lap prak fisika

50
LAPORAN PRAKTIKUM FISIKA “Konstanta Pegas” A. Tujuan Percobaan Menentukan dan membandingkan besar konstanta pegas B. Dasar Teori Konstanta gaya pegas adalah suatu karakter dari suatu pegas yang menunjukkan perbandingan besarnya gaya terhadap perbedaan panjang yang disebabkan oleh adanya pemberian gaya tersebut. Satuan konstanta gaya pegas adalah N/m, dimensi konstanta pegas : [M][T ] -2 C. Alat dan Bahan - Statif dan klem - Mistar panjang - Beban dengan penggantung - Pegas - Timbangan - Stopwatch D. Cara Kerja a. 1.Pertama, menggantungkan pegas pada statif dan memberinya beban. 2. Kemudian mengukur panjang pegas setelah diberi beban dan hasil pengukuran dinyatakan sebagai X 0 . 3. Menimbang berat beban tersebut dengan timbangan. Hasil menimbang ini dinyatakan sebagai W 0 (dinyatakan dalam Newton). 4. Menambahkan beban kemudian mengukur panjang pegas setelah ditambahkan beban dan dinyatakan sebagai X. Kemudian, menimbang kembali berat total beban tersebut dinyatakan sebagai W dan seterusnya. 5. Mencatat hasil pengukuran dalam tabel pertama. 6. Mengulang lagkah 4 dan 5 dengan beban yang bertambah sebanyak 5 kali.

Upload: marthafitri

Post on 29-Nov-2015

167 views

Category:

Documents


7 download

DESCRIPTION

laporan praktikum fisika

TRANSCRIPT

Page 1: Lap Prak Fisika

LAPORAN PRAKTIKUM FISIKA“Konstanta Pegas”

A. Tujuan PercobaanMenentukan dan membandingkan besar konstanta pegas

B. Dasar TeoriKonstanta gaya pegas adalah suatu karakter dari suatu pegas yang menunjukkan perbandingan besarnya gaya terhadap perbedaan panjang yang disebabkan oleh adanya pemberian gaya tersebut. Satuan konstanta gaya pegas adalah N/m, dimensi konstanta pegas : [M][T ]-2

C. Alat dan Bahan- Statif dan klem- Mistar panjang- Beban dengan penggantung- Pegas- Timbangan- Stopwatch

D. Cara Kerjaa.1. Pertama, menggantungkan pegas pada statif dan memberinya beban.2. Kemudian mengukur panjang pegas setelah diberi beban dan hasil pengukuran

dinyatakan sebagai X0.3. Menimbang berat beban tersebut dengan timbangan. Hasil menimbang ini

dinyatakan sebagai W0 (dinyatakan dalam Newton).4. Menambahkan beban kemudian mengukur panjang pegas setelah ditambahkan

beban dan dinyatakan sebagai X. Kemudian, menimbang kembali berat total beban tersebut dinyatakan sebagai W dan seterusnya.

5. Mencatat hasil pengukuran dalam tabel pertama.6. Mengulang lagkah 4 dan 5 dengan beban yang bertambah sebanyak 5 kali.7. Mencari nilai ∆x masing-masing percobaan den mencari nilai “k” dengan rumus k

= kemudian mencatat hasilnya pada tabel masing-masing.

b.1. Menimbang massa beban yang akan digantungkan pada pegas.2. Menggantungkan pegas dan bebannya pada statif.3. Menyimpangkan dan melepas pegas yang digantung tersebut untuk

mengayunkan pegas dan mencatat waktu untuk sepuluh kali ayunan dan memasukkan hasilnya dalam tabel.

4. Mengulangi percobaan tersebut sebanyak lima kali dengan berat beban yang berbeda-beda.

Page 2: Lap Prak Fisika

E. Data Hasil Percobaan

W0 = . . . N X0 = . . . m

No. W (N) F = W–W0 (N) X (m) ∆x = X-X0 (m)K ( )

1.2.3.4.5.

k rata-rata =

= . . .

No. m (kg) waktu 10 ayunan (s)

T = waktu 1 ayunan (s)

T2 (s2) k = 4∏2m / T2

k rata-rata =

= . . .

F. Kesimpulan

Nilai k pada dan 4∏2m / T2 adalah sama yaitu sebesar . . .

Page 3: Lap Prak Fisika

Naah.. itu tadi contoh laporannya. Nilai konstanta pegas pada tiap pegas itu berbeda-beda. Pegas yang aku pakai untuk percobaan dulu belum tentu sama nilai k nya dengan pegas yang kamu pakai praktik sekarang ini. Jadi, data-data pada percobaanku sengaja aku kosongin biar kalian bisa mencari sendiri nilai k pegas kalian masing-masing, ini menarik banget kok. Selain tujuan tersebut, tujuan yang lain adalah agar kamu bisa jujur dalam membuat laporan ini. Jika ada kekeliruan, katakan saja sebenarnya daripada dibuat-buat. Hal ini justru bisa membuat kalian ingin tau lagi hal apa yang menyebabkan kesalahan terjadi. Ini yang namanya belajar… OKE?!Kemudian, jika kalian diminta menggambarkan grafiknya, maka pada grafik dalam data yang benar akan terlihat membentuk garis lurus ke atas.

Grafik akan terlihat kurang lebih seperti ini :

F

k

∆x

Page 4: Lap Prak Fisika

Laporan Praktikum Fisika Dasar I Hukum Hooke

TUJUAN PRAKTIKUM : Mahasiswa dapat memahami bahwa,

1. Pertambahan panjang pegas sebanding dengan gaya yang bekerja pada pegas.

2. Energi potensial pegas sebanding dengan kuadrat pertambahan panjang pegas.

LANDASAN TEORI

Robert Hooke pada tahun 1676, mengusulkan suatu hukum fisika menyangkut pertambahan panjang sebuah benda elastik yang dikenai oleh suatu gaya. Menurut Hooke, pertambahan panjang berbanding lurus dengan gaya yang diberikan pada benda. Secara matematis, hukum Hooke ini dapat ditulis sebagai

F=-k x

Dengan F= gaya yang bekerja (N)

k = konstanta gaya (N/m)

x = pertambahan panjang (m)

Tanda negatif (-) dalam persamaan menunjukkan berarti gaya pemulih berlawanan arah dengan perpanjangan.

”jika gaya tarik tidak melampaui batas elastis pegas,pertambahan panjang pegas berbanding lurus (sebanding) dengan gaya tariknya”.

Pernyataan ini dikemukakan oleh Robert Hooke, oleh karena itu, pernyataan di atas dikenal sebagai Hukum Hooke.Untuk menyelidiki berlakunya hukum hooke, kita bisa melakukan percobaan pada pegas. Selisih panjang pegas ketika diberi gaya tarik dengan panjang awalnya disebut pertambahan panjang( l).

Page 5: Lap Prak Fisika

Seperti kita menyelidiki sifat elastisitas bahan, kita juga mengukur pertambahan panjang pegas dan besarnya gaya yang diberikan.Dalam hal ini,gaya yang diberikan sama dengan berat benda = massa x percepatan gravitasi.

Pegas ada disusun tunggal, ada juga yang disusun seri ataupun paralel. Untuk pegas yang disusun seri, pertambahan panjang total sama dengan jumlah masing-masing pertambahan panjang pegas sehingga pertambahan total x adalah:

x = x1 + x2

= +

= +

Sedangkan untuk pegas yang disusun paralel ,pertambahan panjang masing-masing pegas sama (kita misalkan kedua pegas identik),yaitu

x1 = x2 = x. Dengan demikian:

Kp= k1 + k 2

Perlu selalu di ingat bahwa hukum hooke hanya berlaku untuk daerah elastik, tidak berlaku untuk daerah plastik maupun benda-benda plastik. Menurut Hooke, regangan sebanding dengan tegangannya, dimana yang dimaksud dengan regangan adalah persentase perubahan dimensi. Tegangan adalah gaya yang menegangkan per satuan luas penampang yang dikenainya.

Sebelum diregangkan dengan gaya F,energi potensial sebuah pegas adalah nol,setelah diregangkan energi potensial nya berubah menjadi:

E= kx2

1.Tegangan

Tegangan didefinisikan sebagai hasil bagi antara gaya tarik F yang dialami kawat dengan luas penampang (A)

Page 6: Lap Prak Fisika

Tegangan= atau σ =

Tegangan adalah besaran skalar dan memiliki satuan Nm-2 atau Pascal (Pa).Berdasarkan arah gaya dan pertambahan panjangnya (perubahan bentuk),tegangan dibedakan menjadi 3 macam,yaitu tegangan rentang,tegangan mampat,dan tegangan geser.

2.Regangan

Regangan didefinisikan sebagai hasil bagi antara pertambahan panjang ΔL dengan panjang awalnya L.

Regangan= atau e =

Karena L sama-sama merupakan dimensi panjang, maka regangan tidak mempunyai satuan (regangan tidak mempunyai dimensi). Regangan merupakan ukuran perubahan bentuk benda dan merupakan tanggapan yang diberikan oleh benda terhadap tegangan yang diberikan. Jika hubungan antara tegangan dan regangan dirumuskan secara matematis, maka akan diperoleh persamaan berikut :

Ini adalah persamaan matematis dari Modulus Elastis (E) atau modulus Young (Y). Jadi, modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan.

Kita kenal 3 macam regangan yaitu regangan panjang,regangan volume,dan regangan sudut.

a. regangan panjang

Dengan panjang semula sewaktu tiada regangan, l ,dan penambahan

panjang Δl akibat regangan,regangannya diberikan oleh ,sedangkan jika luas penampang A dan gaya tegangan yang meregangkan adalah W,maka tegangannya adalah W/A.Berdasarkan hukum hooke ditulis;

Y( ) =

Page 7: Lap Prak Fisika

b. regangan volume

Menurut hukum hooke,kita dapat menulis:

B( ) = p

Dengan B adalah yang disebut dengan modulus ketegaran yang besarnya kurang lebih 1/3 modulus young.Berbeda dengan modulus young yang dapat diukur langsung dengan mengukur penambahan panjangnya,Δl,dan gaya tegangan W serta luas penampang A,modulus ketegaran B hampir tidak dapat diukur secara langsung karena sukarnya mengukur pengerutan volumnya,ΔV.

c. regangan sudut

Yang dimaksud dengan regangan sudut atau regangan luncuran sesudut adalah deformasi,yaitu perubahan bentuk yang berkaitan dengan sudut luncuran..

3.Modulus Elastik

Ketika sebuah gaya diberikan pada sebuah benda,maka ada kemungkinan bentuk sebuah benda berubah.Secara umum,reaksi benda terhadap gaya yang diberikan dicirikan oleh suatu besaran yang disebut modulus elastik.

Modulus elastik =

Untuk tegangan rentang,besar modulus elastik Y dinyatakan dengan

Y = atau = Y

Biasanya,modulus elastik untuk tegangan dan regangan ini disebut modulus young. Dengan demikian,modulus Young merupakan ukuran ketahanan suatu zat terhadap perubahan panjangnya ketika suatu gaya (beberapa gaya)diberikan pada benda.

Page 8: Lap Prak Fisika

· Hukum Hooke untuk benda non PegasHukum hooke ternyata berlaku juga untuk semua benda padat, tetapi hanya

sampai pada batas-batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.

Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda), yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L)

Jika besar pertambahan panjang ( L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang ( L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan :

Persamaan ini disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban.

Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.

Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula, benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah.

Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang ( L) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda (dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi.

Page 9: Lap Prak Fisika

Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (misalnya besi), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :

Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L) dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k. Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula-mula (Lo) dan berbanding terbalik dengan luas penampang (A). Kalau dirimu bingung dengan panjang mula-mula atau luas penampang, amati gambar di bawah ini.

Besar E bergantung pada benda (E merupakan sifat benda). Pada persamaan ini tampak bahwa pertambahan panjang (delta L) sebanding dengan hasil kali panjang benda mula-mula (Lo) dan Gaya per satuan Luas (F/A).

ALAT DAN BAHAN

1. Statif

2. Beban

3. Jepit penahan

4. Pegas Spiral

5. Mistar

PROSEDUR PERCOBAAN

1) Gantungkan beban pada pegas (anggap berat beban adalah Fo)

Page 10: Lap Prak Fisika

2) Ukur panjang pegas (Lo)

3) Tambakan beban, lalu ukur panjang pegas (L)

4) Ulangi dengan penambahan beban bervariasi.

5) Isilah tabel

6) Perhatikan kecenderungan masing-masing tabel dari atas ke bawah

7) Bagaimana hubungan antara F dan L

8) Gambarkan grafik ∆F terhadap ∆L

9) Gunakan persamaan (teori) untuk menghitung konstanta pegas.

10) Hitung luas daerah di bawah grafik.

HASIL PENGAMATAN

Tabek hasil pengamatan :

No. W (N) F = WL (cm) ∆L = L-L0 m (gr)

1. 0,6 0,6 N 13,8 0,6 60

2. 0,7 0,7 N 14,1 0,9 70

3. 0,8 0,8 N 14,4 1,2 80

4. 0,9 0,9 N 14,9 1,7 90

PEMBAHASAN

Pada percobaan kali tentang Hukum Hooke kami mencari nilai konstanta. Pada data pertama yakni nilai F adalah 0,6 N dan ∆l adalah 0, 006 m, maka konstanta yang didapat adalah100 N/m. Pada data kedua yakni nilai F adalah 0,7 N dan ∆l adalah 0, 009 m, maka konstanta yang didapat adalah 77,8 N/m Pada data ketiga yakni nilai F adalah 0,8 N dan ∆l adalah 0,012 m, maka konstanta yang didapat adalah 66, 7 N/m. Pada data keempat yakni nilai F adalah 0,9 N dan ∆l

Page 11: Lap Prak Fisika

adalah 0, 017 m, maka konstanta yang didapat adalah 52,9 N/m Rata- rata konstanta adalah 74, 35 N/m

Berdasarkan pada percobaan dengan mencari nilai konstanta diketahui bahwa semakin besar nilai F dan ∆l. Maka konstanta yang didapat semakin kecil.

Pada percobaan dengan mencari nilai energi potensial. Pada data pertama ∆l adalah 0,006 m dan k adalah 100 kg/s2, maka energi potensial yang didapat 0,0018 J.

Pada data kedua ∆l adalah 0,009 m dan k adalah 77,8 kg/s2, maka energi potensial yang didapat 0,0031509 J. Pada data ketiga ∆l adalah 0,012 m dan k adalah 66,7 kg/s2, maka energi potensial yang didapat 0,0048 J. Pada data keempat ∆l adalah 0,017 m dan k adalah 52,9 kg/s2, maka energi potensial yang didapat 0,0076 J. Rata-rata energi potensial adalah 0,0043 J.

Berdasarkan pada data yang telah didapatkan pada percobaan diketahui bahwa semakin besar nilai ∆l, maka nilai energi potensial yang didapat juga semakin besar. Sebaliknya semakin kecil nilai konstanta, maka semakin besar nilai energi potensial.

Pada daerah grafik, luas daerah dibawah grafik dicari dengan persamaan :

Luas = a. t

= ∆L . ∆F

= ∆L . k. ∆L

= k. ∆L2

Persamaan tersebut sama dengan persamaan untuk mencari energi potensial. Pada percobaan tersebut didapat luas daerah di bawah grafik adalah 0,004. nilai tersebut sama dengan nilai rata-rata energi potensial.

Page 12: Lap Prak Fisika

Maka, luas daerah dibawah grafik sama dengan nilai energi potensial

KESIMPULAN

1) Semakin besar nilai ∆l, maka nilai energi potensial yang didapat juga semakin besar. Sebaliknya semakin kecil nilai konstanta, maka semakin besar nilai energi potensial.

2) Semakin besar nilai F dan ∆l. Maka konstanta yang didapat semakin kecil.

3) Luas daerah dibawah grafik sama dengan nilai energi potensial .

4) Pertambahan panjang ( L) sebanding dengan gaya berat yang bekerja pada benda.

5) Persamaan mencari luas daerah di bawah grafik sama dengan persamaan untuk mencari energi potensial.

Page 13: Lap Prak Fisika

Laporan Praktikum Archimedes

Tujuan Prahtikum: 1. Membandingkan gaya Archimedes antara pengukuran (neraca

gaya) dengan hasil – hasil perhitungan p.g.V .

    2. Membuktikan peristiwa tenggelam, terapung, dan melayang.

Alat dan Bahan :

1. Alat :

a. Gelas Ukur, yang dipakai sebagai wadah

b. Neraca Pegas, yang dipakai untuk mengukur berat benda (W) di udara

maupun di air.

c. Neraca Ohaus, yang dipakai untuk mengukur massa benda

d. Sendok, yang dipakai untuk mengaduk larutan garam

e. Benang, yang dipakai untuk mengikat telur

f. Kertas millimeter, yang dipakai sebagai skala

2. Bahan :

a. Telur, benda yang akan digunakan dalam percobaan untuk mendapatkan

data gaya angkat dan peristiwa tenggelam, melayang dan, mengapung.

b. Air, yang akan digunakan sebagai media untuk mengukur / menghitung

gaya apung

c. Garam, sebagai bahan terlarut dalam percobaan II.

A.     PERCOBAAN I

I.        Dasar teori :

            Hukum Archimedes

            Hukum Archimedes : Setiap benda yang berada di dalam suatu fluida, maka

benda itu akan mengalami gaya ke atas (yang disebut gaya apung) seberat zat cair yang

dipindahkan. Dalam persamaan :

Page 14: Lap Prak Fisika

FA = Wb

            Menurut Archimedes, benda menjadi lebih ringan bila diukur dalam air daripada

di udara karena dalam air, benda mendapat gaya ke atas. Sementara ketika di udara,

benda memiliki berat yang sesungguhnya.

Dalam Persamaan :

Wb = mb.g

Ketika dalam air, dikatakan memiliki berat semu, dinyatakan dengan:

Wdf = Wb – FA

Keterangan :

Wdf : berat dalam fluida, dikatakan juga berat semu (N)

Wb : berat benda sesungguhnnya, atau berat di udara (N)

FA : gaya angkat ke atas (N)

Gaya angkat ke atas ini yang disebut juga gaya apung.

a.       Defenisi I gaya apung:

Gaya yang dikerjakan fluida pada benda yang timbul karena selisih gaya hidrostatik yang

di kerjakan fluida antara permukaan bawah dengan permukaan atas.

BIla tekanan fluida pada sisi atas dan sisi bawah benda yang mengapung masing –

masing p1 dan p2, maka gaya yang dikerjakan pada telur pada sisi atas dan bawah adalah:

F1 = p1. A

F2 = p2. A

Gaya ke atas yang bekerja pada abalok merupakan resultan gaya F1 dan F2.

FA = F2 – F2

FA = (p2 – p1)A

FA = (h2 – h1)pfgA

FA = pfgV

Keterangan :

pf = masa jenis fluida (kg/m3)

Page 15: Lap Prak Fisika

V   = volume air telur yang tercelup (m3)

b.      Defenisi II gaya apung :

Selisih berat benda di udara dengan berat benda di fluida yang memiliki gaya apung

tersebut.

II.     Cara Kerja :

1. Timbang telur di neraca oHauss

2. Ikat telur dengan benang

3. timbang telur dengan neraca pegas

4. masukkan telur  ke dalam gelas ukur yang berisi air 300 ml dan perhatikan

skala

5. perubahan dalam neraca pegas dan kenaikan volume air

III.   Hasil Percobaan :

Massa telur

(kg)

Volume telur (m3) Berat telur di udara

(N)

Berat telur dalam air

(N)

0,059 75 x 10-6 0,6 0

Page 16: Lap Prak Fisika

IV.  Pembahasan:

1. Pembahasan secara perhitungan

a. massa benda

mb = 0.059 kg

b. berat benda

Wb = mb.g

         0.059 kg. 10 N/kg

Wb = 0.59 N

c. Gaya ke atas dari air

FA = pf g.Vb

FA = 1000 kg/m3. 10 N/kg. 75 x 10-6 m3

FA = 75 x 10-2 N

FA = 0.75 N

Dengan Hukum I Newton :

EF= 0

Wb - FA – Wdf = 0

FA = Wb – Wdf

FA = 0.59 N – 0 N

FA = 0.59 N

2. Pembahasan secara teori

            Percobaan ini (hukum Archimedes bertujuan untuk menyelidiki hubungan antara

gaya ke atas dengan berat zat cair yang di pindahkan. Dalam landasan teori Hukum

Archimedes menyatakan bahwa sebuah benda yang tercelup sebagian atau seluruhnya ke

dalam zat cair akan mengalami gaya ke atas yang besarnya sama dengan berat zat cair

yang dipindahkan. Sebuah benda yang tenggelam seluruhnya atau sebagian dalam suatu

zat cair akan mendapat gaya ke atas yang sama besar dengan berat fluida yang

dipindahkan.

            Berdasarkan percobaan yang telah kami lakukan terhadap telur dengan massa 65

gram. Dan berdasarkan hasil perhitungan data yang diperoleh ternyata hubungan antara

gaya ke atas dengan berat zat cair yang di pindahkan yang di peroleh adalah hampir sama

besar (FA hampir sama dengan Wb), seharusnya ini sama, hal ini terjadi mungkin karena

kesalahan ketika melakukan praktikum, misalnya pengaruh lingkungan, kesalahan

pengamatan yaitu kesalahan dalam membaca skala yang benar. Pada perhitungan dengan

Page 17: Lap Prak Fisika

hukum Newton I kami mendapat hasil yang hampir mendekati yaitu; (Wb = 0.65 N dan

FA = 0.6 N). Ini sesuai dengan hukum Archimedes (FA = Wb).

V.     Kesimpulan dan Saran

1. Kesimpulan

Banyaknya zat cair yang dipindahkan adalah sebanding dengan besarnya gaya ke atas

dari zat cair (Wb = FA)

2. Saran

o       Diharapkan sebelum melakukan percobaan, praktika mengetahui tujuan percobaan

yang akan dilakukan.

o       Hendaknya praktika berhati-hati dalam melakukan praktikum, sehingga di peroleh

hasil yang maksimal.

PERCOBAAN II

I.        Dasar Teori:

Hukum Archimedes menyatakan sebagai berikut, Sebuah benda yang tercelup sebagian

atau seluruhnya ke dalam zat cair akan mengalami gaya ke atas yang besarnya sama

dengan berat zat cair yang dipindahkannya. Sebuah benda yang tenggelam seluruhnya

atau sebagian dalam suatu fluida akan mendapatkan gaya angkat ke atas yang sama besar

dengan berat fluida fluida yang dipindahkan. Besarnya gaya ke atas menurut Hukum

Archimedes ditulis dalam persamaan :

FA = p v g

Keterangan :

FA = gaya ke atas (N)

V = volume benda yang tercelup (m3)

p = massa jenis zat cair (kg/m3)

Page 18: Lap Prak Fisika

g = percepatan gravitasi (N/kg)

Hukum ini juga bukan suatu hukum fundamental karena dapat diturunkan dari hukum

newton juga. Bila gaya archimedes sama dengan gaya berat W maka resultan gaya =0

dan benda melayang .

- Bila FA>W maka benda akan terdorong keatas akan melayang

- Jika rapat massa fluida lebih kecil daripada rapat massa telur maka agar telur berada

dalam keadaan seimbang,volume zat cair yang dipindahkan harus lebih kecil dari pada

volume telur.Artinya tidak seluruhnya berada terendam dalam cairan dengan perkataan

lain benda mengapung. Agar benda melayang maka volume zat cair yang dipindahkan

harus sama dengan volume telur dan rapat massa cairan sama dengan rapat rapat massa

benda. Jika rapat massa benda lebih besar daripada rapat massa fluida, maka benda akan

mengalami gaya total ke bawah yang tidak sama dengan nol. Artinya benda akan jatuh

tenggelam. Berdasarkan Hukum Archimedes, sebuah benda yang tercelup ke dalam zat

cair akan mengalami dua gaya, yaitu gaya gravitasi atau gaya berat (W) dan gaya ke atas

(FA) dari zat cair itu. Dalam hal ini ada tiga peristiwa yang berkaitan dengan besarnya

kedua gaya tersebut yaitu seperti berikut.

• Tenggelam

Sebuah benda yang dicelupkan ke dalam zat cair akan tenggelam jika berat benda (W)

lebih besar dari gaya ke atas (FA).

W > FA

pb Vb g  > pf Vf g

pb > pf

Volume bagian benda yang tenggelam bergantung dari rapat massa zat cair (p)

• Melayang

Sebuah benda yang dicelupkan ke dalam zat cair akan melayang jika berat benda (W)

sama dengan gaya ke atas (FA) atu benda tersebut tersebut dalam keadaansetimbang

W = FA

pb Vb g  = pf Vf g

pb = pf

Page 19: Lap Prak Fisika

Pada 2 benda atau lebih yang melayang dalam zat cair akan berlaku :

EA = Eb

• Terapung

Sebuah benda yang dicelupkan ke dalam zat cair akan terapung jika berat benda (W)

lebih kecil dari gaya ke atas (FA).

W > FA

pb Vb g  > pf Vf g

pb > pf

II.     Cara Kerja :

1. Ikat telur dengan benang

2. Celupkan telur ke dalam gelas ukur berisi air dan perhatikan peristiwa yang

terjadi.

3. Tarik kembali telur

4. Campurkan garam ke dalam gelas ukur berisi air sedikit demi sedikit.

5. Perhatikan Perisitiwa yang terjadi.

III.   Hasil Percobaan:

Banyaknya Garam (sendok) Gejala yang terjadi

- Tenggelam

2 Tenggelam

4 Tenggelam

6 Terapung

IV.  Pembahasan:

Pada saat telur dicelupkan dalam air tak bergaram sampai 2 sendok garam tetap

tenggelam karena telur masih lebih besar dari pair.

Page 20: Lap Prak Fisika

Pada saat telur dicelupkan pada larutan garam dengan kadar 8 sendok, telur sudah

terapung karena ptelur lebih besar dari pair.

Tidak adanya peristiwa melayang mungin di karenakan tidak telitinya kami dalam

menambahkan garam dalam larutan sehingga tidak didapat kondisi : ptelur sama dengan

pair.

V.     Kesimpulan dan Saran:

1.      Kesimpulan

o       Benda tenggelam karena ptelur > pair.

o       Benda melayang karena ptelur = pair.

o       Benda terapung karena ptelur  <pair.

2.      Saran

Sebaiknya praktika lebih hari-hati lagi dalam menambahkan garam sehingga diperoleh

keadaan melayang.

Page 21: Lap Prak Fisika

Percobaan Melde

Tujuan                   Mengukur panjang gelombang untuk menemukan cepat rambat gelombang pada tali 

Alat dan Bahan - Penggetar/vibrator- Katrol- Beban gantung- Mistar- Tali dengan empat jenis yang berbeda        A. Langkah Kerja 1.    Susunlah peralatan sebagai berikut:

 2.    Hidupkan penggetar sehingga terbentuk gelombang stasioner seperti gambar berikut:

  

Page 22: Lap Prak Fisika

Informasi:  Untuk memperoleh gelombang stasioner yang terdiri dari simpul dan perut dapat diatur frekuensi penggetar yang digunakan dan atau mengubah jarak penggetar terhadap katrol sebagai ujung terikat.Jarak dari titik simpul ke titik simpul terdekat sama dengan setengah gelombang.Jika jarak titik  simpul ke titik simpul = x, maka panjang gelombang  dapat dihitung dengan persamaan  λ = 2 x

3.    Lakukan percobaan untuk mencari hubungan antara cepat rambat gelombang pada tali dengan tegangan tali. Lakukan percobaan untuk empat beban yang berbeda.Informasi:  percobaan dilakukan dengan cara mengganti beban kemudian sesuaikan dengan frekuensi penggetar supaya didapatkan gelombang stasoner yang paling mudah diamati.Tegangan tali disebabkan karena beban gantung, sehingga besar tegangan taliF = w = m.g

4.    Lakukan pula percobaan untuk mencari hubungan antara jenis tali (yang dinyatakan dengan massa per satuan panjang tali) dengan cepat rambat gelombang. Lakukan percobaan untuk empat jenis tali yang berbeda.Informasi: 

massa per satuan panjang tali biasanya dinyatakan dengan lambang µ 5.    Catatlah data hasil percobaan dalam tabel, kemudian buatlah grafik sesuai data tabel

yang diperoleh! B. Data Hasil Percobaan 1.    Data hasil percobaan untuk mendapatkan hubungan antara cepat rambat gelombang

dengan tegangan tali.

       Buatlah grafik hubungan antara tegangan tali (F) dengan kuadrat kecepatan (v2) 

Page 23: Lap Prak Fisika

  2.    Data hasil percobaan untuk mencari hubungan antara jenis tali dengan cepat rambat

gelombang. 

      Buatlah grafik hubungan antara µ dengan kuadrat kecepatan (v2) 

  Tindak Lanjut dan Aplikasi dalam Kehidupan Gelombang stasioner dapat dijumpai dengan mudah pada alat musik petik seperti gitar. Ketika senar gitar dipetik pada nada tertentu, senar ditekan untuk memberi tegangan yang sesuai sehingga dihasilkan nada yang diinginkan. Getaran senar membentuk gelombang stasioner dengan ujung dawai sebagai simpul. Selain tekanan senar diposisikan berbeda untuk mendapatkan nada yang berbeda pula, senar gitar dibuat dari bahan yang berbeda. Perbedaan bahan maupun ukuran senar dapat mempengaruhi nada yang berbeda. Perbedaan bahan seperti bahan serat atau logam

Page 24: Lap Prak Fisika

menunjukan perbedaan massa jenis. Sedangkan perbedaan ukuran mempengaruhi luas penampang senar. Hubungan antara massa jenis, luas penampang dan nada-nada  senar dapat ditunjukan dengan persamaan: 

  Keterangan:f = frekuensi nada senar dalam HzF = gaya tegang tali dalam Newton L = panjang tali dalam mµ = masa persatuan panjang  tali dalam kg/mm = massa tali dalam kgρ = massa jenis tali dalam  kg/m3

A = luas penampang tali dalam m2

Page 25: Lap Prak Fisika

fisika prisma

BAB 1

PENDAHULUAN

A.    Latar belakang

Prisma adalah benda bening yang terbuat dari gelas yang dibatasi oleh dua bidang permukaan yang membentuk sudut tertentu. Bidang permukannya disebut pembias dan sudut yang dibentuk oleh kedua bidang pembias disebut pembias.

Jika sinar sijatuhkan pada bidang pembias pertama,maka sinar yang keluar dari bidang pembias kedua  membentuk sudut tertentu dengan sinar masuk.sudut yang dibentuk oleh sinar keluar prisma dengan sinar yang masuk keprisma disebut sudut deviasi(D). Selain itu terdapat indeksbias pada prismayaitu nilai perbandinganantara proyeksi sinar datang dan proyeksi sinar pada bidang pembias.

Dari uraian diatas kelompok kami melakukan percobaan “Pembiasan Prisma”. Kami melakukan percobaan tersebut ingin mengetahui berapa sudut deviasi dan indek bias yang dibentuk.

B.     RUMUSAN MASALAH

1.      Berapa besar  sudut deviasi prisma?

2.      Berapa besar indek bias bahan prisma?

3.      Bandingkan hasil pengukuran sudut deviasi dengan perhitungan apabila pengukuran r ’ benar?

1. TUJUAN

1.      Menentukan besar sudut diviasi prisma melalui pengamatan dan pengukuran.

2.      Menentukan indek bias bahan prisma.

3.       membandingkan besar sudut deviasi dari penngukuran dan perhitungan apabila r ‘ benar.

 BAB II

TINJAUAN PUSTAKA

 

 

Page 26: Lap Prak Fisika

Prisma adalah benda bening yang dibatasi oleh dua bidang datar yang membentuk sudut tertentu satu sama lain.Prisma merupakan salah satu benda optik yang dapat menguraikan sinar putih (polikromatik) menjadi sinar-sinar penyusunnya.Sudut pembias prisma (). Sudut pembias prisma ini dibentuk oleh kedua bidang pembias prisma. Atau disebut juga sudut puncak prisma.

A. Sinar datang dari medium (n1) menuju medium kaca/prisma dengan sudut datang i1 mengalamipembiasan pertama kali dengan sudut bias r1.

B. Sinar datang dari prisma/kaca keluar dari medium (n1) dengan sudut datang i2 akan dibiaskankedua kali dengan sudut bias r2.

Dispersi adalah peristiwa penguraian cahaya polikromarik (putih) menjadi cahaya-cahaya monokromatik (me, ji, ku, hi, bi, ni, u) pada prisma lewat pembiasan atau pembelokan. Hal ini membuktikan bahwa Cahaba putih terdiri dari harmonisasi berbagai cahaya warna dengan berbeda-beda panjang gelombang. Sudut deviasi adalah sudut yang dibentuk antara perpanjangan sinar yang menuju prisma dengan perpanjangan sinar yang keluar dari prisma.

Persamaan yang digunakan pada pembentukan sudut deviasi adalah :

(i). Persamaan snellius untuk sinar datang menuju prisma :

 

(ii). Sudut pembias prisma :

 

(iii). Persamaan Snellius untuk sinar yang keluar dari prisma :

 

Adapun besar sudut deviasi prisma adalah :

 

(www.wikkipedia.co.id tanggal 12 Agustus 2010 pukul 14.00WIB)

 

BAB III

METODE PENELITIAN

1. Alat dan Bahan

Page 27: Lap Prak Fisika

1.      Prisma siku siku

2.      Jarum pentul

3.      Mistar

4.      Busur derajat

5.      Kertas putih

6.      Pengsil

7.      Polpen warna

1. Cara Kerja

1.      Membuat garis membagi empat sama luas pada kertas, sumbu X dan sumbu Y

2.      Meletakkan prisma siku siku dengan posisi seperti gambar, ( sumbu X lebih dekat dengan sudut pembias)

3.      Membuat garis garis hingga membentuk sudut 20o, 25o,30 o,35 o,40 o,45o,50o, 55 o dengan sumbu x sebagai sudut datang

4.      Menancapkan 2 jarum dititik A dan B, dengan melihat dari sisi prisma yang lain, jarum C dan D ditancapkan sehingga bila dilihat keempat jarum yaitu A,B,C dan D tampak 1 garis ( berhimpit)

5.      Mengukur sudut pembias prisma (β)

6.      Menghubungkan titik bekas tusukan jarum tadi sebagai titik C dan D sehingga memotong perpanjangan garis A dan B

7.      Mengukur sudut deviasi( sudut yang di bentuk dari perpanjangan garis datang dengan garis bias terahir

8.      Mengukur sudut bias trahir atau r’ ( sudut yang dibuat dari garis bias terahir ( C dan D dengan garis normal bidang.

9.      Memasukkan data dalam tabel

10.  Mengulangi percobaan diatas debgan sudut sudut yang lain.

 

 

Page 28: Lap Prak Fisika

BAB IV

DATA DAN ANALISIS DATA

 

1. Tabel Pengamatan

Sudut datang (i) Sudut bisa terakhir (r’) Sudut deviasi (δ)

20 o 56 o 32 o

25 o 47 o 28 o

30 o 44 o 30 o

35 o 36 o 26 o

40 o 34 o 30 o

45 o 30 o 31 o

50 o 24 o 30 o

55 o 21.5 o 31.5 o

 

1. Analisis Data

Deviasi minimum

 

a.       δ       =   I +  r’ -   β

=    20 o + 56-44

=32

 

b.      δ       =   I +  r’ -   β

=25+47-44

Page 29: Lap Prak Fisika

=28

 

c.       δ       =   I +  r’ -   β

= 30 + 44 -44

=30

 

d.      δ       =   I +  r’ -   β

= 35+36-44

= 26

 

e.       δ       =   I +  r’ -   β

= 40+34-44

=30

f.       δ       =   I +  r’ -   β

=45+30-44

=31

 

g.      δ       =   I +  r’ -   β

= 50+24-44

=30

h.      δ       =   I +  r’ -   β

= 55+21.5-44

=  32.5

Page 30: Lap Prak Fisika

 

 

Dari hasil perhitungan sudut deviasi dari sudut 20-50 hasilnya sama namun pada sudut 55 hasilnya beda dikarenakan ketelitian saat mengukur atau posisi mata kurang lurus saat mengamati pembiasan tersebut

Indeks bias kaca prisma

a.20 ° = sin i/ sin r                                          b. Sudut 25° =sin i/sin r

=20:56                                                                         = 25:47

=0,36                                                                           = 0,53

C. sudut 30°= sin i/sin r                                 d. Sudut 35°

= 30:44                                                            =35:36

=0,68                                                               =0,97

e. sudut 40°    = sin i/ sin r                             f. Sudut 45°

=40:34                                                             =45:30

=1,18                                                               = 1,5

g. Sudut 50°                                                  h. Sudut 55°

=50:24                                                             =55:21,5

=2,1                                                                 =2,56

 

 

 

 

 

 

 

Page 31: Lap Prak Fisika

BAB IV

PENUTUP

A.    Kesimpulan

Berdasarkan pengamatan diatas dapat disimpulkan bahwa

1.      Sudut deviasi prisma

Sudut datang (i) Sudut deviasi (δ)

20 o 32 o

25 o 28 o

30 o 30 o

35 o 26 o

40 o 30 o

45 o 31 o

50 o 30 o

55 o 31.5 o

 

Semakin besar susut datang maka sudut bias semakin kecil, dan sebaliknya jika sudut datang semakin kecil maka sudutnya semakin jadi sudut datang dan sudut bias memiliki hubungan berbanding terbalik.

Semakin besar sudut bias maka sudut deviasinya semakin kecil dan sebaliknya jika sudut biasny kecil maka sudut deviasinya semakin besar jadi sudut bias dan sudut deviasi berbanding terbalik.

Sudut Deviasi

Page 32: Lap Prak Fisika

Tujuan : Mengetahui sudut deviasi pada prisma dengan sinar datang yang berbeda

Teori dasar : Hukum Snellius

Sinar (gelombang) datang, sinar(gelombang) bias dan garis normal berpotongan pada satu titik pada sebuah bidang datar.Sinar datang yang berasal dari medium renggang memasuki medium rapat akan dibiaskan mendekati garis normal.Sinar datang yang berasal dari medium rapat memasuki medium renggang akan dibiaskan menjauhi garis normal.

Bahan bening yang dibatasi oleh dua bidang permukaan yang bersudut disebut prisma.Besarnya sudut antara kedua permukaan itu disebut sudut pembias.Apabila seberkas cahaya masuk pada salah satu permukaan prisma, cahaya akan dibiaskan dari permukaan prisma lainnya.

Karena adanya dua kali pembiasan, maka pada prisma terbentuklah sudut penyimpangan yang disebut sudut deviasi.

Sudut deviasi adalah sudut yang dibentuk oleh perpotongan dari perpanjangan cahaya datang dengan perpanjangan cahaya bias yang meninggalkan prisma.

Alat dan bahan

: Prisma

Papan alas

Kertas HVS

Pensil

Jarum pentul

Penggaris

Busur derajatCara Kerja : 1. Letakkan kertas HVS di atas papan alas

2. Taruh prisma diatas kertas, kemudian jiplak bentu prisma tersebut

Page 33: Lap Prak Fisika

3. Gambar garis normal 4. Gambar garis sinar datang dengan sudut : 30°, 45°, 60°, dan

75° 5. Tusukkan jarum tegak lurus pada garis sinar datang6. Pasang prisma embali di tempat yang telah dijiplak7. Amati pembiasannya pada sisi prisma yang lain8. Tusukkan jarum sesuai bayangan pada prisma sehingga

jarum nampak sejajar9. Lepas jarum dan prisma10. Buat garis sesuai letak jarum hasil pembiasan prisma

11. Tentukan garis normal, i1, r1, i2,r2, dan δ Tabel pengamatan

:

Sudut sinar datang

( i1 )

Sudut bias pertama

( r1 )

Sudut sinar datang ke-2

( i2 )

Sudut sinar bias ke-2

(r2 )

Sudut deviasi ( δ )

Berdasarkan pengukuran

Berdasarkan perhitungan

30° 20° 40° 77° 47° 47°

45° 30° 31° 55° 39° 39°

60° 38° 22° 41° 42° 41°

75° 47° 17° 33° 44° 44°

30°

Menjawab pertanyaan

SOAL JAWAB

UAN-04-19

C

npsini=nusinr

1,5sin30°=1sinr

Page 34: Lap Prak Fisika

B

A

prisma

udara

udara

Seberkas sinar monokromatik AB dijatuhkan tegak lurus pada salah satu prisma siku siku yang sudut puncaknya

30° dan indeks biasnya 1,5. Di titik C sinar akan …

A. dibiaskan dengan sudut bias > 30°

B. dibiaskan dengan sudut bias <>°

C. dipantulkan dan dibiaskan

D. dipantulkan sempurna

E. dipantulkan ke arah A

sinr=1,5 × 12=0,75

sinr → sinar dibiaskan

sinr >0,5 → r >30°

Di titik C sinar akan dibiaskan dengan

sudut bias >30°

Jawaban : A

SPMB 2003 REGIONAL 1

Hsil pembiasan dari cahaya

Dik : i1=45°, r2=45°, β=60°

, deviasi minimum

Segitiga sama sisi → β=60° δm=2i1- β=2×45 – 60=30°

nusini1= npsinr1

Page 35: Lap Prak Fisika

monokromatik yang melalui prisma ditunjukkan pada gambar di atas.Dengan data tersebut dapat dinyatakan

1. Sudut pembias = 60°

2. Indeks bias bahan prisma = 2

3. Deviasi minimum yang terjadi sebesar 30°

4. Sudut kritis bahan prisma terhadap udara

adalah 50° (A)Jika 1, 2, dan 3 benar(B) Jika 1 dan 3 benar(C) Jika 2 dan 4 benar(D) Jika 4 saja yang benar(E) Jika semua jawaban benar

1×12 2= np× 12

np= 2 sinik= nunp= 12 → ik =45°

( salah )

1, 2, 3 benar

Jawaban A

UMPTN 1990 RAYON B

Suatu sinar datang pada permukaan kaca

dengan sudut datang i kemudian

dibiaskan dengan sudut bias r , maka biasan sinar itu mengalami deviasi sebesar

A. r

B. i-r

C. 180- i

D. 180- r

E. 180-i-r

θ

θ=i-r

Page 36: Lap Prak Fisika

Jawaban BBeras cahaya datang dari medium A ke

medium B dengan sudut datang 30° dan

dibiaskan dengan sudut 45° .Indeks bias relatif medium A terhadap B adalah …

A. 12

B. 122

C. 123

D. 2

E. 2

nAsini= nBsinr

nAnB= sin45°sin30°= 12212= 2

Jawaban : D

Tes ITB 1975

Seberkas sinar dari udara masuk ke suatu permukaan air.Bila indeks bias udara-air

43 , manakahhubungan di bawah ini yang dianggap paling benar disesuaikan dengan bambar ?

A. sin 90-x siny= 43

sini sinr= nanu

sin 90-x siny= 431= 43

Jawaban : A

Page 37: Lap Prak Fisika

B. sinxsin( 90-y )= 43

C. sinxsiny= 43

D. sinysinx= 43

Kesimpulan

Sudut sinar datang

( i1 )

Sudut deviasi ( δ )

Berdasarkan pengukuran

Berdasarkan perhitungan

30° 47° 47°

45° 39° 39°

60° 42° 41°

75° 44° 44°

Pada hasil pengamatan denagn sudut sinar datang 60° , sudut deviasi hasil

perhitungan dan hasil pengukuran berbeda 1° .Hal ini dapat disebabkan oleh letak garis yang kurang tepat, atau saat peletakan jarum kurang sejajar, sehingga mempengaruhi hasil perhitungan dan pengukuran.Tapi pada dasarnya hasil perhitungan dan hasil pengukuran memiliki hasil yang sama.Hal ini membultikan bahwa sudut deviasi adalah sudut yang dibentuk oleh perpotongan dari perpanjangan cahaya datang dengan perpanjangan cahaya bias yang meninggalkan prisma.

Page 38: Lap Prak Fisika