handout_materi alat penukar kalor_teknik mesin ujb

Upload: elfinsteamline

Post on 05-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    1/12

     Alat Penukar Kalor

    (Heat Exchanger)

    Tujuan Pembelajaran

    •Mengenal jenis-jenis alat penukar kalor

    • Mengetahui jenis APK yang paling baik untuk

    aplikasi industri yang ada 

    • Mengerti parameter kunci dalam desain APK

    • Mampu mengestimasi ukuran dan harga APK

    • Memiliki latarbelakang untuk menggunakan

    software komersial untuk mendesain APK

    Pendahuluan Heat Exchangers

    Untuk apakah Alat Penukar Kalor?

    Jenis-Jenis Alat Penukar Kalor

    Bagaimana Alat penukar kalordiklasifikasikan?

    Dasar-dasar perencanaan Alat Penukar

    Kalor?

    Contents

    • Mengapa kita membutuhkan APK

    • Konstruksi APK

    • Macam-macam APK

    • Proses Desain APK

     Apakah fungsi APK itu ?

    • Untuk memperoleh aliran fluida padatemperatur yang tepat untuk proses

     berikutnya

    • Untuk mengkondensasikan uap

    • Untuk menguapkan fluida

    • Untuk memanfaatkan panas buang

    • Untuk pembangkitan daya

    Typical crude oil distillation

     E2

     E1

     E3

     E4

     E5  E6

     E2

     E5

    Storage

    Kerosene

     Desalter

    Top pump

    around

    Top pump

    around

     Naphtha

    and gases

    Kerosene

     Furnace

    Reduced crude

    Light

    gas oil

    Heavy

    gas oil

    Reduced

    crude

    Heavy gas oil

    Light gas oil

    Bottom pump

    around

       D   i  s   t   i   l   l  a   t   i  o  n   t  o  w  e  r

    Bottom

     pump

    around

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    2/12

    Geothermal Power cycle

    Feedwater

    heater

    Nuclear Power Plant

    Ocean Thermal Energy Conversion Heat utilities

    • Hot utilities

     –  Boiler generating service steam (maybe a combined

    heat and power plant)

     –  Direct fired heaters (furnace)

     –  Electric heaters

    • Cold utilities

     –  Cooling tower (wet or dry) providing service cooling

    water

     –  Direct air-cooled heat exchanger

    Contoh sebuah APK

    Bundle for shell-and-tube exchanger

    KATEGORI UTAMA ALAT PENUKAR KALOR

    Heat exchangers

    Recuperators Regenerators

    Wall separating streams Direct contact

    Kebanyakan Alat Penukar Kalor memiliki 2 aliranfluida, hot dan cold , tetapi beberapa memilikilebih dari dua aliran fluida

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    3/12

    Recuperators dan regenerators

    Recuperative 

    Has separate flow paths for eachfluid which flow simultaneouslythrough the exchangertransferring heat between thestreams

    Regenerative 

    Has a single flow path which the hotand cold fluids alternately passthrough.

    Rotating wheel

    Compactness

    • Can be measured by the heat-transfer area per unit volume or by channel size

    • Conventional exchangers (shell and tube)have channel size of 10 to 30 mm giving

    about 100m2/m3 • Plate-type exchangers have typically 5mm

    channel size with more than 200m2/m3 

    • More compact types available 

    CompactnessDouble Pipe

    Simplest type has one tube inside another - inner

    tube may have longitudinal fins on the outside

    However, most have a

    number of tubes in the outer

    tube - can have very many tubes

    thus becoming a shell-and-tube

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    4/12

    Shell and Tube

    Alat Penukar Kalor tipe shell and tube yang biasa

    digunakan pada industri proses

    Shell-side flow

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    5/12

    Baffle

    Complete shell-and-tube

    Plate-fin exchanger

    • Made up of flat plates (parting sheets) and

    corrugated sheets which form fins• Brazed by heating in vacuum furnace

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    6/12

    Can have many streams

    7 or more streams are typical

    Cooling Towers

    • Large shell with packing at the bottom over whichwater is sprayed

    • Cooling by air flow and evaporation

    • Air flow driven by forced or natural convection

    •  Need to continuously make up the cooling water lost by evaporation

    Exchanger specification

    • Heat load (duty) along with the terminal

    temperatures of the streams

    • Maximum pressure drop each streams –  liquids - 0.5 bar

     –  gases/vapours below 2bar - 10% of inlet pressure

    • Design pressures and temperatures

    • Size/weight constraints• Standards to apply

     –  General standards like ISO, TEMA, ASME, API etc

     –  Companies own standards

    • Other requirements

    The designer must supply an exchanger which

    • Meets the stated specification

    • Has reasonable initial costs and operatingcosts (most exchangers are bought on the

     basis of the cheapest tender)

    • Has a reasonable lifetime

     – no damaging vibration

     – no thermal fatigue

     – no unexpected fouling or corrosion

    Pemilihan Heat Exchanger

    Choosing the best exchanger for a

     given process application 

    Langkah-langkah

    • “Coarse filter” 

     – Buang Jenis Alat Penukar Kalor yang

    tidak memenuhi ketentuan tekanan dan

    temperatur operasi, fluid-material

    compatibilitas, kondisi termal yang

    extrem

    • “Fine filter” 

     – Estimasi Harga

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    7/12

    “Coarse filter”  

    • Use information on next few slides to rejectthose exchangers which are clearly out of

    range or are otherwise unsuitable

    • The information is summarised in the table

    • At this stage, if in doubt, include the

    exchanger (poor choices are likely to turn

    out expensive at the “fine filter” stage)

    Point-point utama

    • Tube /pipa dan cylinders dapat menahan tekanan

    yang lebih besar dibanding dengan plates

    • Jika APK dapat dibangun dengan material yang

     bervariasi, berarti anda dapat menentukan metal

    yang dapat tahan terhadap temperatur yang extrem

    dan fluida-fluida yang korosif

    • APK yang khusus hanya memiliki supplier yang

    sangat sedikit, waktu pengiriman barang yang

    lebih lama dan harus diperbaiki oleh orang yang

    sangat ahli.

    Thermal effectiveness

     

    T T 

    T T 

    in out  

    in in

    1 1

    1 2

    , ,

    , ,

    Stream temperature rise divided by the

    theoretically maximum possible

    temperature rise

    T 1 ,in T 1 ,out

    T 2 ,out T 2,in

    Double PipeTipe APK ini adalah yang paling simpel, memiliki satu tube di

    dalam dan satu tube pada bagian luar, Tube paling dalam bisamemiliki sirip secara longitudinal pada bagian luarnya

    Walaupun demikian terdapat

     pula jenis APK ini yang

    memiliki beberpa tube didalam

    tube luarnya.

    Double pipe

    • Ukuran Normal

     – 0.25 to 200m2 (2.5 to 2000 ft2) per unit

     –  Note multiple units are often used

    • Built of carbon steel where possible

     Advantages/disadvantages of double-pipe

    • Advantages

     – Easy to obtain counter-current flow

     – Can handle high pressure

     – Modular construction

     – Easy to maintain and repair

     – Many suppliers

    • Disadvantage

     – Become expensive for large duties (above

    1MW)

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    8/12

    Scope of double pipe• Maximum pressure

     – 300 bar(abs) (4500 psia) on shell side

     – 1400 bar(abs) (21000 psia) on tubeside• Temperature range

     – -100 to 600oC (-150 to 1100oF)

     –  possibly wider with special materials

    • Fluid limitations

     – Few since can be built of many metals

    • Maximum  = 0.9

    • Minimum DT  = 5 K

    Shell and tube

    • Size per unit 100 - 10000 ft2 (10 - 1000 m2)

    • Easy to build multiple units

    • Made of carbon steel where possible

     Advantages/disadvantages of S&T

    • Advantages

     – Extremely flexible and robust design

     – Easy to maintain and repair

     – Can be designed to be dismantled for cleaning

     – Very many suppliers world-wide

    • Disadvantages – Require large plot (footprint) area - often need

    extra space to remove the bundle

     – Plate may be cheaper for pressure below 16 bar

    (240 psia) and temps. below 200oC (400oF)

    Scope of shell and tubeEssentially the same as a double pipe

    • Maximum pressure 

     – 300 bar(abs) (4500 psia) on shell side

     – 1400 bar(abs) (21000 psia) on tubeside

    • Temperature range 

     – -100 to 600oC (-150 to 1100oF)

     –  possibly wider with special materials

    • Fluid limitations 

     – Few since can be built of many metals

    • Maximum  = 0.9 (less with multipass)

    • Minimum DT  = 5 K

    Heat exchanger costing - “fine filter”  

    • Full cost made up of

     – Capital cost

     – Installation cost

     – Operating cost

    • The cost estimation method given here is based

    only on capital cost - which is the way it is often

    done

    •  Note: installation costs can be as high as capital

    cost except for compact exchangers

    • Installation cost considerations can predominate

    on offshore plant

    Quick sizing of heat exchangers

    We estimate the area from

    DT aDT b

     A  Q

    U T 

    DWhere 

    D D

    D  D D

    D D

    T F T 

    T   T T 

    T T 

    T m

    m a b

    a b

     

    ln( / )

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    9/12

    FT correction factor

    • This correction accounts for the two streams not 

    following pure counter-current flow

    •At the estimation stage, we do not know the detailedflow/pass arrangement so we use

     –  F T  = 1.0 for counter flow which includes most compact and

    double-pipe

     –  F T  = 0.7 for pure cross flow which includes air-cooled and

    other types when operated in pure cross flow (e.g. shell-and-

    tube)

     –  F T  = 0.9 for multi-pass

     –  F T  = 1.0 if one stream is isothermal (typically boiling and

    condensation)

    Estimating U

    • This may be estimated for a given exchanger type

    using the tables• These tables give U  values as a function of Q/DT  

    (the significance of this group will become clear

    later)

    • Example: high pressure gas cooled by treated

    cooling water in a shell-and-tube, where

    Q/DT  = 30 000 W/K

    gives U  = 600 W/m2K

    • This includes typical fouling resistances

    Estimating cost

    • This has often been done by multiplying the

    calculated area, A, by a “cost per unit area” 

    • But, when comparing exchangers, U  and A 

    vary widely from type to type. It is also

    difficult to define A if there is a complicated

    extended surface.

    •  Note, from our basic heat transfer equation

    UA = Q / DT  

    Steps in calculation

    • Calculate DT ln and hence estimate DT  

    • Determine Q/DT  

    • Look up C  value from table

     –  To determine C  at intermediate Q/DT , use logarithmic

    interpolation - see next slide

    •Calculate exchanger cost from - Cost = C (Q/

    DT )

    • Taking the last shell-and-tube example, C  = 0.4.

    Hence, Cost = £ 0.4 X 30 000 = £12 000

    • Make sure that you take account of footnotes in

    tables

    Logarithmic interpolation

    C ln C    C C V V  

    V V 

     

    exp ( )  ln( / ) ln( / )

    ln( / )1

    1 2 1

    1 2

    ln(C 1)

    ln(C 2)

    ln(C )

    ln(V1) ln(V) ln(V2)

    Where the V s are the values of Q/ T. V 1 and V 2 

    are the values either side of the required value V

    Desain Termal

     Alat Penukar Kalor

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    10/12

    Harga Lokal dan harga rata-rata

    • “Overall” artinya dari “the hot side” ke “ the

    cold side” termasuk semua termal resistan 

    • Titik khusus pada alat penukar kalor adalah local 

    • Jadi kita memiliki lokal, overall coefficient

    LOKAL

    KESELURUHAN ALAT PENUKA KALOR

    mT mT    T  AU Q

    T U q

    D

    D

    Q = U A DTk

    Thot

    Tcold

    1 1 1

    U r 

      yr 

    cold 

    cold w

    w

    hot 

    hot 

     yw 

    Integral terhadap area alat penukar kalor

    Persamaan Lokal

    Rearranging

    Integral

     

    q  dQ

    dAU T 

    dQ

    T  UdA

    dQ

    T UdA

    Q AT T 

    D

    D

    D

    dQ

    dA

    Total area AT

    Definisi dari harga rata-rata (mean values )

    Dari slide sebelumnya

    Bandingkan dua sides

    Q

    T U A

    dQ

    T UdA

    m

    m T 

    Q AT T 

    D

    D

    1 1

    D DT Q

    dQ

    T m T    Q

    U  A

    UdAmT   AT 

    1

    Kasus Khusus dimana Ts linear terhadap Q

    • Eqn. integrates to

    give log. mean

    temperature

    difference - LMTD

    DT a

    D D  D D

    D D

    T T   T T 

    T T m LM 

    a b

    a b

     

    ln( / )  D

    T b

    Q

       T  e  m  p  e  r  a   t  u  r  e

    Pararel Flow

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    11/12

    Counter Flow Cross Flow

    Multipass exchangers

    • Untuk single-phase duties,

    Faktor correction teoritis,

     F T , sudah diturunkan (lihar

    referensi)

    •  Harga F T Kurang dari 1

    • Jangan Merancang untuk F T  kurang dari 0.8

    Q

       T  e  m  p .

    T 1

    T 2

    t 1

    t 2

    D DT F T m T LM  

    Typical F T  correction factor curvesFor shell and tube with 2 or more tube-side passes

    T , t  = Shell / tube side1, 2 = inlet / outlet P   t t 

    T t  R

      T T 

    t t       

    2 1

    1 1

    1 2

    2 1

    ;

    Curves are for different values of R 

  • 8/16/2019 Handout_Materi Alat Penukar Kalor_Teknik Mesin UJB

    12/12

    Thermal effectiveness

     

    T T 

    T T 

    in out  

    in in

    1 1

    1 2

    , ,

    , ,

    Stream temperature rise divided by the theoreticallymaximum possible temperature rise

    T 1 ,in T 1 ,out

    T 2 ,out T 2,in

    Tube layouts

    • Typically, 1 in tubes on a 1.25 in pitch or 0.75 in

    tubes on a 1 in pitch

    • Triangular layouts give more tubes in a given shell

    • Square layouts give cleaning lanes with close pitch

    pitchTriangul

    ar

    30o

    Rotated

    triangul

    ar

    60o

    Squar e

    90o

    Rotated

    square 

    45o