konstruksi baja ii 97.ppt

120

Click here to load reader

Upload: rahmadfuji-firstlove-nana

Post on 18-Jan-2016

145 views

Category:

Documents


31 download

TRANSCRIPT

Page 1: KONSTRUKSI BAJA II 97.ppt

KONSTRUKSI BAJA IIKONSTRUKSI BAJA II

FAKULTAS TEKNIKUNIVERSITAS ISLAM SULTAN AGUNG SEMARANG 2013

Page 2: KONSTRUKSI BAJA II 97.ppt

SYLABUSSYLABUSAnalisis dan disain batang tekan

prismatis, batang tekan dan lentur. Bahaya tekuk dan lipat batang tekan. Kolom komposit. Stabilitas balok lentur, stabilitas pelat

baja.Analisis dan disain struktur plat girder,

penggunaan pada : jembatan keretaPerencanaan kuda-kuda baja : bentuk

rangka, pembebanan, ikatan angin, gording batang tekan dan tarik, sistem sambungan.

Konsep dasar perencanaan baja plastis

Page 3: KONSTRUKSI BAJA II 97.ppt

INTRODUCTIONINTRODUCTION

Page 4: KONSTRUKSI BAJA II 97.ppt

PROFIL BAJAPROFIL BAJA

Zora Vrcelj, UNSW

Page 5: KONSTRUKSI BAJA II 97.ppt

The Benefit of Steel Material The Benefit of Steel Material as a Construction Materialas a Construction Material

EconomicDuctileHot rolled into standards shapesEasily fabricated by welding

Zora Vrcelj, UNSW

Page 6: KONSTRUKSI BAJA II 97.ppt

DUCTILITYDUCTILITYThe most important material characteristic of steel is its ductility.

Ductility allows very large strains to develop with increase in stress, prior to failure.

The advantages of ductility are: •It can give prior warning of future failure•It allows energy absorption in dynamic loading or in resisting brittle fracture•It allows for redistribution of actions, which is usually favorable

N.B At present, in achieving a ductile stress -strain curve it requires the yield stress fy to be less than 450 MPa. The yield stress is also called the Grade of the steel, i.e. Grade 350 steel has fy = 350 MPa Zora Vrcelj, UNSW

Page 7: KONSTRUKSI BAJA II 97.ppt

Stress-Strain Curve Stress-Strain Curve

Idealised stress-strain relationship for structural steel

The same stress-strain curve is assumed in compression,but we shall see that buckling of members and elements in compressionusually prevents high strains from being realisedZora Vrcelj, UNSW

Page 8: KONSTRUKSI BAJA II 97.ppt
Page 9: KONSTRUKSI BAJA II 97.ppt

Yielding under Biaxial Yielding under Biaxial StressesStresses

Zora Vrcelj, UNSW

Page 10: KONSTRUKSI BAJA II 97.ppt

Typical Steel Typical Steel Fabrication Fabrication

Hot rolling

Zora Vrcelj, UNSW

Page 11: KONSTRUKSI BAJA II 97.ppt

Steel Structural Sections

• Hot-Rolled Sections.

• Cold Formed Sections.

• Built-Up Sections.

7

Steel Structure Sections Steel Structure Sections

Page 12: KONSTRUKSI BAJA II 97.ppt

• Hot-Rolled Sections.

W(a) Wide-flange Shape

S(b) American Standard

Beam

C(c) American Standard Channel

L(d) Angle

WT or ST(e) Structural

Tee (f) Pipe Section

(g) Structural Tubing

(h) Bars (i) Plates

a – Wide-flange : W 18 97

b – Standard (I) : S 12 35

c – Channel : C 9 20

d – Angles : L 6 4 ½

e – Structural Tee : WT, MT or ST e.g. ST 8 76

f & g – Hollow Structural Sections HSS : 9 or 8 8

8

Page 13: KONSTRUKSI BAJA II 97.ppt

• Cold Formed Sections

(a) Channels (b) Zees (c) I-shaped double channels

(d) Angles (e) Hat sections

9

Page 14: KONSTRUKSI BAJA II 97.ppt

• Built-Up Sections.

Built-up (W) shapes.

Built-up (C) Channels.

Built-up (L) Angles.

10

Page 15: KONSTRUKSI BAJA II 97.ppt

• Tension Members.

(a) Round and rectangular bars, including eye bars and upset bars.

(b) Cables composed of many small wires.

(c) Single and double angles.

(d) Rolled W – and S – sections.

(e) Structural tee.

(f) Build-up box sections.

Perforatedplates

11

Page 16: KONSTRUKSI BAJA II 97.ppt

• Compression Members.

(a) Rolled W-and S- sections.

(c) Structural tee.

(b) Double angles.

(e) Pipe section

(d) Structural tubing

(f) Built-up section12

Page 17: KONSTRUKSI BAJA II 97.ppt

(a) Rolled W-and other I-shaped sections.

(c) open web joist.(b) Build-up Sections.

(f) Built-up members

• Bending Members.

(d) Angle (e) Channel (g) Composite steel-Concrete

13

Page 18: KONSTRUKSI BAJA II 97.ppt

Frames Frames Frames Frames

Page 19: KONSTRUKSI BAJA II 97.ppt

FRAMESFRAMESFRAMESFRAMES

Page 20: KONSTRUKSI BAJA II 97.ppt

FRAME IDEALISATIONFRAME IDEALISATIONFRAME IDEALISATIONFRAME IDEALISATION

Reduction of 3-D framework to plane frames

Page 21: KONSTRUKSI BAJA II 97.ppt

FLOOR BEAMS FLOOR BEAMS PROFILES PROFILES

Zora Vrcelj, UNSW

Page 22: KONSTRUKSI BAJA II 97.ppt

LOADSLOADS

Page 23: KONSTRUKSI BAJA II 97.ppt

LOADSLOADS

Page 24: KONSTRUKSI BAJA II 97.ppt

SUCCESSFULL SUCCESSFULL STRUCTURESTRUCTUREFunctional requirements – set by

clientSAFETY – consider for whole building

life including construction period (STRUCTURAL ENGINEERS)

Aesthetic satisfaction – set by architects

Economy – Capital cost is not just the structural component but financing and construction speed /maintenance costs can effect long term life cycle costing.

Zora Vrcelj, UNSW

Page 25: KONSTRUKSI BAJA II 97.ppt
Page 26: KONSTRUKSI BAJA II 97.ppt

Working Stress Design (Allowable Stress Design),widely known as (ASD) – used for over 100 years.

Limited States Design (Load & Resistance Factor Design),also known as (LRFD) – first introduced in 1986.

A limit state means “A set of conditions at which astructure ceases to fulfill its intended function”.

Two types of limit states exist, these are:- Safety (Strength).- Serviceability (Deformation).

A)

B)

14

Page 27: KONSTRUKSI BAJA II 97.ppt

DESIGN APPROACHDESIGN APPROACHBased on on limit state design– Serviceability limit state,

concerned with , ‘function’:• Deflection (avoiding excessive cracking or

bending)• Vibration- Strength limit states, Ultimate

limit state concerned with ‘collapse’:• Yielding• Buckling• Overturning

Zora Vrcelj, UNSW

Page 28: KONSTRUKSI BAJA II 97.ppt
Page 29: KONSTRUKSI BAJA II 97.ppt
Page 30: KONSTRUKSI BAJA II 97.ppt

Assume load effects on structures = Q Assume Resistance to these loads = R

Establishing frequency distribution for (Q) & (R):

Thus always Rm > Qm, and the ratio of R/Q defines the “Factor of Safety”, such:

= Factor of Safety (F.S.).RQ

Frequency distribution of load Q and resistance R.

Fre

quen

cy

Resistance R, Load Q

15

Page 31: KONSTRUKSI BAJA II 97.ppt

Allowable Stress Design (ASD): suppose R is the reduction in resistance. suppose Q is the increase in loading.

67.1

85.0

4.1

15.01

4.01

1

1..

11

RR

QQ

Q

RSF

Q

QQ

R

RR

QQRR

Load & Resistance Factor Design (LRFD)

1.4 D = 0.90 R (First load case) 1.56 D = R LRFD F.S. = R/D = 1.56 LRFD, compared to: F.S. = R/Q = 1.67 ASD

17

Page 32: KONSTRUKSI BAJA II 97.ppt

Limit State Design Limit State Design

Zora Vrcelj, UNSW

Page 33: KONSTRUKSI BAJA II 97.ppt
Page 34: KONSTRUKSI BAJA II 97.ppt
Page 35: KONSTRUKSI BAJA II 97.ppt
Page 36: KONSTRUKSI BAJA II 97.ppt
Page 37: KONSTRUKSI BAJA II 97.ppt

ASTM (A33) Steel with Fy = 33 ksi up to 1960.Today steel offer wide choice of yield from 25 ksi upto 100 ksi,among other different characteristics. The majority of constructionsteels are grouped under the following main groups:

A) Carbon SteelsCarbon Steels:low carbon [C < (0.15%)]mild carbon [0.15% < C< 0.3%] such as A-36, A-53.medium carbon [0.3% C < 0.6%] A-500, A-529.high carbon [0.6% < C < 1.7%] A-570

B) High-Strength Low-Alloy SteelsHigh-Strength Low-Alloy Steels:Having Fy 40 ksi to 70 ksi, may include chromium,

copper, manganese, nickel in addition to carbon.e.g. A-242, A-441 and A-572.

18

Page 38: KONSTRUKSI BAJA II 97.ppt

C) Alloy SteelsAlloy Steels:These alloy steels which are quenched and tamperedto obtain Fy > 80 ksi. They do not have a well definedyield point, and are specified a yield point by the “offsetmethod”, examples are A-709, A-852and A-913.

Typical stress-strainRelationsfor various steels:

19

Page 39: KONSTRUKSI BAJA II 97.ppt

A) Carbon Steel Bolts (A-307):

These are common non-structural fasteners with

minimum tensile strength (Fu) of 60 ksi.

B) High Strength Bolts (A-325):

These are structural fasteners (bolts) with low carbon,

their ultimate tensile strength could reach 105 ksi.

C) Quenched and Tempered Bolts (A-449):

These are similar to A-307 in strength but can be

produced to large diameters exceeding 1.5 inch,

20

Page 40: KONSTRUKSI BAJA II 97.ppt

D) Heat Treated Structural Steel Bolts (A-490):

These are in carbon content (upto 0.5%)

and has other alloys. They are quenched and

re-heated (tempered) to 900oF.

The minimum yield strength (Fy) for these bolts

ranges from 115 ksi upto 130 ksi.

21

Page 41: KONSTRUKSI BAJA II 97.ppt

REVIEW ON REVIEW ON COMPRESSION COMPRESSION MEMBERSMEMBERS

Page 42: KONSTRUKSI BAJA II 97.ppt
Page 43: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

Compression MembersCompression MembersStructural elements that are

subjected only to axial compressive forces (columns, truss members, or bracing systems, etc)

Smaller compression members are sometimes referred to as struts.

Page 44: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

Type of FailureType of FailureA long, slender column becomes

unstable when its axial compressive load reaches a value called the critical buckling load.

For extremely stocky members, failure maybe by compressive yielding rather than buckling.

Page 45: KONSTRUKSI BAJA II 97.ppt

COMPRESSION MEMBERS COMPRESSION MEMBERS COMPRESSION MEMBERS COMPRESSION MEMBERS

Column: elastic bucking load effective length factor

First order (linear, no P- effects)

Second order (nonlinear, P-effects)Analysis Method:

Page 46: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

COMPRESSIVE STRENGTHCOMPRESSIVE STRENGTH

Pu ≤ c Pn

Pu ≤ c Ag Fcr

Pu = sum of factored loadsPn = nominal compressive strengthFcr = critical buckling stressc = resistance factor for

compression members = 0.85

Page 47: KONSTRUKSI BAJA II 97.ppt
Page 48: KONSTRUKSI BAJA II 97.ppt
Page 49: KONSTRUKSI BAJA II 97.ppt

Local bucklingLocal buckling

Page 50: KONSTRUKSI BAJA II 97.ppt

LOCAL BUCKLINGLOCAL BUCKLING

Page 51: KONSTRUKSI BAJA II 97.ppt
Page 52: KONSTRUKSI BAJA II 97.ppt
Page 53: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

Local StabilityLocal StabilityIf the elements of the cross

section are so thin that local buckling occurs, the strength corresponding to any buckling mode cannot be developed.

Page 54: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

Local Stability Local Stability If the shape has any slender element

(b/t or h/tw greater than the specified limits of AISC B5), the compressive design strength must be reduced.

In most cases, however, a rolled shape that satisfies the AISC width-thickness requirements can be found, and this procedure will not be necessary.

Page 55: KONSTRUKSI BAJA II 97.ppt
Page 56: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

Page 57: KONSTRUKSI BAJA II 97.ppt
Page 58: KONSTRUKSI BAJA II 97.ppt
Page 59: KONSTRUKSI BAJA II 97.ppt
Page 60: KONSTRUKSI BAJA II 97.ppt
Page 61: KONSTRUKSI BAJA II 97.ppt

Wide Flange Shape                    

PT. GUNUNG GARUDA                    

                       

                       

TypeType

DesignationH X B t1 t2 r

Cross Section

Weight

Moment of Inertia

Section Modulus

Ix Iy Zx Zy

    (mm) (mm) (mm) (mm) (cm2) (kg/m) (cm4) (cm4) (cm3) (cm3)

GG-WFS-01 100 x 100 100 x 100 6 8 10 21.9 17.2 383 134 76.5 26.7

GG-WFS-02 125 x 125 125 x 125 6.5 9 10 30.31 23.8 847 293 136 47

GG-WFS-03 150 x 75 150 x 75 5 7 8 17.85 14 666 49.5 88.8 13.2

GG-WFS-04 150 x 100 148 x 100 6 9 11 26.84 21.1 1020 151 138 30.1

GG-WFS-05 150 x 150 150 x 150 7 10 11 40.14 31.5 1640 563 219 75.1

GG-WFS-06 175 x 175 175 x 175 7.5 11 12 51.21 40.2 2880 984 330 112

GG-WFS-07 200 x 100 198 x 99 4.5 7 11 23.18 18.2 1580 114 160 23

GG-WFS-08 200 x 100 200 x 100 5.5 8 11 27.16 21.3 1840 134 184 26.8

GG-WFS-09 200 x 200 200 x 200 8 12 13 63.53 49.9 4720 1600 472 160

GG-WFS-10 250 x 125 248 x 124 5 8 12 32.68 25.7 3540 255 285 41.1

GG-WFS-11 250 x 125 250 x 125 6 9 12 37.66 29.6 4050 294 324 47

GG-WFS-12 250 x 250 250 x 250 9 14 16 92.18 72.4 10800 3650 867 292

Page 62: KONSTRUKSI BAJA II 97.ppt

GG-WFS-13 300 x 150 298 x 149 5.5 8 13 40.8 32 6320 442 424 59.3

GG-WFS-14 300 x 150 300 x 150 6.5 9 13 46.78 36.7 7210 508 481 67.7

GG-WFS-15 300 x 300 300 x 300 10 15 18 119.8 94 20400 6750 1360 450

GG-WFS-16 350 x 175 346 x 174 6 9 14 52.68 41.4 11100 792 641 91

GG-WFS-17 350 x 175 350 x 175 7 11 14 63.14 49.6 13600 984 775 112

GG-WFS-18 350 x 350 350 x 350 12 19 20 173.9 137 40300 13600 2300 776

GG-WFS-19 400 x 200 396 x 199 7 11 16 72.16 56.6 20000 1450 1010 145

GG-WFS-20 400 x 200 400 x 200 8 13 16 84.1 66 23700 1740 1190 174

GG-WFS-21 400 x 400 400 x 400 13 21 22 218.7 172 66600 22400 3330 1120

GG-WFS-22 450 x 200 450 x 200 9 14 18 96.8 76 33500 1870 1490 187

GG-WFS-23 500 x 200 500 x 200 10 16 20 114.2 89.6 47800 2140 1910 214

GG-WFS-24 600 x 200 600 x 200 11 17 22 134.4 106 77600 2280 2590 228

GG-WFS-25 600 x 300 588 x 300 12 20 28 192.5 15111800

09020 4020 601

GG-WFS-26 700 x 300 700 x 300 13 24 28 235.5 18520100

010800 5760 722

GG-WFS-27 800 x 300 800 x 300 14 26 28 267.4 21029200

011700 7290 782

Notes:                      

1. According JIS 1993                    2. Tensile Strength : 400 - 510 N/mm2                    

TypeType

DesignationH X B t1 t2 r

Cross Section

Weight

Moment of Inertia

Section Modulus

Ix Iy Zx Zy

    (mm) (mm) (mm) (mm) (cm2) (kg/m) (cm4) (cm4) (cm3) (cm3)

Page 63: KONSTRUKSI BAJA II 97.ppt

SK SNI 07 – 0329 - 2005SK SNI 07 – 0329 - 2005SK SNI 07 – 0329 - 2005SK SNI 07 – 0329 - 2005

Page 64: KONSTRUKSI BAJA II 97.ppt

Lateral bucklingLateral buckling

Page 65: KONSTRUKSI BAJA II 97.ppt
Page 66: KONSTRUKSI BAJA II 97.ppt
Page 67: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

Critical Buckling StressCritical Buckling StressFor λc > 1.5 Fcr = (0.877 / λc

2) Fy

For λc < 1.5 Fcr = (0.658 λc2) Fy

λc = (KL / rπ) √ Fy / E

λc = slenderness parameterKL/r = slenderness ratioKL = effective lengthr = radius of gyration

Page 68: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

Critical Buckling Stress Critical Buckling Stress These equations are based on

experimental and theoretical studies that account for the effect of residual stresses and initial out-of-straightness of L/1500.

Maximum suggested slenderness ratio is 200.

Page 69: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

Page 70: KONSTRUKSI BAJA II 97.ppt

LATERAL BUCKLINGLATERAL BUCKLING

Page 71: KONSTRUKSI BAJA II 97.ppt
Page 72: KONSTRUKSI BAJA II 97.ppt
Page 73: KONSTRUKSI BAJA II 97.ppt
Page 74: KONSTRUKSI BAJA II 97.ppt
Page 75: KONSTRUKSI BAJA II 97.ppt
Page 76: KONSTRUKSI BAJA II 97.ppt
Page 77: KONSTRUKSI BAJA II 97.ppt
Page 78: KONSTRUKSI BAJA II 97.ppt
Page 79: KONSTRUKSI BAJA II 97.ppt
Page 80: KONSTRUKSI BAJA II 97.ppt
Page 81: KONSTRUKSI BAJA II 97.ppt

DIFFERENCES ON DIFFERENCES ON CODES CODES

FB = Flexural Buckling

Page 82: KONSTRUKSI BAJA II 97.ppt
Page 83: KONSTRUKSI BAJA II 97.ppt
Page 84: KONSTRUKSI BAJA II 97.ppt
Page 85: KONSTRUKSI BAJA II 97.ppt
Page 86: KONSTRUKSI BAJA II 97.ppt
Page 87: KONSTRUKSI BAJA II 97.ppt
Page 88: KONSTRUKSI BAJA II 97.ppt
Page 89: KONSTRUKSI BAJA II 97.ppt
Page 90: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

Effective LengthEffective LengthIf a compression member is

supported differently with respect to each of its principal axes, the effective length will be different for the two directions, and the larger slenderness ratio should be used for the determination of Fcr.

Page 91: KONSTRUKSI BAJA II 97.ppt

Effective length factor Effective length factor – isolated – isolated columncolumnEffective length factor Effective length factor – isolated – isolated columncolumn

Some standard cases are given below (Trahair & Bradford, 1998):

L is the column length; ke is the EFFECTIVE LENGTH FACTOR

For column design or checking we generally use

the effective length Le

LkL ee

Page 92: KONSTRUKSI BAJA II 97.ppt

SLENDERNESS RATIOSLENDERNESS RATIO

Page 93: KONSTRUKSI BAJA II 97.ppt

NE

L l

NE

l

l

L

NE

lL

NE

lL

NE

l

L

2

2

L

EINE

2

24

L

EINE

2

22

L

EINE

2

24

L

EINE

2

2

4L

EINE

Ll 2/Ll Ll 7.0 2/Ll Ll 2

Theoretical ke

1.0 0.5 0.7 0.5 2.0

AS4100 ke

1.0 0.5 0.85 0.7 2.2

Effective length factor Effective length factor – – isolated columnisolated columnEffective length factor Effective length factor – – isolated columnisolated column

Page 94: KONSTRUKSI BAJA II 97.ppt

SK SNI

Page 95: KONSTRUKSI BAJA II 97.ppt

BCN 3431 Steel Design

Page 96: KONSTRUKSI BAJA II 97.ppt
Page 97: KONSTRUKSI BAJA II 97.ppt
Page 98: KONSTRUKSI BAJA II 97.ppt
Page 99: KONSTRUKSI BAJA II 97.ppt
Page 100: KONSTRUKSI BAJA II 97.ppt
Page 101: KONSTRUKSI BAJA II 97.ppt
Page 102: KONSTRUKSI BAJA II 97.ppt
Page 103: KONSTRUKSI BAJA II 97.ppt
Page 104: KONSTRUKSI BAJA II 97.ppt
Page 105: KONSTRUKSI BAJA II 97.ppt
Page 106: KONSTRUKSI BAJA II 97.ppt
Page 107: KONSTRUKSI BAJA II 97.ppt
Page 108: KONSTRUKSI BAJA II 97.ppt
Page 109: KONSTRUKSI BAJA II 97.ppt
Page 110: KONSTRUKSI BAJA II 97.ppt
Page 111: KONSTRUKSI BAJA II 97.ppt
Page 112: KONSTRUKSI BAJA II 97.ppt
Page 113: KONSTRUKSI BAJA II 97.ppt
Page 114: KONSTRUKSI BAJA II 97.ppt
Page 115: KONSTRUKSI BAJA II 97.ppt
Page 116: KONSTRUKSI BAJA II 97.ppt
Page 117: KONSTRUKSI BAJA II 97.ppt
Page 118: KONSTRUKSI BAJA II 97.ppt
Page 119: KONSTRUKSI BAJA II 97.ppt
Page 120: KONSTRUKSI BAJA II 97.ppt

•REFERENCES :• Brockenbrough, RL., Johnson, C., 1981, Steel

Design Manual, USS Corporation• Bresler. B, Lin.T.Y., Scaizi,JB., Design of Steel

Structure, 2nd ed, John Wiley& Son, Inc. New York, 1968

• Yayasan Lembaga Penyelidikan Masalah Bangunan, Peraturan Perencanaan Bangunan Baja Indonesia ( PPBBI ), 1984

• Salmon, Charles G., & Johnson, John E., Wira,M,S,C.E, Struktur Baja, Disain dan Perilaku, Erlangga, Jakarta, 1991

• Bowles, Josep. E & Silaban Ph.D, Pantur, Disain Baja Konstruksi ( Structural Steel Design ), Erlangga Jakarta, 1985

• Amon, Rene & Knobloch, Bruce, Mazunder, Atanu, Perencanaan Konstruksi Baja untuk Insinyur dan Arsitek I, II, Pradnya Paramita, Jakarta, 1988

• Gunawan,dkk, Konstruksi baja I dan II, Delta Teknik, Jakarta