feature lucas-kanade(lk) image registration & tracking...

24
1 Image Registration & Tracking dengan Metode Lucas & Kanade Sumber: -Forsyth & Ponce Chap. 19, 20 -Tomashi & Kanade: Good Feature to Track Feature Lucas-Kanade(LK) Extraksi feature dengan metode LK ini adalah sangat populer dalam aplikasi computer vision. Feature diekstraksi dengan mengambil informasi gradient image. Selanjutnya feature ini bisa dimanfaatkan untuk Image registration, yg. Selanjutnya diugnakan utk. tracking, recognition, dan lain-lain Pemilihan feature image yang tepat adalah sangat menentukan keberhasilan proses recognition, tracking, etc. Sejarah Perkembangan LK Lucas & Kanade (IUW 1981) LK BAHH ST S BJ HB BL G SI CET SC Bergen, Anandan, Hanna, Hingorani (ECCV 1992) Shi & Tomasi (CVPR 1994) Szeliski & Coughlan (CVPR 1994) Szeliski (WACV 1994) Black & Jepson (ECCV 1996) Hager & Belhumeur (CVPR 1996) Bainbridge-Smith & Lane (IVC 1997) Gleicher (CVPR 1997) Sclaroff & Isidoro (ICCV 1998) Cootes, Edwards, & Taylor (ECCV 1998) Image Registration

Upload: dinhkhuong

Post on 04-Aug-2019

238 views

Category:

Documents


0 download

TRANSCRIPT

1

Image Registration & Tracking dengan Metode Lucas & Kanade

Sumber:-Forsyth & Ponce Chap. 19, 20-Tomashi & Kanade: Good Feature to Track

Feature Lucas-Kanade(LK)

• Extraksi feature dengan metode LK ini adalahsangat populer dalam aplikasi computer vision.

• Feature diekstraksi dengan mengambil informasigradient image.

• Selanjutnya feature ini bisa dimanfaatkan untukImage registration, yg. Selanjutnya diugnakan utk. tracking, recognition, dan lain-lain

• Pemilihan feature image yang tepat adalah sangatmenentukan keberhasilan proses recognition, tracking, etc.

Sejarah Perkembangan LK

• Lucas & Kanade (IUW 1981)

LK BAHH ST S BJ HB BL G SI CETSC

• Bergen, Anandan, Hanna, Hingorani (ECCV 1992)

• Shi & Tomasi (CVPR 1994)

• Szeliski & Coughlan (CVPR 1994)

• Szeliski (WACV 1994)

• Black & Jepson (ECCV 1996)

• Hager & Belhumeur (CVPR 1996)

• Bainbridge-Smith & Lane (IVC 1997)

• Gleicher (CVPR 1997)

• Sclaroff & Isidoro (ICCV 1998)

• Cootes, Edwards, & Taylor (ECCV 1998)

Image Registration

2

Penerapan metode LK

Penerapan pada aplikasi:

• Stereo

LK BAHH ST S BJ HB BL G SI CETSC

Penerapan pada aplikasi:

• Stereo

• Dense optic flow

LK BAHH ST S BJ HB BL G SI CETSC

Penerapan pada aplikasi:

• Stereo

• Dense optic flow

• Image mosaics

LK BAHH ST S BJ HB BL G SI CETSC

3

Penerapan pada aplikasi:

• Stereo

• Dense optic flow

• Image mosaics

• Tracking

LK BAHH ST S BJ HB BL G SI CETSC

Penerapan pada aplikasi:

• Stereo

• Dense optic flow

• Image mosaics

• Tracking

• Recognition

LK BAHH ST S BJ HB BL G SI CETSC

?

Derivasi RumusanLucas & Kanade

#1

rumusan L&K 1

I0(x)

)('0 xI

h

xIhxIh

)()(lim 00

0

−+=

)('0 xI

4

rumusan L&K 1

)('0 xI

h

xIhxI )()( 00 −+≈

h I0(x)

I0(x+h)

rumusan L&K 1

h I0(x)

)('0 xI

h

xIxI )()( 0−≈

I(x)

rumusan L&K 1

h I0(x)

h)(

)()('0

0

xI

xIxI −≈

I(x)

rumusan L&K 1

I0(x)

h ∑∈

−≈

Rx xI

xIxI

R )(

)()(

||

1'0

0

RI(x)

5

rumusan L&K 1

I0(x)

h ∑∑ ∈

−≈

RxxxI

xIxIxw

xw )(

)]()()[(

)(

1'0

0

I(x)

rumusan L&K 1

h0 I0(x)

0h

I(x)

∑∑ ∈

−←

RxxxI

xIxIxw

xw )(

)]()()[(

)(

1'0

0

rumusan L&K 1

1h ∑∑ ∈ ++−

+←Rxx

hxI

hxIxIxw

xwh

)(

)]()()[(

)(

1

0'0

000

I0(x+h0)

I(x)

rumusan L&K 1

2h ∑∑ ∈ ++−

+←Rxx

hxI

hxIxIxw

xwh

)(

)]()()[(

)(

1

1'0

101

I0(x+h1)

I(x)

6

rumusan L&K 1

1+kh ∑∑ ∈ ++−

+←Rx k

k

x

k hxI

hxIxIxw

xwh

)(

)]()()[(

)(

1'0

0

I0(x+hk)

I(x)

rumusan L&K 1

1+kh ∑∑ ∈ ++−

+←Rx k

k

x

k hxI

hxIxIxw

xwh

)(

)]()()[(

)(

1'0

0

I0(x+hf)

I(x)

Derivasi RumusanLucas & Kanade

#2

rumusan L&K 2

• Sum-of-squared-difference (SSD) error

E(h) = Σ [ I(x) - I0(x+h) ]2x ε R

E(h) Σ [ I(x) - I0(x) - hI0’(x) ]2x ε R

7

rumusan L&K 2

Σ 2[I0’(x)(I(x) - I0(x) ) - hI0’(x)2] x ε Rh

E

∂∂ ≈

Σ I0’(x)(I(x) - I0(x))x ε Rh ≈

Σ I0’(x)2x ε R

= 0

Perbandingan

Σ I0’(x)[I(x) - I0(x)]h ≈ Σ I0’(x)2

x

x

≈h

w(x)[I(x) - I0(x)]

Σ w(x)x

xΣ I0’(x)

Perbandingan

Σ I0’(x)[I(x) - I0(x)]h ≈ Σ I0’(x)2

x

≈h

x

w(x)[I(x) - I0(x)]

Σ w(x)x

xΣ I0’(x)Generalisasi metode Lucas-

Kanade

8

Rumus Original

h ) = Σx ε R

(E [I( x ) - (x ]2)+ h I0

Rumus Original

• Dimension of image

h ) = Σx ε R

(E [I( x ) - (x ]2)+ h

1-dimensional

I0

LK BAHH ST S BJ HB BL G SI CETSC

Generalisasi 1a

• Dimension of image

h ) = Σx ε R

(E [I( x ) - (x ]2)+ h

=

y

xx2D:

I0

LK BAHH ST S BJ HB BL G SI CETSC

Generalisasi 1b

• Dimension of image

h ) = Σx ε R

(E [I( x ) - (x ]2)+ h

=

1

y

x

xHomogeneous 2D:

I0

LK BAHH ST S BJ HB BL G SI CETSC

9

Permasalahan A

LK BAHH ST S BJ HB BL G SI CETSC

Apakah iterasi bisa konvergen?

Permasalahan A

Local minima:

Permasalahan A

Local minima:

Permasalahan B

-Σ I0’(x)(I(x) - I0(x))x ε Rh ≈

Σ I0’(x)2x ε R

h is undefined if Σ I0’(x)2 is zerox ε R

LK BAHH ST S BJ HB BL G SI CETSC

Zero gradient:

10

Permasalahan B

Zero gradient:

?

Permasalahan B’

-Σ (x)(I(x) - I0(x))x ε R

hy≈ Σ 2

x ε R

∂y

I )(0 xy

I

∂∂ )(0 x

Aperture problem (mis. Image datar):

LK BAHH ST S BJ HB BL G SI CETSC

Permasalahan B’

No gradient along one direction:

?

Jawaban problem A & B

• Possible solutions:– Manual intervention

LK BAHH ST S BJ HB BL G SI CETSC

11

• Possible solutions:– Manual intervention

– Zero motion default

LK BAHH ST S BJ HB BL G SI CETSC

Jawaban problem A & B

• Possible solutions:– Manual intervention

– Zero motion default

– Coefficient “dampening”

LK BAHH ST S BJ HB BL G SI CETSC

Jawaban problem A & B

• Possible solutions:– Manual intervention

– Zero motion default

– Coefficient “dampening”

– Reliance on good features

LK BAHH ST S BJ HB BL G SI CETSC

Jawaban problem A & B

• Possible solutions:– Manual intervention

– Zero motion default

– Coefficient “dampening”

– Reliance on good features

– Temporal filtering

LK BAHH ST S BJ HB BL G SI CETSC

Jawaban problem A & B

12

• Possible solutions:– Manual intervention

– Zero motion default

– Coefficient “dampening”

– Reliance on good features

– Temporal filtering

– Spatial interpolation / hierarchical estimation

LK BAHH ST S BJ HB BL G SI CETSC

Jawaban problem A & B

• Possible solutions:– Manual intervention

– Zero motion default

– Coefficient “dampening”

– Reliance on good features

– Temporal filtering

– Spatial interpolation / hierarchical estimation

– Higher-order terms

LK BAHH ST S BJ HB BL G SI CETSC

Jawaban problem A & B

Kembali lagi: Rumus Original

h ) = Σx ε R

(E [I( x ) - (x ]2)+ h I0

Rumus Original

• Transformations/warping of image

h ) = Σx ε R

(E [I( x ) - I0(x ]2)+ h

Translations:

=

y

x

δδ

h

LK BAHH ST S BJ HB BL G SI CETSC

13

Permasalahan C

Bagaimana bila ada gerakan(motion) tipe lain?

Generalisasi 2a

• Transformations/warping of image

A, h) = Σx ε R

(E [I(Ax ) - (x ]2)+h

Affine:

=

dc

baA

=

y

x

δδ

h

I0

LK BAHH ST S BJ HB BL G SI CETSC

Generalisasi 2a

Affine:

=

dc

baA

=

y

x

δδ

h

Generalisasi 2b

• Transformations/warping of image

A ) = Σx ε R

(E [I( A x ) - (x ]2)

Planar perspective:

=

187

654

321

aa

aaa

aaa

A

I0

LK BAHH ST S BJ HB BL G SI CETSC

14

Generalisasi 2b

Planar perspective:

=

187

654

321

aa

aaa

aaa

A

Affine +

Generalisasi 2c

• Transformations/warping of image

h ) = Σx ε R

(E [I( f(x, h)) - (x ]2)

Other parametrized transformations

I0

LK BAHH ST S BJ HB BL G SI CETSC

Generalisasi 2c

Other parametrized transformations

Permasalahan B”

-(JTJ)-1 J (I(f(x,h)) - I0(x))h ≈~

Generalized aperture problem:

LK BAHH ST S BJ HB BL G SI CETSC

-Σ I0’(x)(I(x) - I0(x))x ε Rh ≈

Σ I0’(x)2x ε R

15

Permasalahan B”

?

Generalizedaperture problem:

Rumus Original

h ) = Σx ε R

(E [I( x ) - (x ]2)+ h I0

Rumus Original

• Image type

h ) = Σx ε R

(E [I( x ) - (x ]2)+ h

Grayscale images

I0

LK BAHH ST S BJ HB BL G SI CETSC

Generalisasi 3

• Image type

h ) = Σx ε R

(E ||I( x ) - I0(x ||2)+ h

Color images

LK BAHH ST S BJ HB BL G SI CETSC

16

Rumus Original

h ) = Σx ε R

(E [I( x ) - (x ]2)+ h I0

Rumus Original

• Anggapan pixel punya konstan brightness (Constancy assumption)

h ) = Σx ε R

(E [I( x ) - I0(x ]2)+ h

Brightness constancy

LK BAHH ST S BJ HB BL G SI CETSC

Permasalahan C

Bagaimana bila iluminasi cahaya bervariasi?

Generalisasi 4a

• Constancy assumption

h,α,β )=Σx ε R

(E [I( x ) - αI0(x ]2)+β+ h

Linear brightness constancy

LK BAHH ST S BJ HB BL G SI CETSC

17

Generalisasi 4a Generalisasi 4b

• Constancy assumption

h,λ) = Σx ε R

(E [I( x ) - λΤB(x]2)+ h

Illumination subspace constancy

LK BAHH ST S BJ HB BL G SI CETSC

Permasalahan C’

Bagaimana bila texture berubah?

Generalisasi 4c

• Constancy assumption

h,λ) = Σx ε R

(E [I( x ) - ]2+ h

Texture subspace constancy

λΤB(x)

LK BAHH ST S BJ HB BL G SI CETSC

18

Permasalahan D

Jelas proses konvergensi menjadilambat bila jumlah #parameters

bertambah !!!

• Percepat konvergensi dengan:– Coarse-to-fine, filtering, interpolation, etc.

LK BAHH ST S BJ HB BL G SI CETSC

Jawaban problem D

• Percepat konvergensi dengan:– Coarse-to-fine, filtering, interpolation, etc.

– Selective parametrization

Jawaban problem D

LK BAHH ST S BJ HB BL G SI CETSC

• Percepat konvergensi dengan:– Coarse-to-fine, filtering, interpolation, etc.

– Selective parametrization

– Offline precomputation

Jawaban problem D

LK BAHH ST S BJ HB BL G SI CETSC

19

• Percepat konvergensi dengan:– Coarse-to-fine, filtering, interpolation, etc.

– Selective parametrization

– Offline precomputation• Difference decomposition

LK BAHH ST S BJ HB G SI CETSC

Jawaban problem D

BL

Jawaban problem D

• Difference decomposition

Jawaban problem D

• Difference decomposition • Percepat konvergensi dengan:– Coarse-to-fine, filtering, interpolation, etc.

– Selective parametrization

– Offline precomputation• Difference decomposition

– Improvements in gradient descent

LK BAHH ST S BJ HB G SI CETSC

Jawaban problem D

BL

20

• Percepat konvergensi dengan:– Coarse-to-fine, filtering, interpolation, etc.

– Selective parametrization

– Offline precomputation• Difference decomposition

– Improvements in gradient descent• Multiple estimates of spatial derivatives

LK BAHH ST S BJ HB G SI CETSC

Jawaban problem D

BL

Jawaban problem D

• Multiple estimates / state-space sampling

Generalisasi metode Lucas-Kanade

Σx ε R

[I( x ) - (x ]2)+ h I0

Modifikasi yg. Dibuat selama ini adalah:

Rumus Original

• Error norm

h ) = Σx ε R

(E [I( x ) - I0(x ]2)+ h

Squared difference:

LK BAHH ST S BJ HB BL G SI CETSC

21

Permasalahan E

Permasalahan denganourliers? >> Gunakan

robust norm

Generalisasi 5a

• Error norm

h ) = Σx ε R

(E (I( x ) - I0(x ))+ h

Robust error norm:

ρ

22

2

)(uk

uuρ

+=

LK BAHH ST S BJ HB BL G SI CETSC

Rumus Original

h ) = Σx ε R

(E [I( x ) - (x ]2)+ h I0

Rumus Original

• Image region / pixel weighting

h ) = Σx ε R

(E [I( x ) - I0(x ]2)+ h

Rectangular:

LK BAHH ST S BJ HB BL G SI CETSC

22

Permasalahan E’

Bagaimana bilabackground terjadi clutter

(bergoyang)?

Generalisasi 6a

• Image region / pixel weighting

h ) = Σx ε R

(E [I( x ) - I0(x ]2)+ h

Irregular:

LK BAHH ST S BJ HB BL G SI CETSC

Permasalahan E”

Bagaimana bila objekterhalang (foreground

occlusion)?

Generalisasi 6b

• Image region / pixel weighting

h ) = Σx ε R

(E [I( x ) - I0(x ]2)+ h

Weighted sum:

w(x)

LK BAHH ST S BJ HB BL G SI CETSC

23

Generalisasi metode Lucas-Kanade

Σx ε R

[I( x ) - (x ]2)+ h I0

Modifikasi:

Generalisasi 6c

• Image region / pixel weighting

h ) = Σx ε R

(E [I( x ) - I0(x ]2)+ h

Sampled:

LK BAHH ST S BJ HB BL G SI CETSC

Generalisasi metode Lucas-Kanade: Ringkasan

= Σx ε R

(I( ) - w(x)ρ λΒ(x ))h )(E f(x, h)

h ) = Σx ε R

(E [I( x ) - (x ]2)+ h I0

Ringkasan

• Generalisasi– Dimension of image

– Image transformations / motion models

– Pixel type

– Constancy assumption

– Error norm

– Image mask

L&K ?Y

Y

n

Y

n

Y

24

Ringkasan

• Common problems:– Local minima

– Aperture effect

– Illumination changes

– Convergence issues

– Outliers and occlusions

L&K ?Y

maybe

Y

Y

n

Penanganan aperture effect:– Manual intervention

– Zero motion default

– Coefficient “dampening”

– Elimination of poor textures

– Temporal filtering

– Spatial interpolation / hierarchical

– Higher-order terms

Ringkasan

L&K ?n

n

n

n

Y

Y

n