modul kimia xii

Upload: alexandria-cyda-zhagy

Post on 13-Jul-2015

1.416 views

Category:

Documents


12 download

TRANSCRIPT

KURIKULUM KTSP

KIMIATEKNOLOGI DAN INDUSTRI

SYAHRIAL, S.TUntuk XII SMK

KATA PENGANTAR

Syukur kehadirat Allah SWT atas segala kekuatan piker dan dzikir sehingga penyusun dapat menyelesaikan buku Kimia SMK kelas XII bidang keahlian Teknologi dan Industri dengan segala kemudahan-Nya. Buku Kimia SMK kelas XII ini disusun berdasarkan kurikulum KTSP yang berfungsi membentuk peserta didik supaya memiliki dasar pengetahuan kimia yang luas dan kuat untuk menyesuaikan diri dengan perubahan yang terjadi di lingkungan social dan lingkungan kerja, serta mampu mengembangkan diri sesuai dengan perkembangan ilmu pengetahuan dan teknologi. Buku Kimia SMK kelas XII ini berisi materi-materi senyawa hidrokarbon, polimer, laju reaksi, koloid, kimia inti dan pemisahan campuran. Penyusunan Buku Kimia SMK kelas XII ini didasarkan pada kenyataan bahwa masih kurangnya sumber belajar pada mata pelajaran kimia bagi siswa kelas XII SMK. Untuk itu penyusun selaku tenaga pengajar di SMK merasa perlu untuk segera memenuhi kebutuhan siswa tersebut demi kelancaran proses belajar mengajar di sekolah. Pada kesempatan ini penyusun ingin menyampaikan ucapan terima kasih kepada semua pihak yang telah membantu penyusunan dan penerbitan buku ini. Secara khusus penyusun ingin menyampaikan ucapan terima kasih kepada Sandri Maulani, S.H (istri) atas segala dukungannya dalam memotivasi penyusun sampai selesainya buku ini. Akhirnya tegur sapa, kritik dan saran dari kalangan akademisi dan pemakai buku ini sangat penyusun harapkan demi kemajuan bidang pendidikan. Manggar, Pebruari 2010 Syahrial, S.T

DESKRIPSI PEMBELAJARANSTANDAR KOMPETENS I12. Memahamisenyawa hidrokarbon dan kegunaannya

KOMPETENSI DASAR12.1Mendeskripsikan kekhasan atom karbon yang membentuk senyawa hidrokarbon

MATERI PEMBELAJARAN Kekhasan atom karbon dan senyawa hidrokarbon. Pengelompokan senyawa hidrokarbon Tata nama senyawa hidrokarbon Sifat fisika senyawa hidrokarbon Isomer senyawa hidrokarbon Reaksi kimia pada senyawa hidrokarbon Senyawa hidrokarbon dan turunannya Alkana dan turunannya: Gugus fungsi, jenisjenis, dan isomer senyawa turunan alkana Haloalkana Alkohol dan eter Aldehida dan keton Asam karboksilat dan ester Benzena dan turunannya: Struktur dan sifat benzene Struktur dan tata nama turunan benzene Pembuatan serta reaksi kimia benzena dan turunannya Kegunaan serta dampak benzena dan turunannya

12.1Menggolongkan senyawa hidrokarbon dan turunannya

STANDAR KOMPETENS I

KOMPETENSI DASAR12.1Mendeskripsikan kegunaan senyawa hidrokarbon dan turunannya dalam kehidupan manusia

MATERI PEMBELAJARAN Gas alam Alkohol Parfumery Plastik Minyak bumi dan kegunaannya: Pembentukan dan pengelolaan minyak bumi Produk hasil pengolahan minyak bumi dan dampak yang ditimbulkannya Nafta (residu) Petrolium (bensin) Karosen (minyak tanah dan avtur)

13. Menjelaskan sistem klasifikasi dan kegunaan makromoleku l (karbohidrat, lipid, protein dan polimer)

14.Memahami koloid, suspensi, dan larutan sejati

13.1Menjelaskan karbohidrat, klasifikasi dan penggunaanny a 13.1Menjelaskan lipid, klasifikasi dan penggunaanny a 13.1Menjelaskan protein, klasifikasi dan penggunaanny a 13.1Menjelaskan polimer, klasifikasi dan penggunaanny a 14.1Mengidentifik asi koloid, suspensi, dan larutan sejati 14.1Membedakan macam dan sifat koloid 14.1Menerapkan sistem koloid dalam kehidupan

Karbohidrat dan klasifikasinya Aplikasi karbohidrat Lipid dan klasifikasinya Aplikasi lipid Protein dan klasifikasinya Aplikasi protein Polimer dan klasifikasinya Aplikasi polimer Polimer sintesis Koloid, suspensi dan larutan Macam dan sifatsifat koloid Pembuatan dan pemurnian koloid Penggunaan Koloid

STANDAR KOMPETENS I 14.Memahami konsep kimia inti dan radiokimia

KOMPETENSI DASAR 15.1Memahami kimia inti dan radiasi

MATERI PEMBELAJARAN Penemuan sinar radioaktif Sifat-sifat dan sinar radioaktif Peluruhan radioaktif alami Reaksi transmutasi buatan Bahaya unsurunsur radioaktif Reaksi fisi dan fusi Konsep dasar radiokimia Aplikasi radiokimia Pemisahan campuran: Maserasi Ekstraksi Destilasi Filtrasi Penentuan kadar suatu unsur/senyawa Teknik-teknik pengukuran kadar : gravimetri, vilumetri, dan teknik lainnya

15.1Memahami radiokimia dan aplikasinya 14.Melakukan pemisahan dan analisis 16.1Memisahkan zat dari campuran

16.1Menentukan

kadar suatu unsur/ senyawasenyawa

DAFTAR ISI

Kata Pengantar ...................................................................................... ................................... Deskripsi Pembelajaran ................................................................................ ............................ Daftar Isi ................................................................................................... ................................. Kekhasan atom karbon . BAB XII Penggolongan senyawa hidrokarbon .. Kegunaan senyawa hidrokarbon .. i ii iv 1

3 23

BAB XIII

Karbohidrat, klasifikasi dan penggunaannya ................................................. Lipid, klasifikasi dan penggunaannya ............................................................ Protein, klasifikasi dan penggunaannya ........................................................ Polimer, klasifikasi dan penggunaannya ........................................................ Koloid, suspensi, dan larutan sejati ............................................................... Macam dan sifat koloid ................................................................................. Sistem koloid dalam kehidupan .....................................................................

29 31 32 35

43 44 50

BAB XIV

BAB XV

Kimia inti dan radiasi ..................................................................................... Radiokimia dan aplikasinya

51 57

BAB XVI

Pemisahan zat dari campuran ....................................................................... Penentuan kadar suatu unsur/ senyawa-senyawa

60 62 72

Daftar Pustaka

BAB XII KEKHASAN ATOM KARBON

Atom karbon (C) dengan nomor atom 6 mempunyai susunan elektron K = 2, L = 4. C mempunyai 4 elektron valensi dan dapat mernbentuk empat ikatan kovalen serta dapat digambarkan dengan rumus Lewis. Sebagai contoh, dapat dilihat molekul CH4 (metana) yang memiliki diagram yang cukup sederhana dibawah ini.

Selain itu kemampuan diatas, atom karbon juga dapat membentuk ikatan dengan atom karbon lain untuk membentuk rantai karbon yang terbuka, terbuka bercabang dan tertutup. Contoh rantai karbon dapat digambarkan dengan rumus struktur berikut :

Dapatlah sekarang dimengerti bahwa jumlah senyawa karbon demikian banyaknya walaupun jumlah jenis unsur pembentuknya sedikit. Kini kita dapat mulai membuat klasifikasi hidrokarbon, yang merupakan senyawa yang hanya tersusun oleh karbon dan hidrogen. Senyawa-senyawa karbon lainnya dapat dipandang sebagai turunan dari hidrokarbon ini. Hidrokarbon dapat dibagi menjadi dua kelompok utama : hidrokarbon alifatik dan hidrokarbon aromatik. Termasuk di kelompok pertama adalah senyawa yang berantai lurus, berantai cabang dan rantai melingkar. Kelompok kedua, hidrokarbon aromatik, biasanya mengandung cincin atom karbon yang sangat stabil. Berdasarkan kelipatan ikatan karbon-karbonnya, hidrokarbon alifatik masih dapat dibedakan lagi menjadi dua sub-kelompok, yakni hidrokarbon jenuh yang mengandung ikatan tunggal karbon-karbon, serta hidrokarbon tak jenuh yang mengandung paling sedikit satu ikatan rangkap dua, atau ikatan rangkap tiga. Karena senyawa hidro karbon terdiri atas karbon dan hidrogen, maka salah satu bagian dari ilmu kimia yang membahas segala sesuatu tentang senyawa hidrokarbon disebut kimia karbon. Dulu ilmu kimia karbon disebut kimia organik, karena senyawasenyawanya dianggap hanya dapat diperoleh dari tubuh makhluk hidup dan tidak dapat disintesis dalam pabrik. Pada tahun 1928, Friedrich Wohler berhasil mensintesis urea (suatu senyawa yang terdapat dalam air seni) dari senyawa anorganik yaitu amonium sianat dengan jalan memanaskannya.

Reaksi pemanasan amonium sianat oleh Wohler Setelah keberhasilan Wohler diketahui, banyaklah sarjana lain yang mencoba membuat senyawa karbon dari senyawa anorganik. Lambat laun teori tentang arti hidup hilang dan orang hanya menggunakan kimia organik sebagai nama saja tanpa disesuaikan dengan arti yang sesungguhnya. Sejak saat itu banyak senyawa karbon berhasil disintesis dan hingga sekarang lebih dari 2 juta senyawa karbon dikenal orang dan terus bertambah setiap harinya. Apa sebabnya jumlah senyawa karbon sedemikian banyak bila dibandingkan dengan jumlah senyawa anorganik yang hanya sekitar seratus ribuan? Selain perbedaan jumlah yang sangat mencolok yang menyebabkan kimia karbon dibicarakan secara tersendiri, karena memang terdapat perbedaan yang sangat besar antara senyawa karbon dan senyawa anorganik seperti yang dituliskan pada tabel berikut. Hidrokarbon adalah sejenis senyawa yang banyak terdapat dialam sebagai minyak bumi. Indonesia banyak menghasilkan senyawa ini dalam bentuk minyak bumi yang mempunyai nilai ekonomi tinggi. Senyawa hidrokarbon terdiri dari : 1. Alkana (CnH2n+2) 2. Alkena (CnH2n) 3. Alkuna (CnH2n-2)

PENGGOLONGAN SENYAWA HIDROKARBONKita mulai dengan klasifikasi hidrokarbon yang merupakan senyawa yang hanya tersusun oleh karbon dan hidrogen. Sedangkan senyawa karbon lainnya dapat dipandang sebagai turunan dari hidrokarbon. Hidrokarbon masih dapat dibagi menjadi dua kelompok utama: hidrokarbon alifatik, termasuk di dalamnya adalah yang berantai lurus, yang berantai cabang, dan rantai melingkar, dan kelompok kedua, hidrokarbon aromatik yang mengandung cincin atom karbon yang sangat stabil. Hidrokarbon alifatik masih dapat dibagi menjadi dua kelompok berdasarkan kelipatan ikatan karbon-karbon; hidrokarbon jenuh yang mengandung ikatan tunggal karbonkarbon; dan hidrokarbon tak jenuh yang mengandung paling sedikit satu ikatan rangkap dua karbon-karbon atau ikatan rangkap tiga. ALKANA Perbedaan rumus struktur alkana dengan jumlah C yang sama akan menyebabkan berbedaan sifat alkana yang bersangkutan. Banyaknya kemungkinan struktur senyawa karbon, menyebabkan perlunya pemberian nama yang dapat menunjukkan jumlah atom C dan rumus strukturnya. Aturan pemberian nama hidrokarbon telah dikeluarkan oleh IUPAC agar dapat digunakan secara internasional. Aturan tata nama alkana 1. Rantai tidak bercabang (lurus) Jika rantai karbon terdiri dari 4 atom karbon atau lebih, maka nama alkana diberi alawal n- (normal) CH3 CH2 CH2 CH2 CH3 = n-pentana 2. Jika rantai karbon bercabang, maka: a. Tentukan rantai induk, yaitu rantai karbon terpanjang dari ujung satu ke ujung yang lain. Rantai induk diberi nama alkana.

rantai induk terdiri dari 6 atom C, sehingga diberi nama heksana b. Penomoran. Berilan nomor pada rantai induk dari ujung terdekat cabang.

Jika nomor dari bawah, maka cabang ada di nomor 3. tetapi jika dari kanan, maka cabang ada di nomor 4. Sehingga dipilih penomoran dari ujung bawah. c. Tentukan cabang, yaitu atom C yang yang terikat pada rantai induk. Cabang merupakan gugus alkil dan beri nama alkil sesuai struktur alkilnya. Perhatikan beberapa gugus alkil berikut: d. Tabel 3. Nama Alkil

e. Urutan penulisan nama. Urutan penulisan nama untuk alkana bercabang: Nomor cabang-nama cabang nama rantai induk: Nama untuk struktur di atas adalah: 3-metilheksana -jika terdapat lebih dari satu alkil sejenis, maka tulis nonor-nonor cabang dari alkil sejenis dan beri awalan alkil dengan di, tri, tetra, penta dan seterusnya sesuai dengan jumlah alkil sejenis.

-Jika terdapat dua atau lebih jenis alkil, maka nama-mana alkil disusun menurut abjad.

3. Tambahan untuk penomoran khusus a. Jika terdapat beberapa pilihan rantai induk yang sama panjang, maka pilih rantai induk yang mempunyai cabang lebih terbanyak.

Rantai induk = 5 atom C Rantai induk = 5 atom C Cabang = 2 (metil dan etil) Cabang = 1 (isopropil) Sehingga yang dipilih adalah struktur yang pertama : 3-etil-2-metilpentana b. Gugus alkil dengan jumlah atom C lebih banyak diberi nomor yang lebih kecil.

Dari kiri, nomor 3 terdapat cabang etil Dari kanan, nomor 3 terdapat cabang metil. Sehingga yang dipilih adalah penomoran dari kiri: 3-etil-4metilpentana. Sifat-sifat Alkana Sifat fisik 1. Semua alkana merupakan senyawa polar sehingga sukar larut dalam air. Pelarut yang baik untuk alkana adalah pelarut non polar, misalnya eter. Jika alkana bercampur dengan air, lapisan alkana berada di atas, sebab massa jenisnya lebih kecil daripada 1. 2. Pada suhu kamar, empat suku pertama berwujud gas, suku ke 5 hingga suku ke 16 berwujud cair, dan suku diatasnya berwujud padat. 3. Semakin banyak atom C, titik didih semakin tinggi. Untuk alkana yang berisomer (jumlah atom C sama banyak), semakin banyak cabang, titik didih semakin kecil. Tabel Beberapa sifat fisik alkana Nama alkana Rumu Mr Titik leleh Titik didih Kerapata Fase s n molek (oC) (0C) (g/Cm3) pada ul 250C Metana Etana Propana Butana Pentana Heksana Heptana Heptadekana CH4 C2H6 C3H8 C4H10 C5H12 C6H14 C7H16 C17H3 16 30 44 58 72 86 100 240 -182 -183 -188 -138 -130 -95 -91 22 -162 -89 -42 -0. 5 36 69 99 302 0,423 0,545 0,501 0,573 0,526 0,655 0,684 0,778 Gas Gas Gas Gas Cair Cair Cair cair

6 Oktadekana Nonadekana Iikosana C18H3 8 C19H4 0 C20H4 2 254 268 282 28 32 37 316 330 343 0,789 0,789 0,789 padat padat padat

Sifat kimia 1. Pada umumnya alkana sukar bereaksi dengan senyawa lainnya. 2. Dalam oksigen berlebih, alkana dapat terbakar menghasilkan kalor, karbon dioksida

dan uap air 3. Jika alkana direaksikan dengan unsur-unsur halogen (F2, Cl2, Br2, I2), atom -atom H pada alkana akan digantikan oleh atom-atom halogen.

ALKENA

Alkena merupakan hidrokarbon tak jenuh yang mempunyai ikatan rangkap dua C=C. Suku alkena yang paling kecil terdiri dari dua atom C, yaitu etena. Nama alkena sesuai dengan nama alkana dengan mengganti akhiran ana menjadi -ena. Dari tabel diatas rumus molekul untuk alkena jumlah atom H selalu dua kali jumlah atom C, sehingga secara umum dapat dirumuskan: CnH2n Tata nama alkena Tata nama alkena menurut IUPAC adalah sebagai berikut: 1. Tentukan rantai induk, yaitu rantai karbon terpanjang dari ujung satu ke ujung yang lain yang melewati ikatan rangkap, berilah nama alkena sesuai jumlah atom C pada rantai induk. 2. Penomoran. Penomoran dimulai dari ujung rantai induk yang terdekat dengan rangkap. 3. Jika terdapat cabang berilah nama cabang dengan alkil sesuai jumlah atom C cabang tersebut. Jika terdapat lebih dari satu cabang, aturan penamaan sesuai dengan aturan pada tatanama alkana. 4. Urutan penamaan: nomor cabang-nama cabang-nomor rangkap-rantai induk Contoh:

3-metil-1-butena (benar)

2-metil-3-butena (salah)

Isomer alkena Etena (C2H4) dan propena (C3H6) tidak mempunyai isomeri katena hanya ada satu struktur.

Isomer dari Butena (C4H8):

Sifat-sifat Alkena Sifat fisik 1. pada suhu kamar, tiga suku yang pertama adalah gas, suku-suku berikutnya adalah cair dan suku-suku tinggi berbentuk padat. Jika cairan alkena dicampur dengan air maka kedua cairan itu akan membentuk lapisan yang saling tidak bercampur. Karena kerpatan cairan alkena lebih kecil dari 1 maka cairan alkena berada di atas lapisan air. 2. Dapat terbakar dengan nyala yang berjelaga karena kadar karbon alkena lebih tinggi daripada alkana yang jumlah atom karbonnya sama. Tabel Beberapa sifat fisik alkena Nama alkena Rumu Mr Titik leleh Titik didih Kerapata Fase s n pada molek (oC) (0C) (g/Cm3) 250C ul Etena Propena 1-Butena 1-Pentena 1-Heksena C2H4 C3H6 C4H8 C5H1 0 C6H1 2 28 42 56 70 84 -169 -185 -185 -165 -140 -104 -48 -6 30 63 0,568 0,614 0,630 0,643 0,675 Gas Gas Gas Cair Cair

1-Heptena 1-Oktena 1-Nonesa 1-Dekena

C7H1 4 C8H1 6 C9H1 8 C10H 20

98 112 126 140

-120 -102 -81 -66

94 122 147 171

0,698 0,716 0,731 0,743

Cair Cair Cair Cair

Sifat kimia Sifat khas dari alkena adalah terdapatnya ikatan rangkap dua antara dua buah atom karbon. Ikatan rangkap dua ini merupakan gugus fungsional dari alkena sehingga menentukan adanya reaksi-reaksi yang khusus bagi alkena, yaitu adisi, polimerisasi dan pembakaran 1. Alkena dapat mengalami adisi Adisi adalah pengubahan ikatan rangkap (tak jenuh) menjadi ikatan tunggal (jenuh) dengan cara menangkap atom/gugus lain. Pada adisi alkena 2 atom/gugus atom ditambahkan pada ikatan rangkap C=C sehingga diperoleh ikatan tunggal C-C. Beberapa contoh reaksi adisi pada alkena: a. Reaksi alkena dengan halogen (halogenisasi)

b. Reaksi alkena dengan hidrogen halida (hidrohalogenasi) Hasil reaksi antara alkena dengan hidrogen halida dipengaruhi oleh struktur alkena, apakah alkena simetris atau alkena asimetris. alkena simetris : akan menghasilkan satu haloalkana.

alkena asimetris akan menghasilkan dua haloalkana. Produk utana reaksi dapat diramalkan menggunakan aturan Markonikov, yaitu: Jika suatu HX bereaksi dengan ikatan rangkap asimetris, maka produk utama reaksi adalah molekul dengan atom H yang ditambahkan ke atom C dalam ikatan rangkap yang terikat dengan lebih banyak atom H.

c. Reaksi alkena dengan hidrogen (hidrogenasi) 1. Reaksi ini akan menghasilkan alkana.

2. Alkena dapat mengalami polimerisasi. Polimerisasi adalah penggabungan molekulmolekul sejenis menjadi molekul-molekul raksasa sehingga rantai karbon sangat panjang. Molekul yang bergabung disebut monomer, sedangkan molekul raksasa yang terbentuk disebut polimer.

3. pembakaran alkena Pembakaran alkena (reaksi alkena dengan oksigen) akan menghasilkan CO2 dan H2O. CH2=CH2 + 2 O2 2CO2 + 2H2O

ALKUNA Alkuna merupakan hidrokarbon tak jenuh yang mempunyai ikatan rangkap tiga C=C. Suku alkana yang paling kecil terdiri dari dua atom C, yaitu etuna. Nama alkuna sesuai dengan nama alkana dengan mengganti akhiran ana menjadi -una. Nama Struktur Rumus molekul Etena CH=CH C2H4 Propena CH=C-CH3 C3H4 Butena CH=C-CH2-CH3 C4H6 Pentena CH=C- CH2- CH2?-CH3 C5H8 Dari tabel diatas rumus molekul secara umum dapat dirumuskan: CnH2n-2 Tata nama alkuna

Tata nama alkuna menurut IUPAC sama dengan tatanama alkena, lang-kah-langkah untuk memberi nama alkuna adalah sebagai berikut: 1. Tentukan rantai induk, yaitu rantai karbon terpanjang dari ujung satu ke ujung yang lain yang melewati ikatan rangkap, berilah nama alkuna sesuai jumlah atom C pada rantai induk. 2. Penomoran. Penomoran dimulai dari ujung rantai induk yang terdekat dengan rangkap. 3. Jika terdapat cabang berilah nama cabang dengan alkil sesuai jumlah atom C cabang tersebut. Jika terdapat lebih dari satu cabang, aturan penamaan sesuai dengan aturan pada tatanama alkana. 4. Urutan penamaan: nomor cabang-nama cabang-nomor rangkap-rantai induk. Contoh:

Penentuan rantai induk salah Meskipun mempunyai rantai terpanjang, tetapi tidak melewati rangkap.

ISOMER ALKUNA Etuna (C2H2), propena (C3H4) tidak mempunyai isomeri katena hanya ada satu struktur.

Isomer dari butuna (C4H6):

Isomer pentuna (C5H8)

Sifat Alkuna Sifat fisis Sifat fisis alkuna, yakni titik didih mirip dengan alkana dan alkena. Semakin tinggi suku alkena, titik didih semakin besar. Pada suhu kamar, tiga suku pertama berwujud gas, suku berikutnya berwujud cair sedangkan pada suku yang tinggi berwujud padat. Tabel Beberapa sifat fisik alkuna Nama alkena Rumus Mr Titik Titik Kerapat Fase molek didih pada leleh an ul (0 C) 250 C (oC) (g/Cm3 ) Etuna C2H2 26 -81 -85 Gas Propuna 1-Butuna 1-Pentuna 1-Heksuna 1-Hepuna 1-Oktuna 1-Nonusa 1-Dekuna C3H4 C4H6 C5H8 C6H10 C7H12 C8H14 C9H16 C10H1 8 40 54 68 82 96 110 124 138 -103 -126 -90 -132 -81 -79 -50 -44 -23 8 40 71 100 126 151 174 0,690 0,716 0,733 0,740 0,766 0,765 Gas Gas Cair Cair Cair Cair Cair Cair

Sifat kimia Adanya ikatan rangkap tiga yang dimiliki alkuna memungkinkan terjadinya reaksi adisi, polimerisasi, substitusi dan pembakaran 1. reaksi adisi pada alkuna o Reaksi alkuna dengan halogen (halogenisasi)

Perhatikan reaksi di atas, reaksi pada tahap 2 berlaku aturan markonikov. o Reaksi alkuna dengan hidrogen halida

Reaksi di atas mengikuti aturan markonikov, tetapi jika pada reaksi alkena dan alkuna ditambahkan peroksida maka akan berlaku aturan antimarkonikov. Perhatikan reaksi berikut:

o Reaksi alkuna dengan hidrogen

2. Polimerisasi alkuna

3. Substitusi alkuna Substitusi (pengantian) pada alkuna dilakukan dengan menggantikan satu atom H yang terikat pada C=C di ujung rantai dengan atom lain.

4. Pembakaran alkuna Pembakaran alkuna (reaksi alkuna dengan oksigen) akan menghasilkan CO2 dan H2O. 2CH=CH + 5 O2 4CO2 + 2H2O Halogen alkana juga dikenal sebagai haloalkana atau alkil halida. Halaman ini menjelaskan pengertian halogenalkana dan membahas sifat-sifat fisiknya. Disini juga akan dibahas secara ringkas tentang kereaktifan kimiawi dari halogenalkana. Rincian tentang reaksi-reaksi kimia halogenalkana akan dibahas pada halaman-halaman yang lain. Haloalkana Halogenalkana adalah senyawa-senyawa dimana ada satu atau lebih atom hidrogen pada sebuah alkana yang digantikan oleh atom-atom halogen (fluorin, klorin, bromin atau iodin). Pada pembahasan tingkat dasar ini, kita hanya membahas tentang senyawasenyawa halogenalkana yang hanya mengandung satu atom halogen. Contoh:

Jenis-jenis halogenalkana Halogenalkan terdiri dari beberapa kelompok yang berbeda tergantung pada bagaimana posisi atom halogen dalam rantai atom karbon. Ada beberapa perbedaan sifat kimia antara berbagai jenis halogealkana. Halogenalkana primer

Pada halogenalkana primer (1), atom karbon yang membawa atom halogen hanya berikatan dengan satu gugus alkil lainnya. Beberapa contoh halogenalkana primer antara lain sebagai berikut:

Perlu diperhatikan bahwa tidak jadi masalah bagaimanapun kompleksnya gugus alkil yang terikat. Pada masing-masing contoh di atas, hanya ada satu ikatan terhadap sebuah gugus alkil dari gugus CH2 yang mengikat halogen. Terdapat pengecualian dalam hal ini, yakni CH3Br dan metil halida lainnya seringkali ditemukan sebagai halogenalkana primer walaupun tidak ada gugus alkil yang terikat pada atom karbon yang membawa halogen. Halogenalkana sekunder Pada halogenalkana sekunder (2), atom karbon yang padanya terikat halogen berikatan langsung dengan dua gugus alkil yang lain, yang bisa sama atau berbeda. Contoh-contoh:

Halogenalkana tersier Pada halogenalkana tersier (3), atom karbon yang mengikat halogen berikatan langsung dengan tiga gugus alkil, yang bisa merupakan kombinasi dari gugus akil yang sama atau berbeda. Contoh-contoh:

Sifat-sifat fisik halogenalkana

Perhatikan bahwa ada tiga dari halogenalkana pada gambar yang memiliki titik didih di bawah suhu kamar (sekitar 20C). Ketiga halogenalkana tersebut akan berwujud gas pada suhu kamar. Semua halogenalkana yang lain kemungkinan ditemukan dalam wujud cair. Perlu diingat bahwa: satu-satunya metil halida yang berwujud cair adalah iodometana; kloroetana merupakan sebuah gas. Pola-pola titik didih mencerminkan pola-pola gaya tarik antar-molekul. Gaya-gaya dispersi van der Waals Gaya tarik ini menjadi lebih kuat apabila molekul lebih panjang dan memiliki lebih banyak elektron. Ini dapat meningkatkan besarnya dipol-dipol sementara yang terbentuk. Inilah sebabnya mengapa titik didih meningkat apabila jumlah atom karbon dalam rantai meningkat. Mari kita ambil contoh untuk tipe halida tertentu, misalnya klorida. Gayagaya dispersi akan menjadi semakin kuat apabila jumlah atom karbon semakin bertambah dalam rantai (misalnya dari 1 menjadi 2, 3 dan seterusnya). Dibutuhkan lebih banyak energi untuk mengatasi gaya dispersi tersebut, sehingga titik didih meningkat. Semakin meningkatnya titik didih dari klorida ke bromida sampai ke iodida (utuk jumlah atom karbon tertentu) juga disebabkan oleh semakin meningkatnya jumlah elektron yang menimbulkan gaya dispersi yang lebih besar. Sebagai contoh, terdapat lebih

banyak elektron dalam iodometana dibanding yang terdapat dalam klorometana anda bisa menghitungnya sendiri! Gaya tarik dipol-dipol van der Waals Ikatan karbon-halogen (selain ikatan karbon-iodin) bersifat polar, karena pasangan elektron tertarik lebih dekat ke atom halogen dibandng ke atom karbon. Ini disebabkan karena halogen (kecuali iodin) lebih elektronegatif dibanding karbon. Nilai keelektronegatifan unsur-unsur halogen dapat dilihat sebagai berikut: C 2. 5 F Cl B r I 4. 0 3. 0 2. 8 2. 5

Ini berarti bahwa selain gaya-gaya dispersi, ada juga gaya-gaya lain yang ditimbulkan oleh gaya tarik antara dipol-dipol permanen (kecuali pada iodin). Besarnya gaya-tarik dipol-dipol akan berkurang apabila ikatan menjadi semakin tidak polar (misalnya semakin ke bawah mulai dari klorida sampai bromida terus ke iodida). Meski demikian, titik didih tetap meningkat! Ini menujukkan bahwa efek gaya tarik dipoldipol permanen jauh lebih tidak penting dibanding efek dipol-dipol temporer yang menimbulkan gaya-gaya dispersi. Besarnya peningkatan jumlah elektron pada iodin melebihi kehilangan dipol-dipol permanen dalam molekul. Titik didih beberapa isomer

Contoh-contoh di atas menunjukkan bahwa pada isomer-isomer halogenalkana, titik didih semakin berkurang dari halogenalkana primer ke halogenalkana sekunder ke halogenalkana tersier. Penurunan titik didih ini adalah akibat dari menurunnya efektifitas gaya-gaya dispersi. Dipol-dipol temporer paling besar untuk molekul yang terpanjang. Gaya-gaya tarik juga lebih kuat jika molekul-molekul bisa saling berdekatan. Halogenalkana tersier memiliki struktur yang sangat pendek dan besar sehingga tidak bisa berdekatan dengan molekul tetangganya. Kelarutan halogenalkana Kelarutan dalam air Halogenalkana sangat sedikit larut dalam air. Agar halogenalkana bisa larut dalam air, maka gaya tarik antara molekul-molekul halogenalkana harus diputus (gaya dispersi van der Waals dan gaya-tarik dipol-dipol) demikian juga dengan ikatan hidrogen antara molekul-molekul air. Pemutusan kedua gaya tarik ini memerlukan energi. Energi akan dilepaskan apabila gaya tarik terbentuk antara halogenalkana dengan molekul-molekul air. Gaya-gaya tarik yang terbentuk ini hanya gaya dispersi dan gaya tarik dipol-dipol. Kedua gaya ikatan ini tidak sama kuatnya dengan ikatan hidrogen sebelumnya terdapat dalam air, sehingga energi yang dilepaskan lebih kecil dibanding yang digunakan untuk memisahkan molekul-molekul air. Energi yang terlibat tidak cukup banyak sehingga halogenalkana hanya sedikit larut dalam air. Kelarutan dalam pelarut-pelarut organik

Halogenalkana cenderung larut dalam pelarut organik karena gaya tarik antar-molekul yang baru terbentuk memiliki kekuatan yang sama dengan kekuatan ikatan yang diputus dalam halogenalkana dan pelarut. Kereaktifan kimiawai halogenalkana Pentingnya kekuatan ikatan Pola kekuatan dari keempat ikatan karbon-halogen ditunjukkan pada gambar berikut:

Perlu diperhatikan bahwa kekuatan ikatan semakin berkurang ketika kita berpindah dari C-F ke C-I, dan juga perhatikan bahwa ikatan C-F jauh lebih kuat dibanding lainnya. Agar zat lain bisa bereaksi dengan halogenalkana, maka ikatan karbon-halogen harus diputus. Karena pemutusan semakin mudah dilakukan semakin ke bawah (mulai dari fluoride sampai iodin), maka senyawa-senyawa semakin ke bawah golongan halogen akan semakin reaktif. Iodoalkana merupakan halogenalkana yang paling reaktif dan fluoroalkana merupakan yang paling tidak reaktif. Sebenarnya, kereaktifan fluoroalkana sangat kecil sehingga bisa diabaikan dalam pembahasan-pembahasan selanjutnya Pengaruh polaritas ikatan Dari keempat halogen, fluorin merupakan unsur yang paling elektronegatif dan iodin yang paling tidak elektronegatif. Ini berarti bahwa pasangan elektron dalam ikatan karbon-fluorin akan tergeser ke ujung halogen. Perhatikan metil halida sebagai contoh-contoh sederhana berikut ini:

Keelektronegatifan karbon dan iodin sama sehingga tidak akan ada pemisahan muatan pada ikatan (pasangan elektron berada pada posisi netral). Salah satu reaksi penting yang dialami oleh halogenalkana melibatkan penggantian halogen oleh sesuatu yang lain yakni reaksi substitusi. Reaksi-reaksi ini melibatkan salah satu dari mekanisme berikut: ikatan karbon-halogen terputus menghasilkan ion positif dan ion negatif.Ion yang memiliki atom karbon bermuatan positif selanjutnya bereaksi dengan sesuatu yang bermuatan negatif (baik negatif penuh maupun negatif parsial). sesuatu yang bermuatan negatif penuh atau parsial tertarik ke atom karbon yang sedikit bermuatan positif dan melepaskan atom halogen. Mungkin anda berpikir bahwa kedua mekanisme di atas akan menjadi lebih efektif untuk ikatan karbon-fluorin yang sebelumnya telah memiliki banyak muatan positif dan negatif. Tapi kenyataannya tidak demikian justru sedikit kebalikannya yang terjadi! Yang mengendalikan kereaktifan adalah kekuatan ikatan yang harus diputus, sementara cukup sulit untuk memutus sebuah ikatan karbon-fluorin, tapi cukup mudah untuk memutus ikatan karbon-iodin. Alkohol dan eter Alkohol Alkohol mempunyai rumus umum R-OH. Strukturnya serupa dengan air, tetapi satu hidrogennya diganti dengan satu gugus alkil. Gugus fungsi alkohol adalah gugus

hidroksil, -O. Alkohol tersusun dari unsur C, H, dan O. Struktur alkohol : R-OH primer, sekunder dan tersier

Sifat fisika alkohol : TD alkohol > TD alkena dengan jumlah unsur C yang sama (etanol = 78oC, etena = -88,6oC) Umumnya membentuk ikatan hidrogen Berat jenis alkohol > BJ alkena Alkohol rantai pendek (metanol, etanol) larut dalam air (=polar) Struktur Alkohol : R OH R-CH2-OH (R)2CH-OH (R)3C-OH Primer sekunder tersier Pembuatan alkohol : Oksi mercurasi demercurasi Hidroborasi oksidasi Sintesis Grignard Hidrolisis alkil halida Penggunaan alkohol : Metanol : pelarut, antifreeze radiator mobil, sintesis formaldehid, metilamina, metilklorida, metilsalisilat, dll Etanol : minuman beralkohol, larutan 70 % sebagai antiseptik, sebagai pengawet, dan sintesis eter, koloroform, dll. Tatanama alkohol Nama umum untuk alkohol diturunkan dari gugus alkol yang melekat pada OH dan kemudian ditambahkan kata alkohol. Dalam sisitem IUAPAC, akhiran-ol menunjukkan adanya gugus hidroksil. Contoh-contoh berikut menggambarkan contoh-contoh penggunaan kaidah IUPAC (Nama umum dinyatakan dalam tanda kurung).

Eter Bagi kebanyakan orang kata eter dikaitkan dengan anestesi. Eter yang dimaksud adalah hanyalah salah satu anggota kelompok eter, yaitu senyawa yang mempunyai dua gugus organik melekat pada atom oksigen tunggal. Rumus umum eter ialah R-O-R, yang R dan R-nya bisa sama atau berbeda, gugusnya dapat berupa alkil atau aril. Pada anestesi umum kedua R-nya adalah gugus etil. CH3CH2-O-CH2CH3. Eter merupakan isomer atau turunan dari alkohol (unsur H pada OH diganti oleh alkil atau aril). Eter mengandung unsur C, H, dan O. Sifat fisika eter : Senyawa eter rantai C pendek berupa cair pd suhu kamar dan TD nya naik dengan penambahan unsur C. Eter rantai C pendek medah larut dalam air, eter dengan rantai panjang sulit larut dalam air dan larut dalam pelarut organik. Mudah terbakar

Unsur C yang sama TD eter > TD alkana dan < TD alkohol (metil, n-pentil eter 140oC, n-heptana 98oC, heksil alkohol 157oC). Pembuatan eter : Sintesis Williamson Alkoksi mercurasi demercurasi Penggunaan eter : Dietil eter : sbg obat bius umum, pelarut dari minyak, dsb. Eter-eter tak jenuh : pada opersi singkat : ilmu kedokteran gigi dan ilmu kebidanan. Tatanama eter Eter diberi nama berdasarkan gugus alkil atau arilnya menurut urutan abjad, diikuti dengan kata eter misalnya :

Untuk eter dengan stuktur kompleks, kadang-kadang diperlukan nama gugus OR sebagai gugus alkoksi. Misalnya, dalam sistem IUPAC eter diberi nama sebagai hidrokarbon dengan substitusi alkoksi.

Mengenal Aldehid dan Keton Aldehid dan keton adalah senyawa-senyawa sederhana yang mengandung sebuah gugus karbonil sebuah ikatan rangkap C=O. Aldehid dan keton termasuk senyawa yang sederhana jika ditinjau berdasarkan tidak adanya gugus-gugus reaktif yang lain seperti -OH atau -Cl yang terikat langsung pada atom karbon di gugus karbonil seperti yang bisa ditemukan misalnya pada asam-asam karboksilat yang mengandung gugus -COOH. Contoh-contoh aldehid Pada aldehid, gugus karbonil memiliki satu atom hidrogen yang terikat padanya bersama dengan salah satu dari gugus berikut: atom hidrogen lain atau, yang lebih umum, sebuah gugus hidrokarbon yang bisa berupa gugus alkil atau gugus yang mengandung sebuah cincin benzen. Pada pembahasan kali ini, kita tidak akan menyinggung tentang aldehid yang mengandung cincin benzen.

Pada gambar di atas kita bisa melihat bahwa keduanya memiliki ujung molekul yang sama persis. Yang membedakan hanya kompleksitas gugus lain yang terikat. Jika kita menuliskan rumus molekul untuk molekul-molekul di atas, maka gugus aldehid (gugus karbonil yang mengikat atom hidrogen) selalunya dituliskan sebagai -CHO dan

tidak pernah dituliskan sebagai COH. Oleh karena itu, penulisan rumus molekul aldehid terkadang sulit dibedakan dengan alkohol. Misalnya etanal dituliskan sebagai CH3CHO dan metanal sebagai HCHO. Penamaan aldehid didasarkan pada jumlah total atom karbon yang terdapat dalam rantai terpanjang termasuk atom karbon yang terdapat pada gugus karbonil. Jika ada gugus samping yang terikat pada rantai terpanjang tersebut, maka atom karbon pada gugus karbonil harus selalu dianggap sebagai atom karbon nomor 1. Contoh-contoh keton Pada keton, gugus karbonil memiliki dua gugus hidrokarbon yang terikat padanya. Sekali lagi, gugus tersebut bisa berupa gugus alkil atau gugus yang mengandung cincin benzen. Disini kita hanya akan berfokus pada keton yang mengandung gugus alkil untuk menyederhanakan pembahasan. Perlu diperhatikan bahwa pada keton tidak pernah ada atom hidrogen yang terikat pada gugus karbonil.

Propanon biasanya dituliskan sebagai CH3COCH3. Diperlukannya penomoran atom karbon pada keton-keton yang lebih panjang harus selalu diperhatikan. Pada pentanon, gugus karbonil bisa terletak di tengah rantai atau di samping karbon ujung menghasilkan pentan-3-ena atau pentan-2-on. Ikatan dan Kereaktifan Ikatan pada gugus karbonil

Atom oksigen jauh lebih elektronegatif dibanding karbon sehingga memiliki kecenderungan kuat untuk menarik elektron-elektron yang terdapat dalam ikatan C=O kearahnya sendiri. Salah satu dari dua pasang elektron yang membentuk ikatan rangkap C=O bahkan lebih mudah tertarik ke arah oksigen. Ini menyebabkan ikatan rangkap C=O sangat polar. Reaksi-reaksi penting dari gugus karbonil Atom karbon yang sedikit bermuatan positif pada gugus karbonil bisa diserang oleh nukleofil. Nukleofil merupakan sebuah ion bermuatan negatif (misalnya, ion sianida, CN-), atau bagian yang bermuatan negatif dari sebuah molekul (misalnya, pasangan elektron bebas pada sebuah atom nitrogen dalam molekul amonia NH3). Selama reaksi berlangsung, ikatan rangkap C=O terputus. Efek murni dari pemutusan ikatan ini adalah bahwa gugus karbonil akan mengalami reaksi adisi, seringkali diikuti dengan hilangnya sebuah molekul air. Ini menghasilkan reaksi yang dikenal sebagai adisi-eliminasi atau kondensasi. Dalam pembahasan tentang aldehid dan keton anda akan menemukan banyak contoh reaksi adisi sederhana dan reaksi adisi-eliminasi. Aldehid dan keton mengandung sebuah gugus karbonil. Ini berarti bahwa reaksi keduanya sangat mirip jika ditinjau berdasarkan gugus karbonilnya. Perbedaan aldehid dan keton Aldehid berbeda dengan keton karena memiliki sebuah atom hidrogen yang terikat pada gugus karbonilnya. Ini menyebabkan aldehid sangat mudah teroksidasi. Sebagai contoh, etanal, CH3CHO, sangat mudah dioksiasi baik menjadi asam etanoat, CH3COOH, atau ion etanoat, CH3COO-. Keton tidak memiliki atom hidrogen tersebut sehingga tidak mudah dioksidasi. Keton hanya bisa dioksidasi dengan menggunakan agen pengoksidasi kuat yang memiliki kemampuan untuk memutus ikatan karbon-karbon. Oksidasi aldehid dan keton juga dibahas dalam modul belajar online ini pada sebuah halaman khusus di topik aldehid dan keton. Sifat-sifat fisik

Titik didih Aldehid sederhana seperti metanal memiliki wujud gas (titik didih -21C), dan etanal memiliki titik didih +21C. Ini berarti bahwa etanal akan mendidih pada suhu yang mendekati suhu kamar. Aladehid dan keton lainnya berwujud cair, dengan titik didih yang semakin meningkat apabila molekul semakin besar. Besarnya titik didih dikendalikan oleh kekuatan gayagaya antar-molekul. Gaya dispersi van der Waals Gaya tarik ini menjadi lebih kuat apabila molekul menjadi lebih panjang dan memiliki lebih banyak elektron. Peningkatan gaya tarik ini akan meningkatkan ukuran dipol-dipol temporer yang terbentuk. Inilah sebabnya mengapa titik didih meningkat apabila jumlah atom karbon dalam rantai juga meningkat baik pada aldehid maupun pada keton. Gaya tarik dipol-dipol van der Waals Aldehid dan keton adalah molekul polar karena adanya ikatan rangkap C=O. Seperti halnya gaya-gaya dispersi, juga akan ada gaya tarik antara dipol-dipol permanen pada molekul-molekul yang berdekatan. Ini berarti bahwa titik didih akan menjadi lebih tinggi dibanding titik didih hidrokarbon yang berukuran sama yang mana hanya memiliki gaya dispersi. Mari kita membandingkan titik didih dari tiga senyawa hidrokarbon yang memiliki besar molekul yang mirip. Ketiga senyawa ini memiliki panjang rantai yang sama, dan jumlah elektronnya juga mirip (walaupun tidak identik). titik didih (C) -42

molekul CH3CH2C H3 CH3CHO

tipe alkan a aldehi d alkoh ol

+21

CH3CH2O H

+78

Pada tabel di atas kita bisa melihat bahwa aldehid (yang memiliki gaya tarik dipol-dipol dan gaya tarik dispersi) memiliki titik didih yang lebih tinggi dari alkana berukuran sebanding yang hanya memiliki gaya dispersi. Akan tetapi, titik didih aldehid lebih rendah dari titik didih alkohol. Pada alkohol, terdapat ikatan hidrogen ditambah dengan dua jenis gaya-tarik antar molekul lainnya (gaya-tarik dipol-dipol dan gaya-tarik dispersi). Walaupun aldehid dan keton merupakan molekul yang sangat polar, namun keduanya tidak memiliki atom hidrogen yang terikat langsung pada oksigen, sehingga tidak bisa membentuk ikatan hidrogen sesamanya. Kelarutan dalam air Aldehid dan keton yang kecil dapat larut secara bebas dalam air tetapi kelarutannya berkurang seiring dengan pertambahan panjang rantai. Sebagai contoh, metanal, etanal dan propanon yang merupakan aldehid dan keton berukuran kecil dapat bercampur dengan air pada semua perbandingan volume. Alasan mengapa aldehid dan keton yang kecil dapat larut dalam air adalah bahwa walaupun aldehid dan keton tidak bisa saling berikatan hidrogen sesamanya, namun keduanya bisa berikatan hidrogen dengan molekul air. Salah satu dari atom hidrogen yang sedikit bermuatan positif dalam sebuah molekul air bisa tertarik dengan baik ke salah satu pasangan elektron bebas pada atom oksigen dari sebuah aldehid atau keton untuk membentuk sebuah ikatan hidrogen.

Tentunya juga terdapat gaya dispersi dan gaya tarik dipol-dipol antara aldehid atau keton dengan molekul air. Pembentukan gaya-gaya tarik ini melepaskan energi yang membantu menyuplai energi yang diperlukan untuk memisahkan molekul air dan aldehid atau keton satu sama lain sebelum bisa bercampur. Apabila panjang rantai meningkat, maka "ekor-ekor" hidrokarbon dari molekul-molekul (semua hidrokarbon sedikit menjauh dari gugus karbonil) mulai mengalami proses di atas. Dengan menekan diri diantara molekul-molekul air, ekor-ekor hidrokarbon tersebut memutus ikatan hidrogen yang relatif kuat antara molekul-molekul air tanpa menggantinya dengan ikatan yang serupa. Ini menjadi proses yang tidak bermanfaat dari segi energi, sehingga kelarutan berkurang. Asam karboksilat dan turunannya Asam organik yang paling penting adalah asam-asam karboksilat. Gugus fungsinya adalah gugus karboksil, kependekan dari dua bagian yaitu gugus karbonil dan hidroksil. Rumus asam karboksilat dapat dipanjang dan atau dipendekkan seperti :

Ciri-ciri asam karboksilat Mengandung gugus COOH yang terikat pada gugus alkil (R-COOH) maupun gugus aril (Ar-COOH) Kelarutan sama dengan alkohol Asam dengan jumlah C 1 4 : larut dalam air Asam dengan jumlah C = 5 : sukar larut dalam air Asam dengan jumlah C > 6 : tidak larut dalam air Larut dalam pelarut organik seperti eter, alkohol, dan benzen TD asam karboksilat > TD alkohol dengan jumlah C sama. Contoh : asam format = HCOOH Sifat fisika : cairan, tak berwarna, merusak kulit, berbau tajam, larut dalam H2O dengan sempurna. Penggunaan : untuk koagulasi lateks, penyamakkan kulit, industri tekstil, dan fungisida. Contoh lain :asam asetat = CH3-COOH Sifat : cair, TL 17oC, TD 118oC, larut dalam H2O dengan sempurna Penggunaan : sintesis anhidrat asam asetat, ester, garam, zat warna, zat wangi, bahan farmasi, plastik, serat buatan, selulosa dan sebagai penambah makanan. Pembuatan asam karboksilat Oksidasi alkohol primer Oksidasi alkil benzen Carbonasi Reagen Grignard Hidrolisin nitril Tatanama Asam karboksilat Karena banyak terdapat dialam, asam-asam karboksilat adalah golongan senyawa yang paling dulu dipelajari oleh kimiawan organik. Karena tidak mengherankan jika banyak senyawa-senyawa asam mempunyai nama-nama biasa. Nama-nama ini biasanya

diturunkan dari bahasa Latin yang menunjukkan asalnya. Tabel berikut memuat namanama asam berantai lurus beserta nama IUPAC-nya. Banyak dari asam ini mula-mula dipisahkan dari lemak sehingga sering dinamakan sebagai asam-asam lemak (struktur lemak secara terinci dibahas dalam bab berikutnya). Untuk memperoleh nama IUPAC suatu asam karboksilat diperlukan awalan kata asam da akhiran at. Asam-asam bersubstitusi diberi nama menurut dua cara. Dalam sisitem IUPAC, nomor rantai dimulai dari asam karbon pembawa gugus karboksil dan substituen diberi nomor lokasi. Jika nama umum yang digunakan lokasi substituen dilambangkan dengan huruf latin, dimulai dengan atom karbon .

Jika gugus karboksilat dihubungkan dengan cincin, akhiran karboksilat ditambahkan pada nama induk sikloalkana.

Ester Ester diturunkan dari asam dengan mengganti gugus OH dengan gugus OR. Sifat fisika : berbentuk cair atau padat, tak berwarna, sedikit larut dalm H2O, kebanyakan mempunyai bau yang khas dan banyak terdapat di alam. Struktut ester : R COOR. Ester diberi nama seperti penamaan pada garam.

Perhatikan bahwa bagian R dari gugus OR disebutkan dahulu, diikuti dengan nama asam yang berakhiran at.

Pembuatan ester : Reaksi alkohol dan asam karboksilat Reaksi asam klorida atau anhidrida. Penggunaan ester : Sebagai pelarut, butil asetat (pelarut dalam industri cat). Sebagai zat wangi dan sari wangi. Pembuatan ester, estrerifikasi Fischer Jika asam karboksilat dan alkohol dan katalis asam (biasanya HCl atau H2SO4) dipanaskan terdapat kesetimbangan dengan ester dan air. Proses ini dinamakan esterifikasi fischer, yaitu berdasarkan nama Emil Fischer kimiawan organik abad 19 yang mengembangkan metode ini. Walaupun reaksi ini adalah reaksi kesetimbangan, dapat juga digunakan untuk membuat ester dengan hasil yang tinggi dengan menggeser kesetimbangan kekanan. Hal ini dapat dicapai dengan beberapa teknik. Jika alkohol atau asam harganya lebih murah, dapat digunakan jumlah berlebihan. Cara lain ialah dengan memisahkan ester dan/atau air yang terbentuk (dengan penyulingan) sehingga menggeser reaksi kekanan. SENYAWA AROMATIS Cincin Benzene Semua senyawa aromatis berdasarkan benzen, C6H6, yang memiliki enam karbon dan simbol sebagai berikut:

Setiap sudut dari segienam memiliki atom karbon yang terikat dengan hidrogen. Fenil Ingat bahwa anda mendapatkan metil , CH3, dengan mengingkkirkan sebuah hidrogen pada metan, CH4. Dan anda mendapatkan Fenil , C6H5, dengan menghilangkan sebuah hidrogen dari benzen, C6H6. Seperti metil atau etil , Fenil selalu terikat pada yang lain. Golongan aromatik dengan suatu golongan terikat pada cincin benzen. Kasus dimana penamaan didasarkan pada benzen Klorobenzen Ini merupakan contoh sederhana dimana sebuah halogen terikat pada cincin benzen. Penamaan sudah sangat jelas.

Penyederhanaannya menjadi C6H5Cl. Sehingga anda dapat (walau mungkin tidak!) menamainya fenilklorida. Setiap kalo anda menggambar cincin benzen dengan sesuatu terikat padanya sebenarnya anda menggambar fenil. Untuk mengikat sesuatu anda harus membuang sebuah hidrogen sehingga menghasilkan fenil. Nitrobenzen Golongan nitro, NO2, terikat pada rantai benzen.

Formula sederhananya C6H5NO2. Metilbenzen Satu lagi nama yang jelas. Benzen dengan metil terikat padanya. Golongan alkil yang lain juga mengikuti cara penamaan yang sama.Contoh, etilbenzen. Nama lama dari metilbenzen adalah toluen, anda mungkin masih akan menemui itu.

Formula sederhananya C6H5CH3. Klorometil)benzen Variasi dari metilbensen dimana satu atom hidrogen digantikan dengan atom klorida. Perhatikan tanda dalam kurung,(klorometil) . Ini agar anda dapat mengerti bahwa klorin adalah bagian dari metil dan bukan berikatan dengan cincin.

Jika lebih dari satu hidrogen digantikan dengan klorin, penamaan akan menjadi (diklorometil)benzene atau (triklorometil) benzen. Sekali lagi perhatikan pentingnya tanda kurung. asam benzoik (benzenecarboxylic acid) Asam benzoik merupakan nama lama, namun masih umum digunakan -lebih mudah diucapkan dan ditulis. Apapun sebutannya terdapat asam karboksilik, -COOH, terikat pada cincin benzen.

Kasus dimana penamaan berdasarkan Fenil

Ingat bahwa golongan fenil adalah cincin benzen yang kehilangan satu atom karbon C6H5. fenilamine Fenilamin adalah amin primer yang mengandung -NH2 terikat pada benzen.

Nama lama dari fenilamin adalah anilin, dan anda juga dapat menamakanya aminobenzene. fenileten Molekul eten dengan fenil berikatan padanya. Eten adalah rantai dengan dua karbon dengan ikatan rangap. Karena itu fenileten berupa:

Nama lamanya Stiren -monomer dari polystyren. feniletanon Mengandung rantai dengan dua karbon tanpa ikatan rangkap. Merupakan golongan adalah keton sehingga ada C=O pada bagian tengah. Terikat pada rantai karbon adalah fenil.

feniletanoat Ester dengan dasar asam etanoik. Atom hidrogen pada -COOH digantikan dengan golongan fenil.

fenol Fenol memiliki -OH terikat pada benzen sehingga formulanya menjadi C6H5OH.

Senyawa Aromatik dengan lebih dari suatu golongan terikat pada cincin benzen.

Menomori cincin Salah satu golongan yang terikat pada cincin diberi nomor satu. Posisi yang lain diberi nomor 2 sampai 6. Anda dapat menomorinya searah atau berlawanan arah dengan jarum jam. Sehingga menghasilkan nomor yang terkecil. Lihat contoh untuk lebih jelas Contoh: Menambah atom klorin pada cincin Lihat pada senyawa berikut:

Semuanya berdasar pada metilbenzen dan dengan itu metil menjadi nomor 1 pada cincin. Mengapa 2-Klorometilbenzen dan bukan 6-klorometil benzen? Cincin dinamai searah jarum jamdalam kasus ini karena angka 2 lebih kcil dari angka 6. asam 2-hidrobenzoik Juga disebut sebagai asam 2-hidroksibenzenkarbolik. Ada -COOH terikat pada cincin dan karena penamaan berdasarkan benzoik maka golongan benzoik menjadi nomor satu. Pada posisi disampingnya terdapat hidroksi -OH dengan nomor 2.

asam benzene-1,4-dikarboksilik di menunjukkan adanya dua asam karboksilik dan salah satunya berada diposidi 1 sedangkan yang lainnya berada pada posisi nomor 4.

2,4,6-trikloofenol Berdasarkan dengan fenol dengan -OH terikat pada nomor 1 dari rantai karbon dan klorin pada posisi nomor 2,4 dan 6 dari cincin karbon.

2,4,6-triklorofenol adalah antiseptik terkenal TCP. metil 3-nitrobenzoat Nama ini merupakan nama yang akan anda temui pada soal-soal latihan me-nitrat-kan cincin benzen. Dari namanya ditunjukkan bahwa metil 3-nitrobenzoat merupakan golongan ester (akhiran oat). Dan metil tertulis terpisah.

Ester ini berdasarkan asam T, asam 3-nitrobenzoik -dan kita mulai dari sana. Akan ada cincin benzen dengan -COOH pada nomor satu dari cincin dan nitro pada nomor 3. untuk menghasilkan ester sebuah hidrogen pada -COOH degantikan dengan metil. Metil 3-nitrobenzoat menjadi:

KEGUNAAN SENYAWA HIDROKARBONKegunaan Gas Alam Gas alam seperti juga minyak bumi merupakan senyawa hidrokarbon (Cn H2n+2) yang terdiri dari campuran beberapa macam gas hidrokarbon yang mudah terbakar dan non-hidrokarbon seperti N2, CO2 dan H2S. Umumnya gas yang terbentuk sebagian besar dari metan CH4, dan dapat juga termasuk etan C2H6 dan propan C3H8. Komposisi gas alam bervariasi, tetapi umumnya tipikal gas alam (sebelum dilakukan pemrosesan) adalah seperti pada tabel di bawah ini. Gas alam yang didapat dari dalam sumur di bawah bumi, biasanya ber-gabung dengan minyak bumi. Gas ini disebut sebagai gas associated. Ada juga sumur yang khusus menghasilkan gas, sehingga gas yang dihasilkan disebut gas non associated. Sekali dibawa ke atas permukaan bumi, terhadap gas dila-kukan pemisahan untuk menghilangkan impurities seperti air, gas-gas lain, pasir dan senyawa lainnya. Beberapa gas hidrokarbon seperti propan (C3H8) dan butan (C4H10) dipisahkan dan dijual secara terpisah. Setelah diproses, gas alam yang bersih ditransmisikan ke titik-titik penggunaan melalui jaringan pipa, yang jauhnya dapat mencapai ribuan kilometer. Gas alam yang dikirim melalui pipa tersebut merupakan gas alam dalam bentuk yang murni karena hampir seluruhnya adalah metan (CH4). Gas alam yang dikirim tersebut merupa-kan dry gas atau gas kering. Metan adalah molekul yang dibentuk oleh satu atom karbon dan empat atom hidrogen sebagai CH4. Gas metan mudah terbakar dimana secara kimia terjadi reaksi antara metan dan oksigen yang hasilnya berupa karbon di-oksida (CO2), air (H2O) ditambah sejumlah besar energi, sebagaimana persamaan be-rikut : CH4[g] + 2 O2[g] CO2[g] + 2 H2O[50] + 891 kJ Kegunaan etanol Minuman "Alkohol" yang terdapat dalam minuman beralkohol adalah etanol. Spirit (minuman keras) bermetil yang diproduksi dalam skala industri Etanol biasanya dijual sebagai spirit (minuman keras) bermetil yang diproduksi dalam skala industri yang sebenarnya merupakan sebuah etanol yang telah ditambahkan sedikit metanol dan kemungkinan beberapa zat warna. Metanol beracun, sehingga spirit bermetil dalam skala industri tidak cocok untuk diminum. Penjualan dalam bentuk spirit dapat menghindari pajak tinggi yang dikenakan untuk minuman beralkohol (khususnya di Inggris). Sebagai bahan bakar

Etanol dapat dibakar untuk menghasilkan karbon dioksida dan air serta bisa digunakan sebagai bahan bakar baik sendiri maupun dicampur dengan petrol (bensin). "Gasohol" adalah sebuah petrol / campuran etanol yang mengandung sekitar 10 20% etanol. Karena etanol bisa dihasilkan melalui fermentasi, maka alkohol bisa menjadi sebuah cara yang bermanfaat bagi negara-negara yang tidak memiliki industri minyak untuk mengurangi import petrol mereka. Sebagai pelarut Etanol banyak digunakan sebagai sebuah pelarut. Etanol relatif aman, dan bisa digunakan untuk melarutkan berbagai senyawa organik yang tidak dapat larut dalam air. Sebagai contoh, etanol digunakan pada berbagai parfum dan kosmetik. Kegunaan metanol Sebagai bahan bakar Metanol jika dibakar akan menghasilkan karbon dioksida dan air. Metanol bisa digunakan sebagai sebuah aditif petrol untuk meningkatkan pembakaran, atau kegunaannya sebagai sebuah bahan bakar independen (sekarang sementara diteliti). Sebagai sebuah stok industri Kebanyakan metanol digunakan untuk membuat senyawa-senyawa lain seperti metanal (formaldehida), asam etanoat, dan metil ester dari berbagai asam. Kebanyakan dari senyawa-senyawa selanjutnya diubah menjadi produk. Kegunaan propan-2-ol Propan-2-ol banyak digunakan pada berbagai situasi yang berbeda sebagai sebuah pelarut. Minyak Bumi

Minyak bumi (bahasa Inggris: petroleum, dari bahasa Latin petrus karang dan oleum minyak), dijuluki juga sebagai emas hitam, adalah cairan kental, coklat gelap, atau kehijauan yang mudah terbakar, yang berada di lapisan atas dari beberapa area di kerak bumi. Minyak bumi terdiri dari campuran kompleks dari berbagai hidrokarbon, sebagian besar seri alkana, tetapi bervariasi dalam penampilan, komposisi, dan kemurniannya. Minyak Bumi adalah campuran dari berbagai jenis hidrokarbon. Komposisi minyak bumi Minyak mentah (petroleum) adalah campuran kompleks, terutama terdiri dari hidrokarbon bersama-sama dengan sejumlah kecil komponen yang mengandung sulfur, oksigen dan nitrogen dan sangat sedikit komponen yang mengandung logam. Struktur hidrokarbon yang ditemukan dalam minyak mentah: Alkana. Fraksi ini merupakan yang terbesar di dalam minyak mentah.

Sikloalkana (napten) CnH2n Sikloalkana ada yang memiliki cincin 5 (lima) yaitu siklopentana ataupun cincin 6 (enam) yaitu sikloheksana. Aromatik CnH2n -6 Aromatik memiliki cincin 6 (enam). hanya terdapat dalam jumlah kecil, tetapi sangat diperlukan dalam bensin karena : - Memiliki harga anti knock yang tinggi - Stabilitas penyimpanan yang baik - Dan kegunaannya yang lain sebagai bahan bakar (fuels). Proporsi dari ketiga tipe hidrokarbon sangat tergantung pada sumber dari minyak bumi. Pada umumnya alkana merupakan hidrokarbon yang terbanyak tetapi kadang kadang (disebut sebagai crude napthenic) mengandung sikloalkana sebagai komponen yang terbesar, sedangkan aromatik selalu merupakan komponen yang paling sedikit. Pengilangan/penyulingan (refining) adalah proses perubahan minyak mentah menjadi produk yang dapat dijual (marketeble product) melalui kombinasi proses fisika dan kimia. Produk yang dihasilkan dari proses pengilangan/penyulingan tersebut antara lain: 1. Light destilates adalah komponen dengan berat molekul terkecil. Ini ada beberapa buah : Bensin

Gasoline (Amerika Serikat) atau motor spirit (Inggris) atau bensin (Indonesia) memiliki titik didih terendah dan merupakan produk kunci dalam penyulingan yang digunakan sebagai bahan pembakar motor (45% dari minyak mentah diproses untuk menghasilkan gasolin). Naphta

Naphta adalah material yang memiliki titik didih antara gasolin dan kerosin. Beberapa naphta digunakan sebagai : Pelarut karet Bahan awal etilen Dalam kemiliteran digunakan sebagai bahan bakar jet dan dikenal sebagai jP-4. Pelarut dry cleaning. Kerosin

Kerosin memiliki titik didih tertinggi dan biasanya digunakan sebagai : - Minyak tanah - Bahan bakar jet untuk air plane

Intermediate destilates merupakan minyak gas atau bahan bakar diesel yang penggunaannya sebagai bahan bakar transportasi truk-truk berat, kereta api, kapal kecil komersial, peralatan pertanian dan lain-lain. Heavy destilates merupakan komponen dengan berat molekul tinggi. Fraksi ini biasanya dirubah menjadi minyak pelumas (lubricant oils), minyak dengan berat jenis tinggi dari bahan bakar, lilin dan stock cracking. Residu termasuk aspal, residu bahan bakar minyak dan petrolatum. Residu memiliki prosentasi yang tidak besar. PEMBENTUKAN MINYAK BUMI Proses pembentukan minyak bumi Membahas identifikasi minyak bumi tidak dapat lepas dari bahasan teori pembentukan minyak bumi dan kondisi pembentukannya yang membuat suatu minyak bumi menjadi spesifik dan tidak sama antara suatu minyak bumi dengan minyak bumi lainnya. Karena saya adalah seorang chemist, maka pendekatan yang saya lakukan lebih banyak kepada aspek kimianya daripada dari aspek geologi. Pemahaman tentang proses pembentukan minyak bumi akan diperlukan sebagai bahan pertimbangan untuk menginterpretasikan hasil identifikasi. Ada banyak hipotesa tentang terbentuknya minyak bumi yang dikemukakan oleh para ahli, beberapa diantaranya adalah : Teori Biogenesis (Organik) Macqiur (Perancis, 1758) merupakan orang yang pertama kali mengemukakan pendapat bahwa minyak bumi berasal dari tumbuh-tumbuhan. Kemudian M.W. Lamanosow (Rusia, 1763) juga mengemukakan hal yang sama. Pendapat di atas juga didukung oleh sarjana lainnya seperti, New Beery (1859), Engler (1909), Bruk (1936), Bearl (1938) dan Hofer. Mereka menyatakan bahwa: minyak dan gas bumi berasal dari organisme laut yang telah mati berjuta-juta tahun yang lalu dan membentuk sebuah lapisan dalam perut bumi. Teori Abiogenesis (Anorganik) Barthelot (1866) mengemukakan bahwa di dalam minyak bumi terdapat logam alkali, yang dalam keadaan bebas dengan temperatur tinggi akan bersentuhan dengan CO2 membentuk asitilena. Kemudian Mandeleyev (1877) mengemukakan bahwa minyak bumi terbentuk akibat adanya pengaruh kerja uap pada karbida-karbida logam dalam bumi. Yang lebih ekstrim lagi adalah pernyataan beberapa ahli yang mengemukakan bahwa minyak bumi mulai terbentuk sejak zaman prasejarah, jauh sebelum bumi terbentuk dan bersamaan dengan proses terbentuknya bumi. Pernyataan tersebut berdasarkan fakta ditemukannya material hidrokarbon dalam beberapa batuan meteor dan di atmosfir beberapa planet lain. Dari sekian banyak hipotesa tersebut yang sering dikemukakan adalah Teori Biogenesis, karena lebih bisa. Teori pembentukan minyak bumi terus berkembang seiring dengan berkembangnya teknologi dan teknik analisis minyak bumi, sampai kemudian pada tahun 1984 G. D. Hobson dalam tulisannya yang berjudul The Occurrence and Origin of Oil and Gas. Berdasarkan teori Biogenesis, minyak bumi terbentuk karena adanya kebocoran kecil yang permanen dalam siklus karbon. Siklus karbon ini terjadi antara atmosfir dengan permukaan bumi, yang digambarkan dengan dua panah dengan arah yang berlawanan, dimana karbon diangkut dalam bentuk karbon dioksida (CO2). Pada arah pertama, karbon dioksida di atmosfir berasimilasi, artinya CO2 diekstrak dari atmosfir oleh organisme fotosintetik darat dan laut. Pada arah yang kedua CO2 dibebaskan kembali ke atmosfir melalui respirasi makhluk hidup (tumbuhan, hewan dan mikroorganisme). Dalam proses ini, terjadi kebocoran kecil yang memungkinkan satu bagian kecil karbon yang tidak dibebaskan kembali ke atmosfir dalam bentuk CO2, tetapi mengalami transformasi yang akhirnya menjadi fosil yang dapat terbakar. Bahan bakar fosil ini jumlahnya hanya kecil sekali. Bahan organik yang mengalami oksidasi selama pemendaman. Akibatnya, bagian utama dari karbon organik dalam bentuk karbonat menjadi sangat kecil jumlahnya dalam batuan sedimen. Pada mulanya senyawa tersebut (seperti karbohidrat, protein dan lemak) diproduksi oleh makhluk hidup sesuai dengan kebutuhannya, seperti untuk mempertahankan diri, untuk berkembang biak atau sebagai komponen fisik dan makhluk hidup itu. Komponen yang dimaksud dapat berupa konstituen sel, membran, pigmen, lemak, gula atau protein dari

tumbuh-tumbuhan, cendawan, jamur, protozoa, bakteri, invertebrata ataupun binatang berdarah dingin dan panas, sehingga dapat ditemukan di udara, pada permukaan, dalam air atau dalam tanah.

Apabila makhluk hidup tersebut mati, maka 99,9% senyawa karbon dan makhluk hidup akan kembali mengalami siklus sebagai rantai makanan, sedangkan sisanya 0,1% senyawa karbon terjebak dalam tanah dan dalam sedimen. Inilah yang merupakan cikal bakal senyawa-senyawa fosil atau dikenal juga sebagai embrio minyak bumi. Embrio ini mengalami perpindahan dan akan menumpuk di salah satu tempat yang kemungkinan menjadi reservoar dan ada yang hanyut bersama aliran air sehingga menumpuk di bawah dasar laut, dan ada juga karena perbedaan tekanan di bawah laut muncul ke permukaan lalu menumpuk di permukaan dan ada pula yang terendapkan di permukaan laut dalam yang arusnya kecil. Embrio kecil ini menumpuk dalam kondisi lingkungan lembab, gelap dan berbau tidak sedap di antara mineral-mineral dan sedimen, lalu membentuk molekul besar yang dikenal dengan geopolimer. Senyawa-senyawa organik yang terpendam ini akan tetap dengan karakter masing-masing yang spesifik sesuai dengan bahan dan lingkungan pembentukannya. Selanjutnya senyawa organik ini akan mengalami proses geologi dalam perut bumi. Pertama akanmengalami proses diagenesis, dimana senyawa organik dan makhluk hidup sudah merupakan senyawa mati dan terkubur sampai 600 meter saja di bawah permukaan dan lingkungan bersuhu di bawah 50C.

Pada kondisi ini senyawa-senyawa organik yang berasal dan makhluk hidup mulai kehilangan gugus beroksigen akibat reaksi dekarboksilasi dan dehidratasi. Semakin dalam pemendaman terjadi, semakin panas lingkungannya, penam-bahan kedalaman 30 40 m akan menaik-kan temperatur 1C. Di kedalaman lebih dan 600 m sampai 3000 m, suhu pemendaman akan berkisar antara 50 150 C, proses geologi kedua yang disebut katagenesis akan berlangsung, maka geopolimer yang terpendam mulal terurai akibat panas bumi. Komponen-komponen minyak bumi pada proses ini mulai terbentuk dan senyawa senyawa karakteristik yang berasal dan makhluk hidup tertentu kembali dibebaskan dari

molekul. Bila kedalaman terus berlanjut ke arah pusat bumi, temperatur semakin naik, dan jika kedalaman melebihi 3000 m dan suhu di atas 150C, maka bahan-bahan organik dapat terurai menjadi gas bermolekul kecil, dan proses ini disebut metagenesis. Setelah proses geologi ini dilewati, minyak bumi sudah terbentuk bersama-sama dengan bio-marka. Fosil molekul yang sudah terbentuk ini akan mengalami perpindahan (migrasi) karena kondisi lingkungan atau kerak bumi yang selalu bergerak rata-rata sejauh 5 cm per tahun, sehingga akan ter-perangkap pada suatu batuan berpori, atau selanjutnya akan bermigrasi membentuk suatu sumur minyak. Apabila dicuplik batuan yang memenjara minyak ini (batuan induk) atau minyak yang terperangkap dalam rongga bumi, akan ditemukan fosil senyawa-senyawa organik. Fosil-fosil senyawa inilah yang ditentukan strukturnya menggunaan be-berapa metoda analisis, sehingga dapat menerangkan asal-usul fosil, bahan pembentuk, migrasi minyak bumi serta hubungan antara suatu minyak bumi dengan minyak bumi lain dan hubungan minyak bumi dengan batuan induk. PENGOLAHAN MINYAK BUMI Minyak bumi ditemukan bersama-sama dengan gas alam. Minyak bumi yang telah dipisahkan dari gas alam disebut juga minyak mentah (crude oil). Minyak mentah dapat dibedakan menjadi: Minyak mentah ringan (light crude oil) yang mengandung kadar logam dan belerang rendah, berwarna terang dan bersifat encer (viskositas rendah). Minyak mentah berat (heavy crude oil) yang mengandung kadar logam dan belerang tinggi, memiliki viskositas tinggi sehingga harus dipanaskan agar meleleh. Minyak mentah merupakan campuran yang kompleks dengan komponen utama alkana dan sebagian kecil alkena, alkuna, siklo-alkana, aromatik, dan senyawa anorganik. Meskipun kompleks, untungnya terdapat cara mudah untuk memisahkan komponenkomponennya, yakni berdasarkan perbedaan nilai titik didihnya. Proses ini disebut distilasi bertingkat. Untuk mendapatkan produk akhir sesuai dengan yang diinginkan, maka sebagian hasil dari distilasi bertingkat perlu diolah lebih lanjut melalui proses konversi, pemisahan pengotor dalam fraksi, dan pencampuran fraksi. Distilasi bertingkat Dalam proses distilasi bertingkat, minyak mentah tidak dipisahkan menjadi komponenkomponen murni, melainkan ke dalam fraksi-fraksi, yakni kelompok-kelompok yang mempunyai kisaran titik didih tertentu. Hal ini dikarenakan jenis komponen hidrokarbon begitu banyak dan isomer-isomer hidrokarbon mempunyai titik didih yang berdekatan. Proses distilasi bertingkat ini dapat dijelaskan sebagai berikut: Minyak mentah dipanaskan dalam boiler menggunakan uap air bertekanan tinggi sampai suhu ~600oC. Uap minyak mentah yang dihasilkan kemudian dialirkan ke bagian bawah menara/tanur distilasi. Dalam menara distilasi, uap minyak mentah bergerak ke atas melewati pelatpelat (tray). Setiap pelat memiliki banyak lubang yang dilengkapi dengan tutup gelembung (bubble cap) yang memungkinkan uap lewat. Dalam pergerakannya, uap minyak mentah akan menjadi dingin. Sebagian uap akan mencapai ketinggian di mana uap tersebut akan terkondensasi membentuk zat cair. Zat cair yang diperoleh dalam suatu kisaran suhu tertentu ini disebut fraksi. Fraksi yang mengandung senyawa-senyawa dengan titik didih tinggi akan terkondensasi di bagian bawah menara distilasi. Sedangkan fraksi senyawasenyawa dengan titik didih rendah akan terkondensasi di bagian atas menara. Sebagian fraksi dari menara distilasi selanjutnya dialirkan ke bagian kilang minyak lainnya untuk proses konversi.

Menara destilasi

BAB XIII KARBOHIDRAT DAN KLASIFIKASINYA

Butir-butir pati dilihat dengan mikroskop cahaya.Karbohidrat ('hidrat dari karbon', hidrat arang) atau sakarida (dari bahasa Yunani , skcharon, berarti "gula") adalah segolongan besar senyawa organik yang

paling melimpah di bumi. Karbohidrat memiliki berbagai fungsi dalam tubuh makhluk hidup, terutama sebagai bahan bakar (misalnya glukosa), cadangan makanan (misalnya pati pada tumbuhan dan glikogen pada hewan), dan materi pembangun (misalnya selulosa pada tumbuhan, kitin pada hewan dan jamur). Pada proses fotosintesis, tetumbuhan hijau mengubah karbon dioksida menjadi karbohidrat. Secara biokimia, karbohidrat adalah polihidroksil-aldehida atau polihidroksil-keton, atau senyawa yang menghasilkan senyawa-senyawa ini bila dihidrolisis. Karbohidrat mengandung gugus fungsi karbonil (sebagai aldehida atau keton) dan banyak gugus hidroksil. Pada awalnya, istilah karbohidrat digunakan untuk golongan senyawa yang mempunyai rumus (CH2O)n, yaitu senyawa-senyawa yang n atom karbonnya tampak terhidrasi oleh n molekul air. Namun demikian, terdapat pula karbohidrat yang tidak memiliki rumus demikian dan ada pula yang mengandung nitrogen, fosforus, atau sulfur. Bentuk molekul karbohidrat paling sederhana terdiri dari satu molekul gula sederhana yang disebut monosakarida, misalnya glukosa, galaktosa, dan fruktosa. Banyak karbohidrat merupakan polimer yang tersusun dari molekul gula yang terangkai menjadi rantai yang panjang serta dapat pula bercabang-cabang, disebut polisakarida, misalnya pati, kitin, dan selulosa. Selain monosakarida dan polisakarida, terdapat pula disakarida (rangkaian dua monosakarida) dan oligosakarida (rangkaian beberapa monosakarida). Peran dalam biosfer Fotosintesis menyediakan makanan bagi hampir seluruh kehidupan di bumi, baik secara langsung atau tidak langsung. Organisme autotrof seperti tumbuhan hijau, bakteri, dan alga fotosintetik memanfaatkan hasil fotosintesis secara langsung. Sementara itu, hampir semua organisme heterotrof, termasuk manusia, benar-benar bergantung pada organisme autotrof untuk mendapatkan makanan. Pada proses fotosintesis, karbon dioksida diubah menjadi karbohidrat yang kemudian dapat digunakan untuk mensintesis materi organik lainnya. Karbohidrat yang dihasilkan oleh fotosintesis ialah gula berkarbon tiga yang dinamai gliseraldehida 3-fosfat. Senyawa ini merupakan bahan dasar senyawa-senyawa lain yang digunakan langsung oleh organisme autotrof, misalnya glukosa, selulosa, dan pati.

Peran sebagai bahan bakar dan nutrisi

Kentang merupakan salah satu bahan makanan yang mengandung banyak karbohidrat. Karbohidrat menyediakan kebutuhan dasar yang diperlukan tubuh makhluk hidup. Monosakarida, khususnya glukosa, merupakan nutrien utama sel. Misalnya, pada vertebrata, glukosa mengalir dalam aliran darah sehingga tersedia bagi seluruh sel tubuh. Sel-sel tubuh tersebut menyerap glukosa dan mengambil tenaga yang tersimpan di dalam molekul tersebut pada proses respirasi selular untuk menjalankan sel-sel tubuh. Selain itu, kerangka karbon monosakarida juga berfungsi sebagai bahan baku untuk sintesis jenis molekul organik kecil lainnya, termasuk asam amino dan asam lemak. Sebagai nutrisi untuk manusia, 1 gram karbohidrat memiliki nilai energi 4 Kalori. Dalam menu makanan orang Asia Tenggara termasuk Indonesia, umumnya kandungan karbohidrat cukup tinggi, yaitu antara 7080%. Bahan makanan sumber karbohidrat ini misalnya padi-padian atau serealia (gandum dan beras), umbi-umbian (kentang, singkong, ubi jalar), dan gula. Namun demikian, daya cerna tubuh manusia terhadap karbohidrat bermacam-macam bergantung pada sumbernya, yaitu bervariasi antara 90%98%. Serat menurunkan daya

cerna karbohidrat menjadi 85%. Manusia tidak dapat mencerna selulosa sehingga serat selulosa yang dikonsumsi manusia hanya lewat melalui saluran pencernaan dan keluar bersama feses. Serat-serat selulosa mengikis dinding saluran pencernaan dan merangsangnya mengeluarkan lendir yang membantu makanan melewati saluran pencernaan dengan lancar sehingga selulosa disebut sebagai bagian penting dalam menu makanan yang sehat. Contoh makanan yang sangat kaya akan serat selulosa ialah buah-buahan segar, sayur-sayuran, dan biji-bijian. Selain sebagai sumber energi, karbohidrat juga berfungsi untuk menjaga keseimbangan asam basa di dalam tubuh, berperan penting dalam proses metabolisme dalam tubuh, dan pembentuk struktur sel dengan mengikat protein dan lemak. Peran sebagai cadangan energi Beberapa jenis polisakarida berfungsi sebagai materi simpanan atau cadangan, yang nantinya akan dihidrolisis untuk menyediakan gula bagi sel ketika diperlukan. Pati merupakan suatu polisakarida simpanan pada tumbuhan. Tumbuhan menumpuk pati sebagai granul atau butiran di dalam organel plastid, termasuk kloroplas. Dengan mensintesis pati, tumbuhan dapat menimbun kelebihan glukosa. Glukosa merupakan bahan bakar sel yang utama, sehingga pati merupakan energi cadangan. Sementara itu, hewan menyimpan polisakarida yang disebut glikogen. Manusia dan vertebrata lainnya menyimpan glikogen terutama dalam sel hati dan otot. Penguraian glikogen pada sel-sel ini akan melepaskan glukosa ketika kebutuhan gula meningkat. Namun demikian, glikogen tidak dapat diandalkan sebagai sumber energi hewan untuk jangka waktu lama. Glikogen simpanan akan terkuras habis hanya dalam waktu sehari kecuali kalau dipulihkan kembali dengan mengonsumsi makanan. Peran sebagai materi pembangun Organisme membangun materi-materi kuat dari polisakarida struktural. Misalnya, selulosa ialah komponen utama dinding sel tumbuhan. Selulosa bersifat seperti serabut, liat, tidak larut di dalam air, dan ditemukan terutama pada tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan. Kayu terutama terbuat dari selulosa dan polisakarida lain, misalnya hemiselulosa dan pektin. Sementara itu, kapas terbuat hampir seluruhnya dari selulosa. Polisakarida struktural penting lainnya ialah kitin, karbohidrat yang menyusun kerangka luar (eksoskeleton) arthropoda (serangga, laba-laba, crustacea, dan hewan-hewan lain sejenis). Kitin murni mirip seperti kulit, tetapi akan mengeras ketika dilapisi kalsium karbonat. Kitin juga ditemukan pada dinding sel berbagai jenis fungi. Sementara itu, dinding sel bakteri terbuat dari struktur gabungan karbohidrat polisakarida dengan peptida, disebut peptidoglikan. Dinding sel ini membentuk suatu kulit kaku dan berpori membungkus sel yang memberi perlindungan fisik bagi membran sel yang lunak dan sitoplasma di dalam sel. Karbohidrat struktural lainnya yang juga merupakan molekul gabungan karbohidrat dengan molekul lain ialah proteoglikan, glikoprotein, dan glikolipid. Proteoglikan maupun glikoprotein terdiri atas karbohidrat dan protein, namun proteoglikan terdiri terutama atas karbohidrat, sedangkan glikoprotein terdiri terutama atas protein. Proteoglikan ditemukan misalnya pada perekat antarsel pada jaringan, tulang rawan, dan cairan sinovial yang melicinkan sendi otot. Sementara itu, glikoprotein dan glikolipid (gabungan karbohidrat dan lipid) banyak ditemukan pada permukaan sel hewan. Karbohidrat pada glikoprotein umumnya berupa oligosakarida dan dapat berfungsi sebagai penanda sel. Misalnya, empat golongan darah manusia pada sistem ABO (A, B, AB, dan O) mencerminkan keragaman oligosakarida pada permukaan sel darah merah. Klasifikasi karbohidrat Monosakarida Monosakarida merupakan karbohidrat paling sederhana karena molekulnya hanya terdiri atas beberapa atom C dan tidak dapat diuraikan dengan cara hidrolisis menjadi karbohidrat lain. Monosakarida dibedakan menjadi aldosa dan ketosa. Contoh dari aldosa yaitu glukosa dan galaktosa. Contoh ketosa yaitu fruktosa. Disakarida dan oligosakarida

Disakarida merupakan karbohidrat yang terbentuk dari dua molekul monosakarida yang berikatan melalui gugus -OH dengan melepaskan molekul air. Contoh dari disakarida adalah sukrosa, laktosa, dan maltosa. Polisakarida Polisakarida merupakan karbohidrat yang terbentuk dari banyak sakarida sebagai monomernya. Rumus umum polisakarida yaitu C6(H10O5)n. Contoh polisakarida adalah selulosa, glikogen, dan amilum.

LIPID DAN KLASIFIKASINYA

Struktur kimia untuk trimyristin, sejenis triglyceride. Lemak atau Lipid tidak sama dengan minyak. Orang menyebut lemak secara khusus bagi minyak nabati atau hewani yang berwujud padat pada suhu ruang. Lemak juga biasanya disebutkan kepada berbagai minyak yang dihasilkan oleh hewan, lepas dari wujudnya yang padat maupun cair. 1 gram lemak menghasilkan 39.06 kjoule atau 9,3 kcal. Lemak terdiri atas unsur-unsur karbon, hidrogen, dan oksigen Sifat dan Ciri ciri Karena struktur molekulnya yang kaya akan rantai unsur karbon(-CH2-CH2-CH2-)maka lemak mempunyai sifat hydrophob. Ini menjadi alasan yang menjelaskan sulitnya lemak untuk larut di dalam air. Lemak dapat larut hanya di larutan yang apolar atau organik seperti: eter, Chloroform, atau benzol. Fungsi Secara umum dapat dikatakan bahwa lemak biologis memenuhi 4 fungsi dasar bagi manusia, yaitu: 1 Penyimpan energi 2 Transportasi metabolik sumber energi 3 Sumber zat untuk sintese bagi hormon, kelenjar empedu serta menunjang proses pemberian signal Signal transducing. 4 Struktur dasar atau komponen utama dari membran semua jenis sel. Klassifikasi Ada beberapa model klasifikasi, tetapi disini akan diklasifikasikan berdasarkan kelas dari lemak tersebut. Lipid Asam lemak Fungsi primer Sumber energi, biologis prekursor Contoh Asam palmitin, asam olein, asam linol

Gliserida Fosfogliserid a Badan Keton Sfingolipid Eicosanoida Cholesterin Hormon steroid

Penyimpan energi Komponen dari membran Sumber energie Komponen dari membran Modulator proses fisiologis Komponen dari membran Modulator proses fisiologis

Trigliserida Fosfatidylcholin, Fosfatidylserin, Fosfatidyletanolamin Aceton, Acetoacetat, Hidroxibutyrat Sfingomyelin(Ceramid) dan Glikosfingolipid(Cerebrosid, Globosid) Prostaglandin, Thromboxan, Leukotriene, HPETE Cholesterin, Cholesterinester Aldosteron, Cortisol, Androgen

PROTEIN DAN KLASIFIKASINYA

Segelas susu sapi. Susu sapi merupakan salah satu sumber protein. Protein (akar kata protos dari bahasa Yunani yang berarti "yang paling utama") adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Molekul protein mengandung karbon, hidrogen, oksigen, nitrogen dan kadang kala sulfur serta fosfor. Protein berperan penting dalam struktur dan fungsi semua sel makhluk hidup dan virus. Kebanyakan protein merupakan enzim atau subunit enzim. Jenis protein lain berperan dalam fungsi struktural atau mekanis, seperti misalnya protein yang membentuk batang dan sendi sitoskeleton. Protein terlibat dalam sistem kekebalan (imun) sebagai antibodi, sistem kendali dalam bentuk hormon, sebagai komponen penyimpanan (dalam biji) dan

juga dalam transportasi hara. Sebagai salah satu sumber gizi, protein berperan sebagai sumber asam amino bagi organisme yang tidak mampu membentuk asam amino tersebut (heterotrof). Protein merupakan salah satu dari biomolekul raksasa, selain polisakarida, lipid, dan polinukleotida, yang merupakan penyusun utama makhluk hidup. Selain itu, protein merupakan salah satu molekul yang paling banyak diteliti dalam biokimia. Protein ditemukan oleh Jns Jakob Berzelius pada tahun 1838. Biosintesis protein alami sama dengan ekspresi genetik. Kode genetik yang dibawa DNA ditranskripsi menjadi RNA, yang berperan sebagai cetakan bagi translasi yang dilakukan ribosom. Sampai tahap ini, protein masih "mentah", hanya tersusun dari asam amino proteinogenik. Melalui mekanisme pascatranslasi, terbentuklah protein yang memiliki fungsi penuh secara biologi. Struktur

Struktur tersier protein. Protein ini memiliki banyak struktur sekunder beta-sheet dan alpha-helix yang sangat pendek. Model dibuat dengan menggunakan koordinat dari Bank Data Protein (nomor 1EDH). Struktur protein dapat dilihat sebagai hirarki, yaitu berupa struktur primer (tingkat satu), sekunder (tingkat dua), tersier (tingkat tiga), dan kuartener (tingkat empat). Struktur primer protein merupakan urutan asam amino penyusun protein yang dihubungkan melalui ikatan peptida (amida). Sementara itu, struktur sekunder protein adalah struktur tiga dimensi lokal dari berbagai rangkaian asam amino pada protein yang distabilkan oleh ikatan hidrogen. Berbagai bentuk struktur sekunder misalnya ialah sebagai berikut: alpha helix (-helix, "puntiran-alfa"), berupa pilinan rantai asam-asam amino berbentuk seperti spiral; beta-sheet (-sheet, "lempeng-beta"), berupa lembaran-lembaran lebar yang tersusun dari sejumlah rantai asam amino yang saling terikat melalui ikatan hidrogen atau ikatan tiol (S-H); beta-turn, (-turn, "lekukan-beta"); dan gamma-turn, (-turn, "lekukan-gamma"). Gabungan dari aneka ragam dari struktur sekunder akan menghasilkan struktur tiga dimensi yang dinamakan struktur tersier. Struktur tersier biasanya berupa gumpalan. Beberapa molekul protein dapat berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener. Contoh struktur kuartener yang terkenal adalah enzim Rubisco dan insulin. Struktur primer protein bisa ditentukan dengan beberapa metode: (1) hidrolisis protein dengan asam kuat (misalnya, 6N HCl) dan kemudian komposisi asam amino ditentukan dengan instrumen amino acid analyzer. (2) analisis sekuens dari ujung-N dengan menggunakan degradasi Edman (3) kombinasi dari digesti dengan tripsin dan spektrometri massa, dan (4) penentuan massa molekular dengan spektrometri massa. Struktur sekunder bisa ditentukan dengan menggunakan spektroskopi circular dichroism (CD) dan Fourier Transform Infra Red (FTIR). Spektrum CD dari puntiran-alfa

menunjukkan dua absorbans negatif pada 208 dan 220 nm dan lempeng-beta menunjukkan satu puncak negatif sekitar 210-216 nm. Estimasi dari komposisi struktur sekunder dari protein bisa dikalkulasi dari spektrum CD. Pada spektrum FTIR, pita amidaI dari puntiran-alfa berbeda dibandingkan dengan pita amida-I dari lempeng-beta. Jadi, komposisi struktur sekunder dari protein juga bisa diestimasi dari spektrum inframerah. Struktur protein lainnya yang juga dikenal adalah domain. Struktur ini terdiri dari 40-350 asam amino. Protein sederhana umumnya hanya memiliki satu domain. Pada protein yang lebih kompleks, ada beberapa domain yang terlibat di dalamnya. Hubungan rantai polipeptida yang berperan di dalamnya akan menimbulkan sebuah fungsi baru berbeda dengan komponen penyusunnya. Bila struktur domain pada struktur kompleks ini berpisah, maka fungsi biologis masing-masing komponen domain penyusunnya tidak hilang. Inilah yang membedakan struktur domain dengan struktur kuartener. Pada struktur kuartener, setelah struktur kompleksnya berpisah, protein tersebut tidak fungsional. Kekurangan Protein Protein sendiri mempunyai banyak sekali fungsi di tubuh kita. Pada dasarnya protein menunjang keberadaan setiap sel tubuh, proses kekebalan tubuh. Setiap orang dewasa harus sedikitnya mengkonsumsi 1 g protein pro kg berat tubuhnya. Kebutuhan akan protein bertambah pada perempuan yang mengandung dan atlet-atlet. Kekurangan Protein bisa berakibat fatal: Kerontokan rambut (Rambut terdiri dari 97-100% dari Protein -Keratin) Yang paling buruk ada yang disebut dengan Kwasiorkor, penyakit kekurangan protein. Biasanya pada anak-anak kecil yang menderitanya, dapat dilihat dari yang namanya busung lapar, yang disebabkan oleh filtrasi air di dalam pembuluh darah sehingga menimbulkan odem.Simptom yang lain dapat dikenali adalah: hipotonus gangguan pertumbuhan hati lemak Kekurangan yang terus menerus menyebabkan marasmus dan berkibat kematian. Sintesa protein Dari makanan kita memperoleh Protein. Di sistem pencernaan protein akan diuraikan menjadi peptid peptid yang strukturnya lebih sederhana terdiri dari asam amino. Hal ini dilakukan dengan bantuan enzim. Tubuh manusia memerlukan 9 asam amino. Artinya kesembilan asam amino ini tidak dapat disintesa sendiri oleh tubuh esensiil, sedangkan sebagian asam amino dapat disintesa sendiri atau tidak esensiil oleh tubuh. Keseluruhan berjumlah 21 asam amino. Setelah penyerapan di usus maka akan diberikan ke darah. Darah membawa asam amino itu ke setiap sel tubuh. Kode untuk asam amino tidak esensiil dapat disintesa oleh DNA. Ini disebut dengan DNAtranskripsi. Kemudian mRNA hasil transkripsi di proses lebih lanjut di ribosom atau retikulum endoplasma, disebut sebagai translasi. Sumber Protein Daging Ikan Telur Susu, dan produk sejenis Quark Tumbuhan berbji Suku polong-polongan Kentang Studi dari Biokimiawan USA Thomas Osborne Lafayete Mendel, Profesor untuk biokimia di Yale, 1914, mengujicobakan protein konsumsi dari daging dan tumbuhan kepada kelinci. Satu grup kelinci-kelinci tersebut diberikan makanan protein hewani, sedangkan grup yang lain diberikan protein nabati. Dari eksperimennya didapati bahwa kelinci yang memperoleh protein hewani lebih cepat bertambah beratnya dari kelinci yang memperoleh protein nabati. Kemudian studi selanjutnya, oleh McCay dari Universitas Berkeley menunjukkan bahwa kelinci yang memperoleh protein nabati, lebih sehat dan hidup dua kali lebih lama.

Keuntungan Protein Sumber energi Pembetukan dan perbaikan sel dan jaringan Sebagai sintesis hormon,enzim, dan antibodi Pengatur keseimbangan kadar asam basa dalam sel Methode Pembuktian Protein Tes UV-Absorbsi Reaksi Xanthoprotein Reaksi Millon Reaksi Ninhydrin Reaksi Biuret Reaksi Bradford Tes Protein berdasar Lowry Tes BCA-

POLIMER DAN KLASIFIKASINYA

Suatu molekul raksasa (makromolekul) yang terbentuk dari susunan ulang molekul kecil yang terikat melalui ikatan kimia disebut polimer (poly = banyak; mer = bagian). Suatu polimer akan terbentuk bila seratus atau seribu unit molekul yang kecil yang disebut monomer, saling berikatan dalam suatu rantai. Jenis-jenis monomer yang saling berikatan membentuk suatu polimer terkadang sama atau berbeda. Sifat-sifat polimer berbeda dari monomer-monomer yang menyusunnya. Pada contoh diatas, teflon (politetra-fluoroetilena) yang berwujud padat dibuat bila molekul-molekul gas tetra-fluoroetilena bereaksi membentuk rantai panjang. Contoh lain, molekul-molekul gas etilena bereaksi membentuk rantai panjang plastik polietilena yang ada pada kaleng susu. Dapatkah Anda mencari contoh-contoh pembentukan polimer yang lain?

Beberapa contoh monomer dari kiri ke kanan: vinil klorida, propena, tetra-fluoroetilena, dan stirena

Monomer akrilonitril membentuk polimer poliakrilonitril (PAN), yang dikenall dengan nama orlon, dan digunakan sebagai karpet dan pakaian rajutan. Ikatan rangkap pada karbon dalam monomer berubah menjadi ikatan tunggal, dan berikatan dengan atom karbon lain membentuk polimer. STRUKTUR POLIMER Bila Anda ingin memahami struktur polimer, Anda dapat mengidentifikasi monomer yang secara berulang-ulang menyusun polimer tersebut. Karena polimer merupakan molekul yang besar, maka polimer umumnya disajikan dengan menggambarkan hanya sebuah rantai. Sebuah rantai yang digambarkan tadi harus mencakup paling tidak satu satuan ulang yang lengkap.

Selulosa, merupakan komponen utama tumbuhan, suatu senyawa organik yang sangat berlimpah di bumi. Selulosa merupakan polimer yang ditemukan di dalam dinding sel tumbuhan seperti kayu, dahan, dan daun. Selulosa itulah yang menyebabkan struktur-struktur kayu, dahan dan daun menjadi kuat. Dapatkah Anda menemukan bagian dari struktur molekul selulosa yang diulang? Ingat bahwa bagian cincin dari molekul selulosa semuanya identik. Ada satuan-satuan monomer yang bergabung membentuk polimer. Glukosa adalah nama monomer yang ditemukan di dalam selulosa.

POLIMER BERDASAR ASALNYA Berdasarkan asalnya, polimer dibedakan atas polimer alam dan polimer buatan. Polimer alam telah dikenal sejak ribuan tahun yang lalu, seperti amilum, selulosa, kapas, karet, wol, dan sutra. Polimer buatan dapat berupa polimer regenerasi dan polimer sintetis. Polimer regenerasi adalah polimer alam yang dimodifikasi. Contohnya rayon, yaitu serat sintetis yang dibuat dari kayu (selulosa). Polimer sintetis adalah polimer yang dibuat dari molekul sederhana (monomer) dalam pabrik. Polimer Sintetis Polimer sintetis yang pertama kali yang dikenal adalah bakelit yaitu hasil kondensasi fenol dengan formaldehida, yang ditemukan oleh kimiawan kelahiran Belgia Leo Baekeland pada tahun 1907. Bakelit merupakan salah satu jenis dari produk-produk konsumsi yang dipakai secara luas. Beberapa contoh polimer yang dibuat oleh pabrik adalah nylon dan poliester, kantong plastik dan botol, pita karet, dan masih banyak produk lain yang Anda lihat sehari-hari. Ahli kimia telah mensintesis polimer di dalam laboratorium selama 100 tahun. Polimer alam Laboratorium bukan satu-satunya tempat mensintesis polimer. Selsel kehidupan juga merupakan pabrik polimer yang efisien. Protein, DNA, kitin pada kerangka luar serangga, wool, jaring laba-laba, sutera dan kepompong ngengat, adalah polimer-polimer yang disintesis secara alami. Serat-serat selulosa yang kuat menyebabkan batang pohon menjadi kuat dan tegar untuk tumbuh dengan tinggi seratus kaki dibentuk dari monomer-monomer glukosa, yang berupa padatan kristalin yang berasa manis. Banyak polimer-polimer sintesis dikembangkan sebagai pengganti sutra. Gagasan untuk proses tersebut adalah benang-benang sintesis yang dibentuk di pabrik diambil dari labalaba.

Pemintalan secara industri (a) dan pemintalan dari laba-laba (b). Benang yang panjang, halus dipintal ketika molekul-molekul polimer itu ditekan melalui lubang kecil didalam pemintalan, baik secara alami dan industri Karet merupakan polimer alam yang terpenting dan dipakai secara luas. Bentuk utama dari karet alam, terdiri dari 97% cis-1,4-poliisoprena, dikenal sebagai hevea rubber. Karet ini diperoleh dengan menyadap kulit sejenis pohon (hevea brasiliensis) yang tumbuh liar. Hampir semua karet alam diperoleh sebagai lateks yang terdiri dari sekitar 32 35% karet dan sekitar 5% senyawa lain, termasuk asam lemak, gula, protein, sterol, ester dan garam. Polimer alam lain adalah polisakarida, selulosa dan lignin yang merupakan bahan dari kayu. POLIMER BERDASAR JENIS MONOMERNYA Berdasarkan jenis monomernya, polimer dibedakan atas homopolimer dan kopolimer. Homopolimer terbentuk dari sejenis monomer, sedangkan kopolimer terbentuk lebih dari sejenis monomer. Uraian berikut menjelaskan perbedaan dua golongan polimer tersebut. Homopolimer

Homopolimer merupakan polimer yang terdiri dari satu macam monomer, dengan struktur polimer. . . A A A A A A -. . . Kopolimer Kopolimer merupakan polimer yang tersusun dari dua macam atau lebih monomer. Contoh: polimer SBS (polimer stirena-butadiena-stirena) Jenis-jenis kopolimer a) Kopolimer acak, yaitu kopolimer yang mempunyai sejumlah satuan berulang yang berbeda tersusun secara acak dalam rantai polimer. Strukturnya: . . . A B A A B B A A -. . . . b) Kopolimer bergantian, yaitu kopolimer yang mempunyai beberapa kesatuan ulang yang berbeda berselang-seling adanya dalam rantai polimer. Strukturnya:. . . A B A BA... c) Kopolimer balok (blok), yaitu kopolimer yang mempunyai suatu kesatuan berulang berselang-seling dengan kesatuan berulang lainnya dalam rantai polimer. Strukturnya: . . . A A A A B B B B A A A A -. . . d) Kopolimer tempel/grafit, yaitu kopolimer yang mempunyai satu macam kesatuan berulang menempel pada polimer tulang punggung lurus yang mengandung hanya satu macam kesatuan berulang dari satu jenis monomer. Strukturnya

POLIMER BERDASAR REAKSI PEMBENTUKANNYA Polimer Adisi Reaksi pembentukan teflon dari monomer-monomernya tetrafluoroetilen, disebut reaksi adisi.

Monomer etilena mengalami reaksi adisi membentuk polietilena yang digunakan sebagai tas plastik, pembungkus makanan, dan botol. Pasangan elektron ekstra dari ikatan rangkap dua pada tiap monomer etilena digunakan untuk membentuk suatu ikatan baru menjadi monomer yang lain Menurut jenis reaksi adisi ini, monomer-monomer yang mengandung ikatan rangkap dua saling bergabung, satu monomer masuk ke monomer yang lain, membentuk rantai panjang. Produk yang dihasilkan dari reaksi polimerisasi adisi mengandung semua atom dari monomer awal. Polimerisasi adisi adalah polimer yang terbentuk dari reaksi polimerisasi disertai dengan pemutusan ikatan rangkap diikuti oleh adisi dari monomermonomernya yang membentuk ikatan tunggal. Dalam reaksi ini tidak disertai terbentuknya molekul-molekul kecil seperti H2O atau NH3.

Polietilen dan polivinil asetat adalah contoh polimer yang dibuat melalui polimerisasi adisi. Dalam reaksi polimerisasi adisi, umumnya melibatkan reaksi rantai. Mekanisme polimerisasi adisi dapat dibagi menjadi tiga tahap yaitu:

Sebagai contoh mekanisme polimerisasi adisi dari pembentukan polietilena a) Inisiasi, untuk tahap pertama ini dimulai dari penguraian inisiator dan adisi molekul monomer pada salah satu radikal bebas yang terbentuk. Bila kita nyatakan radikal bebas yang terbentuk dari inisiator sebagai R, dan molekul monomer dinyatakan dengan CH2 = CH2, maka tahap inisiasi dapat digambarkan sebagai berikut:

b) Propagasi, dalam tahap ini terjadi reaksi adisi molekul monomer pada radikal monomer yang terbentuk dalam tahap inisiasi

Bila proses dilanjutkan, akan terbentuk molekul polimer yang besar, dimana ikatan rangka