k3 types fracture

Upload: nindy-aulia

Post on 02-Jun-2018

254 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/10/2019 K3 Types Fracture

    1/56

    JENIS-JENIS KERUSAKAN

    DEPARTEMEN METALURGI & MATERIALS

    FAKULTAS TEKNIK UNIVERSITAS INDONESIA

    Dr. Ir. Winarto, M.Sc.

  • 8/10/2019 K3 Types Fracture

    2/56

    INTRODUKSI

    Logam dapat patah dalam berbagai cara dan untuk penyebabyang berbeda-beda. Sumber informasi yang paling penting

    yang kaitannya dengan penyebab perpatahan adalah

    permukaan patahan itu sendiri.

    Permukaan Patahan merupakan rekaman detail dari rangkaiansejarah komponen yang patah karena berisi :

    - data sejarah pembebanan

    - data pengaruh lingkungan

    - data kualitas bahan/material

    Teknik untuk menganalisa bukti (evidence) adalah SEM

    FRACTOGRAPHY tujuannya : mengerti bagaimana

    komponen tsb patah & bagaimana lingkungan mempengaruhinya.

  • 8/10/2019 K3 Types Fracture

    3/56

    CONTOH TAHAPAN - FA

    http://www.tms.org/Students/Winners/Davidson/figure-p1.gif
  • 8/10/2019 K3 Types Fracture

    4/56

    Micro Structure Observation

  • 8/10/2019 K3 Types Fracture

    5/56

    Surface Observation

  • 8/10/2019 K3 Types Fracture

    6/56

    Optical Microscope

    Ferrite 90X Austenite 325X Pearlite Cementite 1000X

    Macro-fractography

  • 8/10/2019 K3 Types Fracture

    7/56

    4 Jenis Perpatahan

    Berdasarkan Jejak Perpatahannya (fracture path), maka

    perpatahan dibagi menjadi 4 bagian :

    1. Perpatahan Ulet (dimple rupture)

    2. Perpatahan Getas (cleavage rupture)

    3. Perpatahan Fatik (fatigue rupture)

    4. Perpatahan dekohesif (decohesive rupture)

    Tiap jenis perpatahan memiliki penampakan permukaan dan

    mekanisme penjalaran retak.

  • 8/10/2019 K3 Types Fracture

    8/56

    Trans-crystalline Fracture

  • 8/10/2019 K3 Types Fracture

    9/56

    Inter-crystalline Fracture

  • 8/10/2019 K3 Types Fracture

    10/56

    Jejak Perpatahan

    Intercrystalline failures Transcrystalline failures

  • 8/10/2019 K3 Types Fracture

    11/56

  • 8/10/2019 K3 Types Fracture

    12/56

    Perpatahan Ulet & Getas

  • 8/10/2019 K3 Types Fracture

    13/56

  • 8/10/2019 K3 Types Fracture

    14/56

    Example of Micro-void

    Coalescence or Dimple Fracture

    High Carbon Steel

    ts = 74,000 psi

    Specimen broke in tension

    AISI 10B21 Steel

    ts = 218,000 psi

    Specimen broken in tension

  • 8/10/2019 K3 Types Fracture

    15/56

    Example of Micro-void

    Coalescence or Dimple Fracture

    Aluminum 2024 Alloy

    ts = 66,000 psi

    Specimen broken in tension

    Titanium Alloy

    ts =153,000 psi

    Specimen broken in

    high cycle fatigue

  • 8/10/2019 K3 Types Fracture

    16/56

  • 8/10/2019 K3 Types Fracture

    17/56

    Perpatahan Getas

    Faktor-faktor utama :

    Stress konsentrasi

    Tegangan tarik

    Temperatur relatif rendah

    Ciri-cirinya :

    1. Tidak Ada deformasi plastis

    2. Permukaan terang dan kristalin

    3. Permukaan patahan utama4. Adachevron marksatauhearingbonemarks

    Apek struktur-mikro :

    1. Butir kasar

    susunan facet pada permukaan belah atau

    pola sungai (r iver patern)

    2. Kadang-kadang antara ciri-ciri cleavageada dimple

    3. Pada Polifase (perlite + Fe3C) terdapat garisdan

    dimple.

  • 8/10/2019 K3 Types Fracture

    18/56

    Chevron marks

  • 8/10/2019 K3 Types Fracture

    19/56

  • 8/10/2019 K3 Types Fracture

    20/56

  • 8/10/2019 K3 Types Fracture

    21/56

    Patah Getas (TEM)

  • 8/10/2019 K3 Types Fracture

    22/56

  • 8/10/2019 K3 Types Fracture

    23/56

    Example of Transgranular Cleavage

    Nickel-Base Alloy

    ts = 141,000 psi

    Specimen broke under

    low cycle fatigue

    Silicon Carbide (SiC)

    flexural = 105,850 psi

    Specimen broke in tension

  • 8/10/2019 K3 Types Fracture

    24/56

    Perpatahan Fatik

    Tahapan perpatahan :

    1. Inisiasi

    2. Perambatan

    3. Patahan akhir

    Ciri-cirinya :

    1. Deformasi plastis sedikit sekali atau hampir tidak ada2. Perpatahannya progresif, berawal dari retak halus yang

    merambat akibat beban ber-fluktuatif

    3. Adabeach marksataurachet marks

    beach marksvsrachet marks :

    1. Beach marks

    deformasi plastis di ujung retakan

    2. Rachet marks permukaan patahan fatik dan

    merangkai beberapa awal (initial) fatik yang berdekatan.

  • 8/10/2019 K3 Types Fracture

    25/56

  • 8/10/2019 K3 Types Fracture

    26/56

  • 8/10/2019 K3 Types Fracture

    27/56

    Striation

    Low Carbon Steel (SEM 2000X) Al-alloy (SEM 4900X)

  • 8/10/2019 K3 Types Fracture

    28/56

  • 8/10/2019 K3 Types Fracture

    29/56

    Perpatahan Fatik

    Striation :

    1. Karakteristik utama fatik pada tahap 2 retak

    merambat dan meninggalkan tonjolan (ri dge, striation)

    pada permukaan

    2. Aspek ukuran: kecil, hanya tampak dengan SEM/TEM3. Aspek penyebab: kemajuan rambatan retak akibat

    sekali pembebanan.

    Beach marksvsstriation

    Beach marks:1. Merupakan deformasi plastis di ujung retakan

    2. Aspek ukuran: cukup besar & dapat diamati dengan

    kasat mata

    3. Aspek penyebab: lokasi posisi front retak setelah

    terhenti.

  • 8/10/2019 K3 Types Fracture

    30/56

    Striation vs Beach Marks

  • 8/10/2019 K3 Types Fracture

    31/56

    Example of Fatigue Fracture

    Nickel Based Alloy

    ts = 141,000 psi

    Specimen broke under

    low cycle fatigue

    Notice the white lines followed

    by dark bands. Individually they are

    called fatigue striations

  • 8/10/2019 K3 Types Fracture

    32/56

    Example of Fatigue Fracture

    Fracture of Nickel Based Alloy

    and striations are more jagged

    than the examples before

    Titanium Alloy

    ts = 153,000 psi

    Specimen broke under

    high cycle fatigue

  • 8/10/2019 K3 Types Fracture

    33/56

    Permukan patah akibat fatigue bending

  • 8/10/2019 K3 Types Fracture

    34/56

    This high tensile steel bolt failed under low stress high cycle

    conditions with a fatigue crack running from 9 o'clock as shownby the beach marks. The SEM image of the fatigued surface(shown left) is found to have no striations due to the high yield

    strength and high cycle conditions.

    Permukan patah akibat low stress high cycle

  • 8/10/2019 K3 Types Fracture

    35/56

    Torsion Fatigue

    Reversed torsional fatigue failure of splined shaft from a

    differential drive gear

    Torsion & Bending Fatigue

  • 8/10/2019 K3 Types Fracture

    36/56

    Springs suffer a combination of bending and torsion and fatigue

    cracks propagate at right angles to the principal stresses. Hence

    the fracture surface is complex even at higher magnification. Thesurface morphology is also influenced by any texture in the

    drawn wire used in manufacture.

    Torsion & Bending Fatigue

  • 8/10/2019 K3 Types Fracture

    37/56

    Pencegahan Fatigue Failure

    The most effective method of improving fatigueperformance is improvements in design:

    Eliminate or reduce stress raisers by streamlining thepart

    Avoid sharp surface tears resulting from punching,stamping, shearing, or other processes

    Prevent the development of surface discontinuitiesduring processing.

    Reduce or eliminate tensile residual stresses caused bymanufacturing.

    Improve the details of fabrication and fasteningprocedures

  • 8/10/2019 K3 Types Fracture

    38/56

  • 8/10/2019 K3 Types Fracture

    39/56

  • 8/10/2019 K3 Types Fracture

    40/56

  • 8/10/2019 K3 Types Fracture

    41/56

  • 8/10/2019 K3 Types Fracture

    42/56

  • 8/10/2019 K3 Types Fracture

    43/56

  • 8/10/2019 K3 Types Fracture

    44/56

  • 8/10/2019 K3 Types Fracture

    45/56

  • 8/10/2019 K3 Types Fracture

    46/56

    Jenis Perapuhan (embrittlement)

    By temperature factors (intergranular mechanism):1. Strain Age Embrittlement

    aging

    2. Quench Age Embrittlement carbide precipitated

    3. Blue Brittleness precipitation hardening (, , Impact);230 - 370C

    4. Tempered Embrittlement

    impurities (Sb, Sn, As), T: 370 - 575

    C.

    5. Sigma-phase Embrittlement Stainless Steel T sevice 560 - 980 C.

    6. HAZ Graphitization

    Carbon Steel welds at T 425

    C ; waktu lama.7. Inter-metallic Compound Embrittlement Galvanized Steel at T

    420C ; waktu lama Fe-Zn intermetalic compound

    By environmental factors (intergranular mechanism) :

    1. Neutron Embrittlement

    neutron radiation at nuclear reactor2. Hydrogen Embrittlement pickling, electroplating, welding, H2S

    exposure

    3. Stress Corrosion Embrittlement Corrosive environment

    4. Liquid Metal Embrittlement salt-bath process(glass making process)

  • 8/10/2019 K3 Types Fracture

    47/56

    Li id M t l E b ittl t

  • 8/10/2019 K3 Types Fracture

    48/56

    Liquid Metal Embrittlement

    The liquid metal can not only reduce the ductil i ty but

    signi f icantly reduce tensile strength. L iquid metal embrittlement is an insidious type of failureas it can occur at loads below yield stress. Thus,catastrophic failure can occur without signif icant

    deformation or obvious deter ioration of the component. I ntergranular or transgranular cleavage fracture arethe common fracture modes associated with l iquid metalembr ittlement. However reduction in mechanical

    properties due to decohesion can occur . This results in a ductile fracture mode occurr ing atreduced tensi le strength. An appropr iate analysis candetermine the effect of l iquid metal embrittlement on

    failure.

    H d E b ittl t

  • 8/10/2019 K3 Types Fracture

    49/56

    Hydrogen Embrittlement

    When tensile stresses are applied to a hydrogen embrittled

    component it may fail prematurely. Hydrogen embrittlement failures are frequently

    unexpected and sometimes catastrophic.

    The threshold stresses to cause cracking are commonlybelow the yield stress of the material.

    High strength steel, such as quenched and tempered steelsor precipitation hardened steels are particularly susceptibleto hydrogen embrittlement.

    Hydrogen can be introduced into the material in service orduring materials processing.

    H d E b ittl t

  • 8/10/2019 K3 Types Fracture

    50/56

    Hydrogen Embrittlement

    Tensile stresses, susceptible material, and the presence of hydrogenare necessary to cause hydrogen embrittlement.

    Residual stresses or externally applied loads resulting in stressessignificantly below yield stresses can cause cracking. Thus,catastrophic failure can occur without significant deformation orobvious deterioration of the component.

    Very small amounts of hydrogen can cause hydrogen embrittlementin high strength steels.

    Common causes of hydrogen embrittlement are pickling,electroplating and welding, however hydrogen embrittlement is notlimited to these processes.

    Hydrogen embrittlement is an insidious type of failure as it canoccur without an externally applied load or at loads significantlybelow yield stress.

    While high strength steels are the most common case of hydrogenembrittlement all materials are susceptible

  • 8/10/2019 K3 Types Fracture

    51/56

  • 8/10/2019 K3 Types Fracture

    52/56

    Perapuhan

    I t t li C d E b ittl t

  • 8/10/2019 K3 Types Fracture

    53/56

    Intermetalic Compound Embrittlement

  • 8/10/2019 K3 Types Fracture

    54/56

    Example of Decohesive Rupture

    Stainless Steel

    ts =195,000 psi

    fractograph show

    hydrogen embrittlement

    C-Mn Steel

    ts = 76,000 psi

    Specimen failed due to

    stress corrosion cracking

  • 8/10/2019 K3 Types Fracture

    55/56

    Example of Decohesive Rupture

    Low Carbon Steel

    ts = 43,000 psi.

    Fractograph show

    a thin layer of oxide

    on the above specimen

    Gray Cast Iron (ASTM 247)

    ts = 33,000 psi

    The white "fuzz"

    are sulfate deposits

  • 8/10/2019 K3 Types Fracture

    56/56

    Home Work1. Jelaskan jenis perpatahan.

    2. Jelaskan perbedaan klasifikasi inter & trans-crystalline.

    3. Jelaskan perbedaan ciri-ciri patah ulet dan patah getas

    4. Jelaskan perbedaan dari striasi dan beach marks

    5. Jelaskan mekanisme tahapan perpatahan akibat fatik berikutgambar.

    6. Jelaskan beberapa pencegahan agar terhindar dari patah fatik

    7. Jelaskan mekanisme patahan akibat perapuhan

    (embrittleness) & beri beberapa contoh yang saudara ketahui8. Apakah setiap jenis perpatahan material disebabkan oleh

    hanya satu jenis perpatahan. Jelaskan menurut saudara

    dengan memberikan contoh.