makalah biotek, qurratul aeni.docx

28
MAKALAH INDIVIDU MATA KULIAH BIOTEKNOLOGI REKAYASA GENETIKA MIKROORGANISME PENGHASIL ENZIM LIPASE UNTUK PRODUK BAKERY OLEH : NAMA : QURRATUL AENI NIM : 70100112048 KELAS : FARMASI A JURUSAN FARMASI FAKULTAS ILMU KESEHATAN UNIVERSITAS ISLAM NEGERI ALAUDDIN MAKASSAR

Upload: aenhiequrra-althafunnisa

Post on 27-Sep-2015

259 views

Category:

Documents


0 download

TRANSCRIPT

MAKALAH INDIVIDUMATA KULIAH BIOTEKNOLOGI

REKAYASA GENETIKA MIKROORGANISME PENGHASIL ENZIM LIPASE UNTUK PRODUKBAKERY

OLEH :

NAMA : QURRATUL AENINIM : 70100112048KELAS: FARMASI AJURUSAN FARMASI FAKULTAS ILMU KESEHATANUNIVERSITAS ISLAM NEGERI ALAUDDIN MAKASSARSAMATA - GOWA2014

BAB IPENDAHULUANA. Latar Belakanglmu pengetahuan dalam bidang rekayasa genetika mengalami perkembangan yang luar biasa. Perkembangannya diharapkan mampu memberikan solusi atas berbagai permasalahan baik dari segi sandang, pangan, dan papan yang secara konvensional tidak mampu memberikan konstribusi yang maksimal. Adanya produk hasil rekayasa tanaman memiliki tujuan untuk mengatasi kelaparan, defisiensi nutrisi, peningkatan produktivitas tanaman, ketahanan terhadap cekaman lingkungan yang ekstrem, dan lain-lain (Amin et al., 2011a). Perkembangan dari rekayasa genetika tersebut diikuti dengan berbagai macam isu permasalahan seperti sosial, ekonomi, lingkungan, kesehatan, politik, agama, etika dan legalitas suatu produk rekayasa genetika. Permasalahan-permasalahan tersebut terangkum dalam sebuah kajian yang dinamakan bioetika (Pottage, 2007; Evans&Michael, 2008). Perma-salahan bioetika rekayasa genetika selalu dikaitkan oleh berbagai macam kekhawatiran tentang produk hasil rekayasa genetika. Kekhawatiran tersebut mendorong munculnya berbagai macam kontroversial di kalangan masyarakat. Dari hal inilah muncul berbagai macam pro dan kontra mengenai produk rekayasa genetika. Adanya berbagai polemik tersebut mendasari terbentuknya berbagai macam peraturan atau protokol yang mengatur berbagai macam aktivitas di bidang rekayasa genetika (Dano, 2007).Rekayasa genetika memegang peranan penting dalam merubah susunan genetika makhluk hidup sesuai dengan keperluan manusia di masa ini. Rekayasa Genetika (transgenik) atau juga yang lebih dikenal denganGenetically Modified Organism (GMO)dapat diartikan sebagai manipulasi gen untuk mendapatkan galur baru dengan cara menyisipkan bagian gen ke tubuh organisme tertentu. Rekayasa genetika juga merupakan Pencangkokan Gen atau ADN Rekombinan. Rekayasa Genetik, dinyatakan sebagai kemajuan yang paling mengagumkan semenjak manusia berhasil memisahkan atom (Imawan, dkk: 2012).Perkembangan IPTEK adalah sebuah fenomena dan fakta yang jelas dan pasti terjadi sebagai sebuah proses yang berlangsung ecara terus-menerus bagi kehidupan global yang juga yang tidak mengenal istilah berhenti. Hal ini senada dengan diungkapkannya oleh Ibnu Khaldum dalam mukaddimahnya Tidak ada masyarakat yang tidak berubah dengan demikian dalam merespon perkembangan IPTEK, menghenrikan jalannya perubahan adalah pekerjaan yang mustahil untuk dilakukan. Rekayasa Genetika akhir-akhir ini mengalami perkembangan yang cukup drastis dan meminta perhatian yang cukup serius dikalangan manusia pada umumnya.Sebab selain kontribusinya terhadap ilmu pengetahuan dan sumber manfaat bagi kelangsungan hidup manusia dan lingkungan, juga memunculkan persoalan-persoalan yang mendasar yang perlu dicermati lebih serius guna mengawal perkembangan bioteknologi di masa mendatang.Melalui rekayasa genetika dan produk-produk yang dihasilkannya telah menantang gagasan tradisional mengenai hakekat kehidupan dan memunculkan berbagai persoalan, pertanyaan-pertanyaan etis, dan tingkat kekhawatiran manusia yang sangat mencemaskan terhadap seluruh perkembangan dan hasil rekayasa genetika tersebut.Berdasarkan uraian diatas, maka dibuatlah makalah tentang rekayasa genetic pada mikroorganisme penghasil enzim lipase untuk produk roti.B. Perumusan Masalah1. Apa itu rekayasa genetik?2. Bagaimana prinsip dasar rekayasa genetik?3. Bagaimana proses rekayasa genetik?4. Apa itu enzim lipase?5. Bagaimana isolasi enzim lipase dari mikroorganisme?

C. TujuanMengetahui dan memahami proses rekayasa genetik enzim lipase dari mikroorganisme

BAB IIPEMBAHASANA. Pengertian Rekayasa GenetikRekayasa genetika merupakan transplantasi atau pencangkokan satu gen ke gen lainnya dimana dapat bersifat antar gen dan dapat pula lintas gen sehingga mampu menghasilkan produk. Rekayasa genetika juga diartikan sebagai usaha manusia dalam ilmu biologi dengan cara memanipulasi (rekayasa) sel, atau gen yang terdapat pada suatu organisme tertentu dengan tujuan menghasilkan organisme jenis baru yang identik secara genetika (Zamroni, 2012).Teknologi Rekayasa Genetika merupakan inti dari bioteknologi didefinisikan sebagai teknik in-vitro asam nukleat, termasuk DNA rekombinan dan injeksi langsung DNA ke dalam sel atau organel; atau fusi sel di luar keluarga taksonomi yang dapat menembus rintangan reproduksi dan rekombinasi alami, dan bukan teknik yang digunakan dalam pemuliaan dan seleksi tradisional.Prinsip dasar teknologi rekayasa genetika adalah memanipulasi atau melakukan perubahan susunan asam nukleat dari DNA (gen) atau menyelipkan gen baru ke dalam struktur DNA organisme penerima. Gen yang diselipkan dan organisme penerima dapat berasal dari organisme apa saja.Obyek rekayasa genetika mencakup hampir semua golongan organisme, mulai dari bakteri, fungi, hewan tingkat rendah, hewan tingkat tinggi, hingga tumbuh-tumbuhan. Bidang kedokteran dan farmasi paling banyak berinvestasi di bidang yang relatif baru ini. Sementara itu bidang lain, seperti ilmu pangan, kedokteran hewan, pertanian (termasuk peternakan dan perikanan), serta teknik lingkungan juga telah melibatkan ilmu ini untuk mengembangkan bidang masing-masing. Ilmu terapan ini dapat dianggap sebagai cabang biologi maupun sebagai ilmu-ilmu rekayasa (keteknikan). Dapat dianggap, awal mulanya adalah dari usaha-usaha yang dilakukan untuk menyingkap material yang diwariskan dari satu generasi ke generasi yang lain. Ketika orang mengetahui bahwa kromosom adalah material yang membawa bahan terwariskan itu (disebut gen) maka itulah awal mula ilmu ini. Tentu saja, penemuan struktur DNA menjadi titik yang paling pokok karena dari sinilah orang kemudian dapat menentukan bagaimana sifat dapat diubah dengan mengubah komposisi DNA, yang adalah suatu polimer bervariasi.Tahap-tahap penting berikutnya adalah serangkaian penemuan enzim retriksi (pemotong) DNA, regulasi (pengaturan ekspresi) DNA (diawali dari penemuan operon laktosa pada prokariota), perakitan teknik PCR, transformasi genetik, teknik peredaman gen (termasuk inferensi RNA), dan teknik mutasi terarah (seperti Tilling). Sejalan dengan penemuan-penemuan penting itu, perkembangan di bidang biostatistika, bioinformatika dan rabotika/automasi memainkan peranan penting dalam kemajuan dan efisiensi kerja bidang ini.B. Prinsip Dasar Rekayasa GenetikaRekayasa genetika adalah proses mengidentifikasi dan mengisolasi DNA dari suatu sel hidup atau mati dan memasukkannya dalam sel hidup lainnya. Rekayasa genetika merupakan suatu cara memanipulasikan gen untuk menghasilkan makhluk hidup baru dengan sifat yang diinginkan. Rekayasa genetika disebut juga pencangkokan gen atau rekombinasi DNA. Dalam rekayasa genetika digunakan DNA untuk menggabungkan sifat makhluk hidup. Hal itu karena DNA dari setiap makhluk hidup mempunyai struktur yang sama, sehingga dapat direkombinasikan. Selanjutnya DNA tersebut akan mengatur sifat-sifat makhluk hidup secara turun-temurun. Rekayasa Genetika pada mikroba bertujuan untuk meningkatkan efektivitas kerja mikroba tersebut (misalnya mikroba untuk fermentasi, pengikat nitrogen udara, meningkatkan kesuburan tanah, mempercepat proses kompos dan pembuatan makanan ternak, mikroba prebiotik untuk makanan olahan), dan untuk menghasilkan bahan obat-obatan dan kosmetika, serta Pembuatan insulin manusia dari bakteri ( Sel pancreas yang mempu mensekresi Insulin digunting , potongan DNA itu disisipkan ke dalam Plasmid bakteri ) DNA rekombinan yang terbentuk menyatu dengan Plasmid diinjeksikan lagi ke vektor, jika hidup segera di kembangbiaakan.Prinsip dasar teknologi rekayasa genetika adalah memanipulasi atau melakukan perubahan susunan asam nukleat dari DNA (gen) atau menyelipkan gen baru ke dalam struktur DNA organisme penerima. Gen yang diselipkan dan organisme penerima dapat berasal dari organisme apa saja. Pada proses rekayasa genetika organisme yang sering digunakan adalah bakteri Escherichia coli. Bakteri Escherichia coli dipilih karena paling mudah dipelajari pada taraf molekuler.

C. Proses Rekayasa GenetikaPada proses penyisipan gen diperlukan tiga faktor utama yaitu:1. Vektor, yaitu pembawa gen asing yang akan disisipkan, biasanya berupa plasmid, yaitu lingkaran kecil AND yang terdapat pada bakteri. Plasmid diambil dari bakteri dan disisipi dengan gen asing.2. Bakteri, berperan dalam memperbanyak plasmid. Plasmid di dalam tubuh bakteri akan mengalami replikasi atau memperbanyak diri, makin banyak plasmid yang direplikasi makin banyak pula gen asing yang dicopy sehingga terjadi cloning gen.3. Enzim, berperan untuk memotong dan menyambung plasmid. Enzim ini disebut enzim endonuklease retriksi, enzim endonuklease retriksi yaitu enzim endonuklease yang dapat memotong ADN pada posisi dengan urutan basa nitrogen tertentu.Umat manusia telah memanfaatkan mikroorganisme sejak lama untuk menghasilkan produk-produk yang bermanfaat. Misalnya, pada sekitar tahun 6000 SM masyarakat sumeria dan babilonia telah memanfaatkan yeast untuk membuat bir, sedangkan masyrakat mesir pada tahun 4000 SM telah menggunakan yeast untuk mengasamkan ropti. Masyarakat Babilonia juga memilki pengetahuan untuk mengubah etanol dalam bir menjadi asam asetat (cuka).Produk alami yang disentesis oleh mikroorganisme menjadi sangat pnting. Praduk antikoagulan, antidepresan, vasodilator, her4bisida, insektisida, hormon tanaman, enzim, dan inhibitor enzim telah diisolasi dari mikroorganisme. Mikroorganisme lebih sering digunakan untuk menghasikan enzim seperti enzim amilase yang digunakan untuk membuat bir, roti, dan memperoduksi tekstil, serta enzim protease yang digunakan untuk mengempukkan daging, melunakkan kulit, membuat detergen dan keju. Industri makanan, minyak, kosmetik, dan farmasi juga menggunakan mikroorganisme untuk menghasikan polisakarida.D. Enzim LipaseEnzim lipase merupakan salah satu enzim yang memiliki sisi aktif sehingga dapat menghidrolisis triasilgliserol menjadi asam lemak dan gliserol. Enzim lipase dapat digunakan untuk menghasilkan emulsifier, surfaktant, mentega, coklat tiruan, protease untuk membantu pengempukan daging, mencegah kekeruhan bir, naringinase untuk menghilangkan rasa pahit pada juice jeruk, glukosa oksidase untuk mencegah reaksi pencoklatan pada produk tepung telur dan lain-lain.

Sumber-sumber enzim lipase antara lain : bakteri (S. aureus), kapang (Aspergillus niger, Rhizopus arrhizus), tanaman yang menghasilkan trigliserida (kacang-kacangan), pancreas, susu. Faktor-faktor yang mempengaruhi aktivitas enzim lipase: a. Suhu. Suhu optimal lipase adalah 30-400C, aktivitas akan berkurang pada suhu dibawah 30 0C dan diatas 40 0C.b. pH. Lipase memiliki pH optimal 8-9, beberapa golongan dapat bekerja pada pH 4,1-6,3c. Konsentrasi substrat. Jika konsentrasi substrat rendah maka semua substrat akan berikatan dengan enzim. Jika konsentrasi substrat naik maka akan lebih banyak enzim yang berikatan dengan substrat. Semakin tinggi konsentrasi substrat tidak akan meningkatkan kecepatan reaksi.d. Konsentrasi enzimKecepatan aktivitas enzim berbanding lurus dengan konsentrasi enzim. e. Adanya aktivatorBeberapa ion dan molekul mempunyai kemampuan menonaktifkan enzim.f. Spesifisitas substratLipase akan bekerja degan baik jika enzim menemukan substrat yang sesuai dengan karakteristik dan kemampuannya.g. Pelarut organikPelarut organik digunakan untuk melarutkan lemak agar pada suhu kamar ada pada keadaan cair. Dalam menggunakan pelrut organik yang harus diperhatikan adalah jenis pelarutnya dan volume nya.Aplikasi enzim lipase untuk sintesis senyawa organik semakin banyak dikembangkan, terutama karena reaksi menggunakan enzim lipase bersifat regioselektif dan enansioselektif. Aktifitas katalitik dan selektivitas enzim, tergantung dari struktur substrat, kondisi reaksi, jenis pelarut, dan penggunaan air dalam media.Contohnya biosintesis senyawa pentanol, hexanol & benzyl alkohol ester, serta biosintesis senyawa terpene ester menggunakan enzim lipase yang berasal dari Candida antartica dan Mucor miehei. E. Isolasi Enzim Lipase Dari MikroorganismeLipase merupakan biokatalis yang secara umum diperlukan untuk hidrolisis lemak, mono- dan di-gliserida yang akan menghasilkan asam lemak bebas dan gliserol (Suzuki et al., 1988; Kosugi et al., 1990) dan sebaliknya pada kondisi tertentu lipase juga mengkatalisis reaksi sintesis gliserida dari gliserol dan asam lemak (Suzuki et al., 1988; Hoq et al., 1985). Aplikasinya dapat dijumpai antara lain pada industri makanan dan minuman, deterjen, farmasi, agrokimia, dan oleokimia (Saxena et al., 1999; Yang & Xu, 2001).Penggunaan lipase dalam industri makanan memiliki keunggulan karena hidrolisis yang dikatalisis bersifat spesifik. Modifikasi oleh enzim lipase yang memiliki spesifisitas reaksi 1,3-gliserida menghasilkan gliserida dengan produk utama diasilgliserol (DAG) dan produk samping monoasilgliserol (MAG) serta asam lemak bebas dan gliserol. Yasunaga et al. (2001) melaporkan bahwa minyak kaya DAG dapat berfungsi sebagai minyak sehat karena antara lain dapat mengurangi trigliserida (TG) dalam serum darah, mencegah akumulasi lemak dalam tubuh dan memperbaiki rasio kolesterol serum darah.Rekayasa genetika untuk memproduksi senyawa bernilai ekonomi tinggi telah banyak dikembangkan, terutama dalam industri makanan dan farmasi (Murooka & Imanaka, 1993; van Dijck, 1999). Pendekatan produksi lipase yang umum dilakukan dan telah berkembang ke tingkat komersialisasi adalah eksplorasi dan skrining strain kapang secara intensif yang diikuti dengan rekayasa genetika. Salah satu contoh adalah Lipolase. Lipase rekombinan yang diproduksi oleh Novo Nordisk ini, menggunakan gen lipase yang berasal dari Humicola yang kemudian diekspresikan di dalam sel inang baru yaitu Aspergillus oryzae (Hoq et al., 1985). Eksplorasi dan skrining kapang yang berpotensi tinggi sebagai penghasil lipase merupakan tahapan penting dalam rekayasa genetika produksi lipase. Beberapa kapang diketahui mampu menghasilkan lipase yaitu Aspergillus niger, Mucor miehei, Monilia sitophila, Rhizopus delemar dan R. Javanicus (Onions et al., 1981; Yamane, 1987).Lipase yang berasal dari mikroba umumnya bersifat ekstraseluler. Isolasi gen yang menyandi protein lipase merupakan salah satu langkah awal produksi lipase dalam skala besar melalui rekayasa genetika. White et al. (1990) mengemukakan bahwa Polymerase Chain Reaction (PCR) merupakan metode deteksi yang tergolong mudah untuk mengetahui keberadaan gen target di dalam organisme uji. Pasangan primer heterologous yang dirancang berdasarkan daerah terkonservasi pada gen target dapat digunakan dalam PCR tersebut.Lipase merupakan enzim yang memiliki karakter spesifik tergantung organisme penghasilnya. Beberapa lipase yang dihasilkan organisme-organisme dalam satu genus juga memiliki karakter berbeda meskipun secara umum memiliki motif asam amino yang sama untuk tiap organisme. Motif asam amino ini berupa urutan asam amino Glisin-X-Serin-X-Glisin (G-X-S-XG) yang juga merupakan sisi aktif dari enzim ini, dimana X dapat digantikan oleh Histidin, Leusin, atau Tirosin (Salomon, 2003). Pengaruh lingkungan kemungkinan turut memberikan peranan terhadap organisme penghasil lipase.Isolasi RNA kapangIsolasi RNA kapang menunjukkan kualitas dan kuantitas RNA hasil diisolasi dari ketiga jenis kapang penghasil lipase yang potensial yaitu R. oligosporus, A. corymbifera dan R. oryzae. Kunci keberhasilan untuk mendapatkan RNA kapang dengan kuantitas yang tinggi adalah umur pertumbuhan yang sekaligus menentukan jumlah miselium yang dipanen. Kapang yang dipanen untuk isolasi RNA umumnya mengandung sekitar 6 x 108 sel atau ekivalen dengan 1 1,5 gram biomassa miselium, yang menunjukkan bahwa metabolisme kapang sedang berada pada laju eksponensial. Di samping itu prosedur isolasi RNA yang dikembangkan dari gabungan metode Chang et. al. (1993) dan Liu et. al. (1998) untuk mengatasi kandungan senyawa polisakarida yang tinggi nampaknya sangat efektif untuk isolasi RNA dari kapang. Kapang dengan dinding sel yang 80% terdiri dari polisakarida lebih mudah mengalami lisis sehingga jumlah RNA yang diperoleh sangat tinggi. RNA kapang yang diperoleh selanjutnya digunakan untuk sintesis cDNA.Amplifikasi fragmen gen LIPASEUntuk mengetahui secara pasti panjang dan susunan nukleotida fragmen produk RTPCR tersebut, dilakukan isolasi dan pemurnian fragmen dari gel, kloning dan isolasi plasmid rekombinan, dilanjutkan dengan sekuensing. Prinsip kerja program ini adalah membandingkan pixel gambar masingmasing sampel dengan menggunakan marka DNA sebagai standar konsentrasi. Baik secara visual maupun secara kuantitatif nampak hasil RT-PCR tertinggi. Semakin tinggi spesifisitas primer, maka semakin tinggi produk RT-PCR yang Dihasilkan. Produksi lipase oleh kapang pada umumnya dipengaruhi kondisi lingkunganmenghasilkan lipase ekstraseluler sebagai biokatalis untuk mencerna lemak. Dipilih untuk kloning ke dalam E. Coli dilanjutkan dengan analisis DNA untuk mengkonfirmasi kebenaran produk RTPCR sebagai fragmen gen LIPASE.Isolasi dan analisis fragmen DNA Ac_LIP4 hasil RT-PCRKoloni putih hasil transformasi E. Coli XL1Blue menggunakan fragmen DNA produk RT-PCR asal A. Corymbifera (Ac_LIP4) dianalisis untuk memastikan ada tidaknya sisipan fragmen DNA produk RT-PCR terklon, dengan teknik PCR koloni menggunakan primer LIP4F/R. Isolasi plasmid kemudian dilakukan untuk mendapatkan plasmid yang telah tersisipi fragmen Ac_LIP4. Sekuensing DNA yang dilanjutkan dengan analisis BLAST VecScreen untuk menghilangkan kontaminasi sekuen DNA yang berasal dari vektornya. Dengan demikian dapat dipastikan bahwa fragmen tersebut adalah fragmen gen LIPASE.F. Aplikasi Enzim Lipase Dalam Industri Bakery

Dalam bidang pangan, nutrisi dan nilai sensoris serta sifat fisik dari lemak dan minyak banyak dipengaruhi oleh beberapa faktor, seperti posisi asam lemak dalam rantai gliserol, panjang rantai asam lemak, dan derajat tidak jenuh (degree unsaturation). Lipase memungkinkan modifikasi dari sifat lemak dengan mengubah lokasi dari rantai asam lemak pada gliserida dan mengganti satu atau lebih asam lemak dengan satu asam lemak yang baru. Lipase digunakan untuk meningkatkan atau mengembangkan flavouring agent pada produk bakery (Gunasekaran and Das, 2004). Lipase juga digunakan sebagai pengganti dari emulsifier dan untuk memperbaiki rheologi adonan untuk memproduksi remah-remah dan tekstur yang lebih lembut pada roti. Beberapa lipase digunakan pada cakes untuk mengganti emulsifier atau memperkuat adonan untuk memproduksi cake yang berangin dengan tekstur yang lembut, yang disebut Fatula. Lipase juga bekerja untuk membebaskan beberapa lemak pada tepung yang diikat oleh protein. Dengan melepaskan lemak-lemak tersebut dan memecahnya dari ikatannya, lemak-lemat tersebut bebas untuk digunakan pada roti dengan baik (Rigik, 2009). Enzim lipase memodifikasi lemak alami dari tepung, jadi lipase dapat berfungsi sebagai emulsifier dan mengurangi penambahan emuilsifier tanpa mengurangi kualitas produk bakery (Michaelides, 2007). Contoh Hasil Produk Dari Enzim

Salah satu produk dari enzim lipase berdasarkan proses rekayasa genetika mikroorganisme adalah mentega, yang digunakan sebagai bahan dasar dari pengolahan produk bakery.Mentega adalah dairy product yang diperoleh dengan churning (mengaduk) krim susu sampai mengeras. Lemak susu di dalam susu berbentuk butiran mikro yang diselimuti membran fosfolipid yang memisahkan butiran lemak susu satu dengan yang lain. Proses churning ini menghancurkan lapisan membran sehingga butiran-butiran lemak susu bergabung membentuk padatan. Mayoritas produsen mentega menggunakan susu sapi, sementara susu kambing, domba, dan kuda masih digunakan di beberapa daerah. Eropa menyukai mentega manis, tetapi pasaran lain menyukai penambahan 2% garam. Warna mentega diperoleh dari karoten dengan range kuning pucat sampai keemasan. Clarified Butter adalah mentega yang kandungan air dan susu padat di dalamnya telah dibuang, dan dapat digunakan dalam pemanggangan pada temperatur tinggi tanpa kehilangan kualitasnya. Nilai gizi mentega terletak pada lemak yang mudah dicerna, kandungan vitamin A dan D. Secara komersial mentega biasanya mengandung 80-85% lemak susu, dan 12-16% air. Menurut Departemen Pertanian Amerika Serika, 63% dari lemak susu tersebut adalah hidrokarbon jenuh dari asam lemak. Dengan kata lain komponen terbanyak di dalam mentega adalah lemak jenuh yang dapat meningkatkan kadar kolesterol LDL (dikenal sebagai kolesterol jahat). Akibatnya mentega dianggap sebagai penyebab obesitas dan mampu meningkatkan resiko serangan jantung. ( Hakim:2008)Bahan utama pembuatan mentega adalah krim yang memiliki kadar lemak antara 25 45%. Krim diperoleh dari susu sapi dengan menggunakan alat separator. Tahap pertama pembuatan mentega adalah standarisasi komposisi krim yang dilanjutkan dengan proses pasteurisasi krim (pasteurisasi adalah proses membunuh mikroorganisme patogen dan sebagian mikroorganisme perusak dengan menggunakan pemanasan). Setelah dipasteurisasi maka krim didinginkan, setelah itu tergantung pada jenis mentega yang akan dibuat, akan ada tiga jalur proses.Proses pertama yaitu fermentasi krim dengan cara menumbuhkan bakteri asam laktat (diantaranya Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. diacetylactis, dan Lactococcus lactis subsp. cremoris bv. citrovorum) pada krim. Pada jalur kedua krim tidak difermentasi. Baik krim yang sudah difermentasi maupun tidak kemudian dikocok dengan teknik tertentu secara mekanis dalam wadah tertentu sampai terbentuk butiran-butiran lemak mentega dengan diameter sekitar 2 mm. Proses pengocokan ini disebut dengan churning. Dari proses churning selain dihasilkan butiran lemak mentega dengan kadar air sekitar 30% juga susu mentega (buttermilk) yang berupa cairan. Proses churning kemudian dilanjutkan sampai terbentuk mentega dengan kadar air antara 15 19% dan kadar lemak 81 85%. Setelah itu, mentega yang diperoleh diuleni (kneading) dengan cara diaduk aduk dengan menggunakan suatu alat (lebih baik jika dilakukan dalam keadaan vakum untuk menghindari terperangkapnya udara kedalam mentega), hal ini dilakukan agar terjadi penyeragaman komposisi dan tekstur (kelembutan) mentega yang baik. Selama proses pengulenan ini bisa ditambahkan garam dan pewarna (biasanya annato atau karoten). Setelah mentega jadi kemudian mentega dicetak dan dibungkus atau langsung ditempatkan pada kemasan yang sesuai.Pada jalur ketiga prosesnya seperti proses jalur kedua akan tetapi setelah butiran mentega jadi (dengan kadar air 13.5 14.5%) kemudian ada proses tambahan yaitu fermentasi butiran mentega dimana dalam hal ini sebanyak 3-4% starter (berisi bakteri asam laktat) ditambahkan kedalam butiran mentega. Variasi dari proses ini yaitu menumbuhkan starter pada media yang cocok seperti whey (hasil samping pembuatan keju) atau susu skim, setelah cukup menghasilkan aroma yang diinginkan dilakukan pemisahan dan pemekatan kemudian pekatan aroma ditambahkan kedalam butiran mentega. Proses selanjutnya sama dengan proses pada jalur satu dan dua. (Apriyantono:2008)G. Kajian ReligiDi dalam Al-Quran secara tersirat Allah SWT telah menyiratkan akan pentingnya pengaruh lingkungan bagi kehidupan makhluk hidup yang ia ciptakan termasuk mikroorganisme yang juga merupakan salah satu contoh makhluk hidup ciptaan Allah SWT, hal ini tersirat dalam beberapa ayat di dalam Al-Quran diantaranya dalam:

Q.S AL BAQARAH 164.

Artinya : Sesungguhnya dalam penciptaan langit dan bumi, silih bergantinya malam dan siang, bahtera yang berlayar di laut membawa apa yang berguna bagi manusia, dan apa yang Allah turunkan dari langit berupa air, lalu dengan air itu Dia hidupkan bumi sesudah mati (kering)-nya dan Dia sebarkan di bumi itu segala jenis hewan, dan pengisaran angin dan awan yang dikendalikan antara langit dan bumi; sungguh (terdapat) tanda-tanda (keesaan dan kebesaran Allah) bagi kaum yang memikirkan.Dari ayat diatas dapat kita ketahui bahwa Allah SWT telah menciptakan berbagai makhluk hidup yang beraneka ragam dari benda yang bisa dilihat oleh mata secara langsung ataupun benda benda kecil seperti halnya mikroorganisme. Salah satu contoh mikroorganisme yaitu kelompok mikroorganisme yang dimanfaatkan untuk merubah sesuatu yang tidak bermanfaat menjadi bermanfaat. Hal ini menunjukkan kekuasaan Allah yang begitu besar untuk menciptakan segala sesuatu yang dikehendakinya. Semua yang telah diciptakan-nya tiada yang sia-sia karena semua ada manfaatnya tergantung manusia bagaimana mengolahnya. Namun, sejauh ini manusia telah menerapkan ilmu pengetahuan untuk memanfaatkan apa yang telah Allah berikan untuk memenuhi dan memperbaiki kebutuhan hidup. Zaman sekarang telah banyak inofasi baru yang dapat menguntungkan manusia. Hal ini menunjukkan bahwa semua makhluk yang diciptakan- Nya tiada yang sia-sia.Q.S ASY SYUURA 29

Artinya : Di antara (ayat-ayat) tanda-tanda-Nya ialah menciptakan langit dan bumi dan makhluk-makhluk yang melata Yang Dia sebarkan pada keduanya. Dan Dia Maha Kuasa mengumpulkan semuanya apabila dikehendaki-Nya.Dari ayat diatas dapat kita ketahui bahwa Allah SWT telah menciptakan langit dan bumi dan ia juga telah menciptakan segala sesuatu yang ada pada langit dan bumi. Dan ia dapat menjadikan apa yang dikehendakinya termasuk bakteri/miroorganisme sebagai contoh yang dapat melakukan fermentasi menghasilkan enzim lipae sebagai bahan dasar untuk pembuatan produk bakery.

SURAT AZ-ZUMAR AYAT 21Artinya : Apakah kamu tidak memperhatikan, bahwa sesungguhnya Allah menurunkan air dari langit, maka diaturnya menjadi sumber-sumber air di bumi kemudian ditumbuhkan-Nya dengan air itu tanam-tanaman yang bermacam-macam warnanya, lalu ia menjadi kering lalu kamu melihatnya kekuning-kuningan, kemudian dijadikan-Nya hancur berderai-derai. Sesungguhnya pada yang demikian itu benar-benar terdapat pelajaran bagi orang-orang yang mempunyai akal.Dari SURAT AZ-ZUMAR AYAT 21 kita dapat mengetahui bahwa Allah SWT telah menciptakan sesuatu yang ia inginkan dan apapun yang ia kehendaki atas makhluk makhluk yang ia ciptakan ia dapat menjadikannya bermakna dari masing masing penciptaannya. Begitu juga dalam proses fermentasi ini terjadilah makhluk kikroorganisme atau bakteri yang tidak kasat mata mampu mengubah hal yang tak bermanfaat menjadi bermanfaat.

BAB IIIPENUTUPA. Kesimpulan1. Rekayasa genetika adalah proses mengidentifikasi dan mengisolasi DNA dari suatu sel hidup atau mati dan memasukkannya dalam sel hidup lainnya. Rekayasa genetika merupakan suatu cara memanipulasikan gen untuk menghasilkan makhluk hidup baru dengan sifat yang diinginkan.2. Enzim lipase merupakan salah satu enzim yang memiliki sisi aktif sehingga dapat menghidrolisis triasilgliserol menjadi asam lemak dan gliserol. Aplikasi enzim lipase untuk sintesis senyawa organik semakin banyak dikembangkan, terutama karena reaksi menggunakan enzim lipase bersifat regioselektif dan enansioselektif. Aktifitas katalitik dan selektivitas enzim, tergantung dari struktur substrat, kondisi reaksi, jenis pelarut, dan penggunaan air dalam media. Contohnya biosintesis senyawa pentanol, hexanol & benzyl alkohol ester, serta biosintesis senyawa terpene ester menggunakan enzim lipase yang berasal dari Candida antartica dan Mucor miehei.

B.

DAFTAR PUSTAKAChang, S., J. Puryear & J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol: Biol. Rep. hal: 98 100.

Gunasekaran, V and Debabrata Das. 2004. Lipase Fermentation : Progress and Prospects. Indian Journal of Biotechnology Vol 4, October 2005, pp 437 445.Hoq, M. M, T. Yamane, S. Shimizu, T. Funada, & S. Ishida. 1985. Continous hydrolysis of olive oil by lipase in microporous hydrophobic membrane bioreactor.J. Am.Oil Chem.Soc.Kosugi Y., H. Tanaka & N. Tomizuka. 1990. Continuous hydrolysis of oil by immobilized lipase in a countercurrent reactor. Biotechnol. & Bioengin., 36 (6), 617-622.Liu, J.J., C.J Goh, C.S Loh, Liu P. & E.C. Pua. 1998. A method for isolation of total RNA from fruit tissues of banana. Plant Mol. Biol. Rep., 16, 1-6.Michaelides, J. 2007. Emulsifiers. http://www.gftc.ca/articles/2007/baker08.cfmMurooka, Y. & T. Imanaka. 1993. Recombinant Microbes for Industrial and Agricultural Applications. New York: Marcel Deker Pub,hal. 896. Onions, A.H.S., D. Allsopp & H.O.W. Eggins.1981. Smiths Introduction to Industrial Mycology. 7Th.Salomon, S. 2003. A Secreted Lipase as a Virulence Factor of Fusarium graminearum. Hamburg: Dept Molecular Phytopatology & Genetics. Univ. of Hamburg. Hal. 19.Saxena, R.K., et al. 2000. Microbial lipases :Potential biocatalysis for the future industry. Curr.Sci.Suzuki, T., Y. Mushiga, T. Yamane & S. Shimizu. 1998. Mass production of lipase by fedbatch culture of Pseudomonas Fluorescens. Appl. Microbiol. Technol.,27,417-422.Van Dijck, P.W.M. 1999. Chymosin and Phytase. Made by genetic engineering (No. 10 in a series of articles to promote a better understanding of the use of genetic engineering). New york: J. Biotechnol. 67,77-80.

Widiantoko, Rizky Kurnia.2010. Rekayasa Genetika Mikroorganisme Penghasil Enzim Lipase Untuk Produk Bakery. http://lordbroken.wordpress.com. Diakses tanggal 26 april 2014Yamane, T.1987. Enzyme technology for the lipids industry : An Engineering overview. In Applewhite, T. H. (ed.). Proceeding of World Conference on Biotechnology for the Fats and Oils Industry. AOAC Champaign. p.17-22. london, Edwards Arnold British. P.140-142.

Yang, T. & X.Xu. 2001. Enzymatic modification of palm oils: useful products with potential processes. In : Proceedings of international palm oil congress Kuala Lumpur: Chemistry and technology. MPOB.Yasunaga, K., Y. Katsuragi & T. Yasukawa. 2001. Nutritiolal characteristics of diacylglycerol. In: 2001 PIPOC International Palm Oil Congress. p. 149155.White, T. J., T. Burns, S. Lee & J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gefland, J. J. Sninsky & T. J. White (eds).