,35 0,16 0,37 - Total Tubuh 0,32 0,55 0,45 0,92 -

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 44

    Universitas Indonesia

    Perbandingan dosis serap yang diperoleh dari penelitian ini dengan penelitian lain diberikan dalam Tabel 4.11 dan Gambar 4.11, jika dibandingkan dengan penelitian lain dosis serap untuk permukaan tulang, kandung kemih kedua ginjal dan total tubuh lebih rendah dari penelitian lain, sedangkan kecendrungan hasil penelitian ini dengan penelitian lain memperlihatkan dosis serap pada kandung kemih cukup tinggi. Jika dibandingkan dengan hasil penelitian yang dipublikasikan oleh Braco [31] dan Hungarian Nasional Institute of Pharmacy [33] dengan tahun penelitian 1999 dan 2009, hasil penelitian memperlihatkan perbedaan tidak terlalu jauh, meskipun dosis serap pada kandung kemih hasil penelitian braco tetap mempunyai nilai yang tinggi, hal tersebut disebabkan karena pada penelitian braco dilakukan 2 jam voiding sedangkan pada penelitian ini dilakukan 1/2 1 jam voiding. Jika dibandingkan dengan hasil penelitian yang dipublikasikan dalam MIRD 13 [14], AAPM [30] dan ICRP no.53 [8] terlihat hasil yang diperoleh dalam penelitian ini jauh lebih rendah terutama dosis serap pada permukaan tulang, hal tersebut mungkin disebabkan karena tahun penelitian yang sangat jauh berbeda yaitu MIRD 13 pada tahun 1989 dan AAPM dan ICRP no.53 pada tahun 1988 sehingga dalam metode dan peralatan yang digunakan banyak mengalami perubahan. Selain itu perhitungan dosis serap pada penelitian yang dipublikasikan dalam MIRD 13 berdasarkan pada pengukuran aktivitas dalam darah, khusus untuk kandung kemih dilakukan pengukuran pada urin dan pengosongan kandung kemih pada 2 jam dengan interval 4.8 jam, dan nilai S untuk permukaan tulang diperoleh dari johanssonsc calculation yang berbeda nilainya dengan nilai yang diberikan MIRD no.11. Sedangkan pada penelitian ini perhitungan aktivitas berdasarkan kepada citra kedokteran nuklir termasuk perhitungan dosis serap untuk kandung kemih dan nilai S untuk permukaan tulang diperoleh dari MIRD 11. Selain itu dalam penelitian ini perhitungan dosis serap hanya melibatkan lima organ sumber yaitu jantung, ginjal, kandung kemih, permukaan tulang dan total tubuh.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 45

    Universitas Indonesia

    Tabel 4.11 Perbandingan Hasil Penelitian dengan Penelitian Lain

    Organ Target Dosis Serap (Gy/MBq)

    Penelitian ini

    (2011) extrapolasi Hungarian

    (2009) Braco

    (1999) MIRD no.13

    (1989) AAPM & ICRP 53 (1988)

    Permukaan Tulang 2,1 0,2 3,4 0,7 12,2 9, 5 35 63 Sumsum tulang 1,7 0,2 2,7 0,4 2,7 7,6 5,4 9,6 Dinding kandung kemih 5,8 1,6 6,8 1,9 13,3 35,1 33 50 Kedua ginjal 4,7 0,1 5,0 1,0 1,6 10,8 8,6 7,3 Dinding jantung 4,0 0,8 4,6 0,8 - 1,6 - Total Tubuh 0,8 0,1 1,2 0,2 2,7 - - -

    0

    10

    20

    30

    40

    50

    60

    70

    do

    sis

    sera

    p (

    G

    y/

    MB

    q)

    penelitian lain

    permukaan tulang

    sumsum tulang

    dinding kandung kemih

    kedua ginjal

    dinding jantung

    total tubuh

    Gambar 4.11. Perbandingan Penelitian Ini dengan Penelitian Lain

    4.2.3 Dosis Permukaan

    Pada Tabel 4.6 dan Gambar 4.12 ditemukan bahwa dosis permukaan pada satu jam lebih tinggi dibanding dengan beberapa saat setelah penyuntikan dan 2 jam setelah penyuntikan. Kecendrungan yang sama diperoleh pada semua titik

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 46

    Universitas Indonesia

    pengukuran, hal ini sesuai dengan pergerakan dinamis 99Tcm dalam tubuh, pada saat 99Tcm disuntikkan melalui vena langsung menuju jantung, kemudian dicurahkan ke seluruh tubuh dalam waktu kira-kira 20 menit sehingga pengukuran awal pada saat penyuntikan diperoleh nilai yang rendah, sedangkan pada satu jam setelah penyuntikan, 99Tcm terdeposit di dalam tulang rangka yang tersebar di seluruh tubuh sehingga diperoleh hasil pengukuran TLD yang lebih tinggi, sedangkan pengukuran yang dilakukan pada 2 jam setelah penyuntikan, 99Tcm sudah dikeluarkan dari dalam tubuh melalui urin sehingga jumlah 99Tcm berkurang dibandingkan dengan pengukuran pada 2 jam. Dalam Gambar 4.12 terlihat bahwa nilai pada ketiga titik pengukuran (a, b dan c) pada setiap waktu pengukuran (0, 1 dan 2 jam) setelah penyuntikan diperoleh nilai yang hampir sama, hal tersebut dikarenakan adanya kontribusi radiasi yang dipancarkan oleh organ lain yang juga menangkap radionuklida 99Tcm selain organ yang paling dekat dengan titik pengukuran TLD meskipun TLD diletakkan pada organ tertentu.

    0

    1

    2

    3

    4

    5

    6

    a b c

    dosis

    permukaan

    (Gy/jam)

    per 1 MBq

    titik pengukuran

    0 jam

    1 jam

    2 jam

    Gambar. 4.11. Dosis Permukaan pada Penelitian Ini

    Dengan mengambil waktu paruh dan waktu hidup 99Tcm sekitar 6 dan 9 jam, dapat diperkirakan dosis permukaan yang dikalkulasi berdasarkan ekstrapolasi pada kelipatan kedua waktu tersebut sampai 60 jam setelah penyuntikan yang diberikan dalam Lampiran 12 Tabel 12.2.A. Dari Tabel 12.2.A ditemukan bahwa pada waktu pengukuran sampai dengan 2 jam memperlihatkan

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 47

    Universitas Indonesia

    nilai yang sama pada semua titik pengukuran, tetapi pada 6 dan 9 jam setelah penyuntikan terlihat kecendrungan pada titik pengukuran a (daerah sternum) mempunyai nilai lebih tinggi dari nilai pada titik pengukuran b (daerah ginjal kanan) dan c (daerah kandung kemih) yang mempunyai nilai sama. Tetapi dimulai pada 12 jam setelah penyuntikan (2 kali waktu paruh fisika 99Tcm) ditemukan nilai yang berbeda pada ketiga titik pengukuran dengan nilai yang tertinggi adalah titik pengukuran a diikuti b dan c, hal tersebut karena eliminasi 99Tcm dalam tulang sangat lambat sedangkan dalam ginjal dan kandung kemih cukup cepat. Jika dibandingkan dengan radiasi latar dalam lingkungan tempat pengukuran yaitu rata-rata 0,1 Sv/jam, maka pada 8 x waktu paruh fisika (48 jam) dosis permukaan titik pengukuran c sudah mendekati radiasi latar, sedangkan pada titik pengukuran b dan a pada 10x waktu paruh fisika (60 jam). Resume Perbandingan dosis permukaan pada beberapa saat penyuntikan hasil ekstrapolasi dapat dilihat dalam Tabel 4.12.

    Tabel 4.12. Perbandingan Dosis Permukaan Setelah 6, 9, 48 dan 60 jam Setelah Penyuntikan

    Titik Pengukuran

    Gy/jam per 1 MBq

    0 jam 1 jam 2 jam 6 jam* 9 jam* 48 jam* 60 jam*

    a 3,6 1,4 5,3 2,1 4,3 1,9 2,8 2,1 0,035 0,010 b 3,8 1,4 5,1 1,9 3,9 1,5 2,3 1,5 0,008 0,002 c 3,7 1,4 5,5 1,9 3,9 1,3 2,0 1,2 0,001 0,000

    *Hasil ekstrapolasi

    Berdasarkan uraian di atas maka dapat dikatakan bahwa pada pemeriksaan bone scan, pasien dapat dikatakan aman berinteraksi pada jarak dekat pada 10x waktu paruh fisika atau 2,5 hari setelah penyuntikan. Dikarenakan prosedur dalam pemeriksaan bone scan mengharuskan pasien pulang, maka selama 2 hari pasien diharapkan berinteraksi dalam jarak 1 meter dengan perkiraan dosis permukaan mendekati radiasi latar.

    Penentuan dosis..., Rini Suryanti, FMIPA UI, 2011

  • 48 Universitas Indonesia

    BAB 5 KESIMPULAN DAN SARAN

    5.1. Kesimpulan

    Dari hasil penelitian tentang dosis internal pada pasien pemeriksaan bone scan dengan waktu pengamatan 3-4 jam setelah penyuntikan, diperoleh beberapa kesimpulan sebagai berikut: 1. Aktivitas kumulatif organ yang tertinggi terjadi pada permukaan tulang

    dengan nilai rata-rata 6,6 1,4 mCi-jam dalam rentang 4,2 - 9,4 mCi-jam, kemudian diikuti jantung 2,0 0,4 mCi-jam dalam rentang 1,3 - 2,6 mCi-jam, kandung kemih 1,7 0,5 dalam rentang 0,6 - 2,6 mCi-jam, dan ginjal 1,1 0,3 mCi-jam dalam rentang 0,6 1,7 mCi-jam.

    2. Waktu tinggal atau residence time 99Tcm dalam permukaan tulang mendekati sama dengan pada total tubuh sekitar 1,9 jam, kemudian diikuti oleh kandung kemih sekitar 1,4 jam, dan dalam jantung dan ginjal masing-masing sekitar 0,2 jam.

    3. Setiap organ mempunyai waktu uptake maksimum yang berbeda terhitung mulai dari waktu penyuntikan, sekitar 5 menit untuk jantung, sekitar 4 menit untuk ginjal, 10-15 menit untuk kandung kemih dan total tubuh, 1-1,5 jam untuk permukaan tulang.

    4. Dosis serap paling tinggi terjadi pada dinding kandung kemih 5,8 1,6 Gy/MBq, yang diikuti berturut-turut pada ginjal 4,7 1,0 Gy/MBq, pada dinding jantung 4,0 0,8 Gy/MBq, pada permukaan tulang 2,1 0,2 Gy/MBq, pada sumsum tulang 1,7 0,2 Gy/MBq, dan pada total tubuh 0,8 0,1 Gy/MBq. Khusus untuk sumsum tulang, nilai masih lebih rendah dibandingkan dengan nilai batas dosis yang direkomendasikan oleh ICRP dalam publikasi ICRP nomor 103.

    5. Pengukuran dosis permukaan pada tiga titik yang berada pada da