kelompok 2 - journal bearing (2).pdf

Upload: indra-d-winarko

Post on 14-Jan-2016

48 views

Category:

Documents


7 download

TRANSCRIPT

  • KELOMPOK 2

    Darma Adhi W. (11210009)Galuh Intan P. (11210012)

    Bhatara Putra M. (11210014)

    Mulyani (11210020)

    Muliyani (11210023)

    Ali Akbar (11210024)

    Tia Utari (11210028)

    Eko Rusdiyanto (11210030)

  • Bhatara Putra Mediriyanto

    Konsep Dasar

    Apa itu Bearing?

  • Tipe beban pada bearing

    1. Bantalan radial (Journal Bearing)

    Arah beban yang di tumpu bantalan ini

    adalah tegak lurus dengan sumbu poros

    2. Bantalan aksial (Thrust Bearing)

    Arah beban bantalan ini adalah sejajar

    dengan sumbu poros

    3. Bantalan kombinasi (combination bearing)

    Bantalan ini menumpu beban yang

    arahnya sejajar dan tegak lurus dengan

    sumbu poros

  • Introduction

    Journal bearing termasuk salahsatu sliding bearing dan keterbalikkan dari ball bearing

    Journal bearing secara umum digunakan pada mesin piston kendaraan bermotor berbahan bakar bensin atau diesel

    Kelebihan : Bearing type ini mampu menopang shaft yang berat. Awet dan tahan lama Efek redaman dari film minyak membantu membuat mesin

    beroperasi dengan tenang dan halus.

    Kekurangan : Membutuhkan suplai minyak pelumas yang besar Hanya cocok untuk temperatur dan kecepatan rendah Pembentukan lapisan minyak pelumas lambat

  • Bearing Diagram

    Journal bearing Berfungsi sebagai bantalan poros engkol yang berputar

    Oil inlet Tempat masuknya minyak pelumas

    Ketika oli pelumas masuk ke dalam bearing, oli akan memenuhi

    clearance/ gap antara shaft dan bearing sehinggga mengakibatkan

    tekanan fuida meningkat dan daya angkat hidrodinamis terhadap shaft

  • Type Typical Loading Application

    (a) Partial arc Unidirectional load Shaft guides, dampers

    (a) Circumferential

    groove, Axial groove

    types

    Variable load direction Internal combustion engines

    (a) Cylindrical Medium to heavy

    Unidirectional load

    General machinery

    (a) Pressure dam Light loads, unidirectional High speed turbines, compressor

    (a) Overshot Light loads, unidirectional Steam turbines

    (a) Multilobe Light loads, unidirectional Gearing, compressor

    (a) Preloaded Light loads, unidirectional Minimize vibration

    (a) Tilting pad Moderatic Variable loads Minimize vibration

  • Movement of the bearing

  • Video

  • Infinitely Long Approximation (ILA)

    Menentukan jari-jari shaft dan clearance

  • ILA

    Menentukan Dimensionless pressure

  • Galuh intan prawesti

    Boundary Condition

  • 8.3 BOUNDARY CONDITIONS

    Assumsi :

    = 0 = 0

    =

    2

    Dimana :

    Ps = tekanan suplai

    C = radial clearence

    R = radius bearing

    = viskositas pelumas = kecepatanputaran poros

  • 8.4 FULL SOMMERFELD BOUNDARY CONDITIONS

    Asumsi :

    = 0 = 2 (360)

  • cos = +

    1 +

    Substitusi Sommerfeld :

    8.4 FULL SOMMERFELD BOUNDARY CONDITIONS

    Tekanan puncak terjadi ketika

    cos =3

    (2 + 2)

    Dimana :

    cos = sudut angular padatekanan maksimum

    = rasio eksentrisitas

    =

    = eksentrisitasC = radial clearence

  • Dari persamaan 8.9 asumsi P = 0 pada = , besarnya tekanan

    puncak tak berdimensi adalah :

    8.4 FULL SOMMERFELD BOUNDARY CONDITIONS

    =3 (4 2)(4 52 + 4)0.5

    2(1 2)2(2 + 2)

    = 13

    2 + 2

    Yang terjadi pada :

    Besarnya tekanan puncak tak berdimensi pada distribusi tekanan

    adalah :

    =6 sin (2 + )

    (2 + 2)(1 + )2 (8.9)

  • Load Carrying Based

    on Full Sommerfeld Condition

  • Load Carrying Based

    on Full Sommerfeld Condition

    = 0

    2

    Arah Radial

    =

    Arah Tangensial

    (8.10)

    (8.11)

    Dari substitusi tekanan tak berdimensi pada persamaan 8.9 dengan

    persamaan 8.10 dan 8.11 maka didapatkan :

    = 0 =12

    (1 2)12 2 + 2

    (8.12)

  • Load Carrying Based

    on Full Sommerfeld Condition

    Dimana Beban tak berdimensi:

    (8.13)

    Resultan dari dan

    (8.14)

    =

    2

    Dengan =

    2

    = beban yang diproyeksikan

    Ns = kecepatan poros dalam rev/s

    = + =

    ()(+)

  • Load Carrying Based

    on Full Sommerfeld Condition

    Attitude Angle

    (8.15)

    =

    =

    =

    .

    Dalam berbagai kasus, jika

    = 0 = 0

    = 1 =

  • 8.5 DEFINITION OF THE SOMMERFELD NUMBER

  • Bilangan Sommerfeld (S) merupakan bilangan tak berdimensi yang

    merupakan parameter karakterisasi performansi sebuah bearing.

    Bilangan ini menunjukkan karakteristik gesekan total dari bantalan.

    8.5 DEFINITION OF THE SOMMERFELD NUMBER

    =

    2

    substitusikan ke dalam persamaan

    Sommerfeld Number (8.14) maka :

    =1

    Dan penyelesaian S menjadi

    =(1 2)

    12(2 + 2)

    12

    (8.16)

    (8.17)

  • 8.6 HALF SOMMERFELD BOUNDARY CONDITION

    =6

    1 2)12(2 + 2

    =122

    1 2)(2 + 2

    (8.18)

    (8.19)

    Total kapasitas beban dukung dan attitude angle adalah:

    =6

    1 2)(2 + 2)2 2(2 4 0.5 (8.20)

    =

    ( ). (8.21)

  • Eko Rusdiyanto

  • Contoh Soal 8.1

  • Fenomena Kavitasi

    Kavitasi

    Gaseous Cavitation

    Vapor Cavitation

  • Gaseous cavitation merupakan kavitasi yangdisebabkan oleh adanya bagian dari minyakpelumas yang terlarut dengan udara padakondisi jenuh (sekitar 10%), dan ketika tekanansekitar menjadi turun bagian yang terlarut iniakan membentuk suatu kavitasi tetapi dibagianyang berbeda dari fluid film, hal ini yangmenyebabkan kavitasi jenis gaseous tidak terlaluberbahaya.

    Gaseous Cavitation

  • Vapor cavitation disebabkan oleh tingginyafluktuasi tekanan yang ada diantara film daripelumas dan bearingnya itu sendiri, kavitasijenis ini cukup berbahaya karena bisamenyebabkan kerusakan pada bearing (fatiguedamage)

    Vapor Cavitation

  • SWIFT-STEIBER (REYNOLD) BOUNDARY CONDITION

    Perhitungan beban bearing dengan memperhatikan kavitasi didalam perhitungannya

    = 0 =

  • Ali Akbar

    INFINITELY SHORT JOURNAL BEARING

    APPROXIMATION (ISA)

  • A. Infinitely Short Journal Bearing Approximation (ISA)

    Integral 2 kaliLength-to-Diameter ratios up to L/D = dengan trends rata-rata L/D = 1

  • Table Infinitely Long Journal Bearing Solutions with the Reynolds Boundary Condition

  • B. Full and Half Sommerfeld Solutions for Short Bearings (ISA)

  • Figure Short Bearing Eccentricity Ratio vs Sommerfeld Number

  • Figure Short Bearing Attitude Angle vs Sommerfeld Number

  • Darma Adhi Wardhana

  • FINITE BEARING DESIGN & ANALYSIS

    This section focused on design and performance analysis based on the full solution of Reynold equation.

  • FINITE BEARING DESIGN & ANALYSIS

  • FINITE BEARING DESIGN & ANALYSIS

    Minimum film thickness

    hmin = C ( 1 )

    Friction force

    F = f W

    Power loss

    Ep = F 2 R Ns

    Temperature rise

    T =

  • FINITE BEARING DESIGN & ANALYSIS

  • FINITE BEARING DESIGN & ANALYSIS Example:

    A large pump has a horizontal rotor weighing 3200 lb supported on two plain 360o journal bearings, one on either side of the pump impeller. The specifications of the bearings are as follows:

    R = 2 in L = 4 in C = 0.002 in N = 1800 rpm

    the lubricant viscosity = 1.3 x 10-6 reyns (SAE 10 at an inlet temperature of 166o F)

    Determine:

    a) Equilibrium position of the shaft center and location of film rupture

    b) Minimum film thickness

    c) Location and magnitude of maximum pressure

    d) Power loss

    e) Temperature rise

  • FINITE BEARING DESIGN & ANALYSIS

  • FINITE BEARING DESIGN & ANALYSIS

  • FINITE BEARING DESIGN & ANALYSIS

  • FINITE BEARING DESIGN & ANALYSIS

  • Muliyani

  • ATTITUDE ANGLE FOR OTHER BEARING CONFIGURATION

    Where:

  • LUBRICANT SUPPLY ARRANGEMENT

    Supply Hole

    Axial Groove

    Circumferential Groove

  • SUPPLY HOLE

    A common supply methode with small bearing and bushing is to place an inlet port at the bearing midplane opposite to the load line

  • AXIAL GROOVE

  • VARIOUS GROOVE POSITIONS AND INLET ARRANGEMENT

  • CIRCUMFERENTIALS GROOVE

    Alur yang melingkar ditempatkan pada centerline

  • FLOW CONSIDERATION

    Where fL is a corretion factor for the film position as given below:1. Oil hole or axial groove positioned in the unloaded section of the bearing opposite to

    the load line:

    2. Oil hole or axial groove positioned at the maximum film thickness

    Axial flow due rotation

  • 3. For double axial grooves running parallel at 90 angles to the load line:

    4. For a full film starting from the maximum film thickness position

  • FLOW CONSIDERATION

    Pressure Induced Flow

    Inlet hole of diameter DH:

    Qp : Pressure induced flow

    Ps : Supply pressure

    i : Lubricant Viscosity

  • FLOW CONSIDERATION

    1. The film thickness parameter for an oil hole ar an axial groove positioned in the unloaded section of the bearing opposite the load line is

    2. Positioned at the maximum film thickness

    3. For double axial grooves running parallel 90 angles to the load line

  • Total leakage flow rate

    1. For an oil hole or an axial groove positioned in the unloaded section of the bearingopposite to the load line

    2. For an axial groove of length Lg (Lg/L= 0.3 to 0.8) positioned at the maximum filmthickness or two axial grooves running parallel at 90 angles to the load line

  • Mulyani

  • Example 8.4

    Consider a journal bearing with the following specification that correspond to an actual bearing tested by Dowson et al , (1966): L/D = 0.75; R/C = 800; D = 0.102 m; W = 11000 N, and operating speed is Ns = 25 rev/s.

    An axial groove was cut into the bearing surface in the unload portion of the bearing, opposite the load line. the groove width is g = 4.76 x 10-

    3 m, and it is Lg = 0.067 m long. Lubricant is supplied to the bearing at temperature Ti = 36.8 oC at a supply pressure of Ps = 0.276x10

    6 Pa (40 Psi) . The lubricant viscosity is a function of temperature and varies according to = ie-(T-Ti) with i = 0.03 Pa.s, and the temperature viscosity coefficient is estimated to be = 0.0414. lubricant thermal conductivity k = 0.13 W/mK, and thermal diffusivity t = 0.756 x 10-7 m2/s. Determine the flow rates, power loss, attitude angle, and maximum pressure.

    Parameter Nilai Parameter Nilai

    L/D 0.75 Ti 36.8 oC

    R/C 800 Ps 0.276x106 Pa (40

    Psi)

    D 0.102 m i 0.03 Pa.s

    W 11000 N 0.0414

    Ns 25 rev/s k 0.13 W/mK

    g 4.76 x 10-3 m t 0.756 x 10-7

    m2/s

    Lg 0.067 m

  • Menggunakan rumus Sommerfeld number : =

    =

    =

    0.03 25.0 0.0762 0.102

    11000800 2 = 0.338

    Dari table 8.6 dengan L/D = 0.75 didapat = 0.45

  • Maka didapat L= 0.7821 ; (R/C) f = 7.4017; = 59.19o

    Sehingga Leakage flow rate : L = L

    2NsDLC

    L = 0.7821

    225 x 0.102 x 0.0762 x 6.35.10-5

    = 1,51.10-3 m3/s = 15.1 cm3/s

    Cara 2 dengan curve fit equation, table 8.8

    = [ 1- 0.22 (0.75) 1.9(0.45) 0.02 = 0.875

    L = . 1 = 0.45 (0.875) = 0.394

    = (0.762) (0.102)(25)(6,35.10-5)(0.394) = 1,52.10-5 m3/s

    1 = 1- 0.22

    1.9 0.02

    L = NsDLC L

  • Attitude angle

    Asumsi hmax, = 0.18, dengan menggunakanpersamaan 8.45 dan 8.46 maka didapat :

    = 4 1 +

    (1 1.25 ) (8.46)

    = 4 1 + 0.75 (1 1.25 0.45 0.18)

    = 3.75

    = tan-1

    21 (8.45 )

    = tan-1

    21 0.45

    = 59o

  • Next, the pressure include flow must be determined. From table 8.8 determine the groove function and the related film thickness :

    = (1 + )

    = (1 + 0.45 cos 59) = 1.87

    =1.25 0.25 0.067/0.0762

    33 (0.0762/ 0. 067) 1+

    4.76 x 10/0.102

    3 0.0762/0.102 (1 0.067/0.0762)

    = 0.838

    =1.25 0.25 /

    33 (/ ) 1+

    g/D3 / (1 /)

    p = g

    Ps

    = 0.838 1.87 (2.76105)(6.3510)

    0.03

    = 3.69 x 10-6 m3/s = 3.69 cm3/s

  • S = 0.75

    0.7 + 0.4

    = 0.75 0.067

    0.07620.7 + 0.4

    = 1.085

    Total leakage is determinated as follows. First, the datum flow rate m is estabilished :

    m = L + p 0.3 L . p= 15.1 + 3.69 0.3 (15.1)(3.69)

    = 16.6 cm/s (16.6x10-6 m3/s)

    From table 8.8 for an axial groove positioned in the unloaded section of the bearing opposite to the load line, we have :

    Therefore , the total leakage flow rate becomes :

    L total = mS p

    1-S

    = (16.6) 1.085 (3.69) -0.085

    = 18.81 cm3/s

    (18.81 x 10-6 m3/s)

  • Power loss :

    Ep = FU = W (2 R Ns)

    = 7.4017 (1/800) (11000) ( x 0.102 x 25)

    = 812 W (1.09 hp)

    Dari thermal diffusivity, Cp = k/t = 1.72 x 106 W.s/ (m3K)

    =

    (, )=

    812

    1.72 10 18.81 10

    = 25.1

  • Effectiive temperature for evaluating next iteration is (section 8.17)

    Tc = Ti + T = 36.8 + 25.1 = 61.9oC

    The corresponding viscocity is :

    = ie-(T-Ti) = 0.3 e-0.00414(61.9-36.8) = 0.011 pa.s

  • Dengan diketahui viskositasnya, rasio eksentrisitasdapat dihitung dengan menggunakan data dari tabel8.9 dengan prediksi effective temperaturnya 50oC

    Dengan interpolasi didapat

    51.645.7

    5044.7=0.60.55

    0.55

    5.9

    4.3=

    0.05

    0.55 = 0.58

  • max = 3

    2+

    = cos-13 0.58

    2+(0.58)

    = 138.13 oC

    Prediksi max = 138.13 oC, which if measured from the load line

    would be = 138.13 +

    = 138.13 + 59 = 197.13o

  • Dengan menggunakan tabel 8.6 maka maximum pressurenya :

    0.60.55

    0.580.55=14.613911.1975

    11.1975

    0.55

    0.03=

    3.4164

    11.1975

    max = 13.24 13

    =

    + max + Ps

    = (0.016) (25) (800)2 (13) + 2.67.105= 3.60 Mpa (520 Psi)

  • Circumferential Groove

    c=3

    6(1 + 1.5 2) (8.61)

    L total = L + 2 c (8.62)

  • Example 8.5

    Consider a plain journal bearing with the following specifications: D= 8 in; L = 4.00; C = 6x10-3 in; operating speed N = 3600rpm. Theload imposed on the bearing is W= 4800lbf. A narrowcircumferential oil feed groove is cut into the bearing at ismidlength, abd lubricant ( = 10 cp at T= 120oF) is supplied at 10psi. determine the temperature rise.

    With the full length L= 4 divided in half, l/D = 0.25.

    Load of each two bearing segments is Wl = 4800

    2= 2400

    Projected pressure on each bearing Pl = 2400

    (2 8)= 150

    Operating viscocity is = 10cp ( 1.45x10-7) reyns/cp= 1.45 x 10-6 reyns

  • Sommerfeld numbers : = (/)

    = 0.258

    Operating eccentricity = 0.8

    Dimensionaless leakage flow rate L= 1.5753

    Friction coefficient

    = 0.8657

  • In dimensional form, the leakage flow rate due to shaft rotation is :

    L =

    2NsDlC

    = 0.8

    260. 8. 2. 6103

    = 14.25 in3/s (14.25x60/231 = 3.70 gpm)

    Pressure-induce flow is :

    c=3

    6(1 + 1.5 2)

    = 4 (6103)

    6 1.45.10 2(1 + 1.5 (0.8)2)

    = 3.06 in3/s (0.79 gpm)

  • Total leakage flow becomes

    L total = L + 2 c= 14.25 in3/s + (2 x 3.06 in3/s) = 20.37 in3/s (5.29 gpm)

    Power loss is for each half-length bearing segment is :Ep = Wl D Ns

    = 0.01329 x 2400 x x 8 x 60= 4.81 x 104 in.lbf/s (0.83hp)

    Prediction temperature rise is :

    =2

    (, )=

    2 4.81.10

    778 12 0.48 0.0315 (20.37)= 33.4

    Mean outlet temperature isT0 = 120 + 33.4 = 153

    oF

  • BEARING STIFFNESS, ROTOR VIBRATION,

    AND OIL WHIRL INSTABILITY

  • Spring mass system

    The bearing horizontal natural frequency

  • Tia Utari

  • Determine whirl stability for a horizontal rotor and its bearings with the following

    characteristics :

    D = 2R = 5 in

    L = 2.5 in

    C = 0.005 in

    N = 90 rad/s (5400 rpm)

    Ks = 5 x 10^6 lb/in rotor stiffness

    W = 5000 lb rotor weight (m = W/g = 5000/386 = 13 lb2/in rotor mass

    = 2 x 106 lbs/2 (reyns) viscosity

    Example 8.6

  • Example 8.6 Cont

    Analysis Using the graph

    Unit bearing load

    P =

    (DL)

    = 5000 /2

    5 2.5

    = 200 psi

    Sommerfeld number

    S = N(/)2

    = 2*106/2 90/(2.5 0.005 )2

    200

    = 0.225

    Characteristic bearing number

    = S(L/D)2

    = 0.225 (2.5 in/ 5 in)2

    = 0.05625

    Stability on rotor stiffness

    (C/W) = (0.005 in/ 5000 lb)*(5*106 lb/in)

    = 10

    next

  • Example 8.6 Cont

    Stability on case(C/W)m2= (0.005 in/ 5000 lb)*(13 lb2/in*(2*90/)2)

    = 8.28

    Rotor will be free of oil whip instability

  • General Design Guides

    Effective Temperature

    Maximum Bearing

    Temperature

    Turbulent and Parasitic Loss Effect

    Flooded versus

    Starved Condition

    Bearing Load Dimensions

    Eccentricity and

    Minimum Film

    Thickness

    Operating Clearance

    Misalignment and Shaft Deflection

  • Effective Temperature

    Temperature rata-rata pada viskositas tertentu

    Global effective temperature

    Dimana :J panas mekanik densitas oil leakage flowrate temperatur awal kapasitas panas

    conduction & radiation power loss

    For small bearing

  • Maximum Bearing Temperature

    Temperature

    Minimum film thickness

  • Turbulent and Parasitic Loss Effect

    Turbulent :

    Bearing diameter

    Large film thicknesses (clearance)

    High surface speed

    Low fluid viscosities

    High Reynolds numbers

    Parasitic loss :

    Putaran dan turbulensi pada oil grooves dan clearence

    Losses pada percepatan feed oil terhadap surface speed yang tinggi

    Vortex pada feed dan oil grooves

    Surface drag yang terjadi antara oil dengan high surface speed

  • Flooded versus Starved Condotion

    Flooded

    Condition

    < 1Starved Condition

    Leakage flow rate

    Kerja bearing jelek

    Good Cooling

  • Bearing Load and Dimensions

    Projected Loading

    PL= W/(L*D)

    Rentan vibrasi

    Power loss tinggi

    High oil flow

    overheating

  • Eccentriciry and Minimum Film Thickness

    = C e= C(1 )

    Excessive bearing temperature

    Susceptibility to wear

    too small

    Poorer vibration

    Higher power loss

    too large

  • Operating Clearance

    Clearance is 0.002 per inch of diameter