mekanika-fluida-1

Upload: dekabayan

Post on 09-Jan-2016

17 views

Category:

Documents


0 download

DESCRIPTION

MekFlu

TRANSCRIPT

  • RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER

    (RPKPS)

    Mata Kuliah : Mekanika Fluida Kode Mata Kuliah : TKP4107

    Semester : Ganjil Beban Studi : 2 sks (Wajib)

    Dosen : Ir. Dwi Priyantoro, MS Dian Sisinggih, ST, MT, Ph.D.

    Ir. Heri Suprijanto, MS Dr. Very Dermawan, ST, MT.

    Ir. Hari Prasetijo, MT Prima Hadi W, ST, MT.

    Ir. M Janu Ismoyo, MT Ir. Sujatmoko Amali

    Kompetensi

    Setelah mengikuti perkuliahan ini, mahasiswa mendapatkan pemahaman kaidah dasar mengenai perilaku fluida baik dalam kondisi diam

    maupun bergerak. Selanjutnya pemahaman tentang mekanika fluida ini akan membuat mahasiswa lebih mudah dalam mempelajari hidraulika

    dan desain dan analisis teknik yang berhubungan dengan perilaku fluida cair.

    Evaluasi

    Keberhasilan mahasiswa dalam menempuh mata kuliah ini dilakukan dalam bentuk evaluasi akhir semester yang dihitung dengan

    menggabungkan semua aspek penilaian yang berupa Kuis, Tugas dan Ujian Akhir Semester.

    Daftar Pustaka yang digunakan

    1. Frank M. White, Mekanika Fluida (terjemahan), jilid 1 dan 2, Erlangga, Jakarta 2. Streeter-Wylie, Mekanika Fluida (terjemahan), jilid 1 dan 2, Erlangga, Jakarta 3. Ir. A . Soedrajat, Mekanika Fluida dan Hidrolika, NOVA, Bandung 4. Philip. M. Gerhart et. Al, Fundamentals of Fluid Mechanics, Addison-Wesley, New York 5. Robert W. Fox, Introduction to Fluid Mechanics, John Wiley & Son, New York

  • Kuliah

    ke Pokok Bahasan Sub-Pokok Bahasan

    Jenis

    kegiatan

    pembelajaran

    Bentuk Tugas Bobot

    Nilai

    Taksonomi

    1 2 3 4 5 6

    1 I. Ukuran Fluida

    1.1 Definisi Fluida 1.2 Perbedaan Zat Padat dan Fluida 1.3 Klasifikasi Fluida 1.4 Sifat-sifat Cairan 1.5 Tekanan Fluida

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    2 1.6 Tinggi Tekanan 1.7 Barometer 1.8 Tekanan Absolut 1.9 Manometri 1.10 Contoh Soal

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    3 II. Hidrostatika 2.1 Tekanan Atmofsir Absolut Menurut Alat Ukur

    2.2 Gaya Hidrostatika pada Permukaan Rata

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    4 2.3 Gaya Hidrostatika pada Permukaan Horizontal

    2.4 Gaya Hidrostatika pada Permukaan Vertikal

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    5 2.5 Gaya Hidrostatika pada Permukaan yang Dimasukkan Dalam Air Secara

    Vertikal

    2.6 Gaya Hidrostatika pada Permukaan Miring

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    6 2.7 Gaya Hidrostatika pada Permukaan Melengkung

    2.8 Latihan Soal

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    7 Latihan Soal Pokok Bahasan I dan II Latihan soal x x x

    8 Test I Latihan soal /

    Tugas

    x x x

  • 9 III. Stabilitas Benda Terapung

    3.1 Gaya Ke Atas Benda dalam Cairan dan Benda Terapung

    3.2 Analisa Benda Dalam Keadaan Seimbang dan Stabil

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    10 3.3 Analisa Benda dalamKeadaan Seimbang Tetapi Tidak Stabil

    3.4 Contoh Soal

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    11 IV. Aliran Fluida 4.1 Jenis-jenis Umum Aliran Fluida 4.2 Jenis-jenis Garis Aliran 4.3 Debit 4.4 Persamaan Kontinuitas

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    12 4.5 Energi a. Potensial b. Kinetik c. Tekanan d. Total

    4.6 Teorema Bernoulli

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    13 4.7 Alat Ukur Venturi Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    14 4.8 Tabung Pitot 4.9 Bilangan Reynolds 4.10 Alat Ukur Dengan Penyempitan 4.11 Contoh Soal

    Tatap muka di

    kelas

    Latihan

    soal/Tugas

    x x

    15 Latihan Soal Latihan

    soal/Tugas

    x x x

    16 Test II Latihan

    soal/Tugas

    x x x

    Taksonomi: 1. Mengingat 2. Mengerti 3. Mengaplikasikan 4. Menganalisis 5. Mengkreasi

  • Syllabus

    AEM 4201

    Fluid Mechanics 4 Credits

    Catalog Description:

    First course in fluid mechanics. Includes stress and strain rate descriptions, fluid statics, use of differential and finite control volume analysis

    with continuity, momentum, and energy equations, Bernoulli and Euler equations, vorticity, potential flow, incompressible viscous flow using

    Navier-Stokes equations, dimensional analysis, pipe flow, boundary layers, separation, introduction to turbulence.

    Course Web Address:

    http://www.aem.umn.edu/courses/aem4201/

    Prerequisites by Topic:

    1. Linear Algebra and Differential Equations (Math 2373)

    2. Multivariable Calculus (Math 2374)

    3. Dynamics (AEM 2012)

    Text:

    A Brief Introduction to Fluid Mechanics, 3rd

    Edition, Young, Wiley

    Format of Course:

    4 hours of lecture per week

    Computer Usage:

    Spreadsheets and Matlab

    Course Objectives:

  • Develop an understanding of fluid dynamics in aerospace engineering as well as a variety of other fields. Learn to use control volume analysis

    to develop basic equations and to solve problems. Understand and use differential equations to determine pressure and velocity variations in

    internal and external flows. Understand the concept of viscosity and where viscosity is important in real flows. Learn to use equations in

    combination with experimental data to determine losses in flow systems. Learn to use dimensional analysis to design physical or numerical

    experiments and to apply dynamic similarity.

    Course Outcomes:

    Students successfully completing this course will demonstrate the following outcomes by homework and exams:

    1. An understanding of fluid mechanics fundamentals, including concepts of mass and momentum conservation.

    2. An ability to apply the Bernoulli equation to solve problems in fluid mechanics. 3. An ability to apply control volume analysis to problems in fluid mechanics. 4. An ability to use potential flow theory to solve problems in fluid mechanics. 5. An ability to perform dimensional analysis for problems in fluid mechanics. 6. A knowledge of laminar and turbulent boundary layer fundamentals. 7. An exposure to recent developments in fluid mechanics, with application to aerospace systems. 8. An ability to apply the concepts developed for fluid flow analysis to issues in aerospace design.

    Relationship of course to program objectives:

    This course develops the fundamentals of fluid mechanics and problem solving skills necessary to aerospace engineers.

    Relationship of course to program outcomes:

    This course provides the following outcomes:

    1. Apply mathematics 2. Identify engineering problems

    Course Outline:

    Lecture

    (Hrs, approx.)

    Topic

    2 Introduction

    4 Fluid Statics

    4 Conservation of mass and momentum

  • 4 Bernoulli equation

    4 Equations of motion in integral form

    6 Equations of motion in differential form

    4 Kinematics, vorticity, potential flow

    6 Potential flow

    4 Dimensional analysis

    4 Viscous flows, exact solutions, pipe flow

    4 Laminar boundary layers

    4 Boundary layer solution methods

    4 Turbulence

    4 Turbulent internal and external flows

    Outcome Measurement:

    Outcomes will be measured by homework and tests.

    Student Survey Questions:

    This course improved my ability to do the following:

    1. Apply knowledge of math, science, and engineering. 2. Design a system, component or process to meet desired needs. 3. Identify, formulate, and solve engineering problems. 4. Understand contemporary engineering issues. 5. Use the techniques, skills, and modern engineering tools necessary for engineering practice.

    Please assign one of the values above to each of the following statements:

    6. The text book was clearly written and appropriate for the course. 7. The homework helped me to understand the concepts presented in the course. 8. The tests were appropriate in length and content. 9. The level of work required in this course was appropriate for the credit given.

    In this course I acquired the following:

    10. Knowledge of basic fluid dynamics.

  • 11. Knowledge of control volume analysis. 12. An ability to use differential equations to understand pressure and velocity variations. 13. Knowledge of dimensional analysis. 14. An ability to determine losses in flow systems. 15. Understanding of viscosity and its importance in real flows.