Download - War Finish

Transcript
Page 1: War Finish

OWNER REQUIREMENT

NO DATA DESIGN KETERANGAN1 Jenis Kapal BULK CARRIER

2 Jenis Muatan PUPUK UREA

3 Payload 11250 ton

4 Kecepatan Dinas 11 knot

5 Kecepatan Percobaan 11.66 knot

6 Radius Pelayaran 532 nautical mile

7 Rute PALEMBANG - BANYUWANGI

8 Daerah Pelayaran INDONESIA

9 Bunkering Port -

10 Klasifikasi BIRO KLASIFIKASI INDONESIA

Page 2: War Finish

Owner requirementDWT 12500 TONPayload 11250 TONVs 11 KNOTDispl 14683.282 m3

Main dimension awal 126.1125.000 124.8130.000125.000

B 19.517T 6.939H 10.414

Perbandingan main dimensionL/B 6.4045153B/H 1.8740718B/T 2.812767H/T 1.5008854L/T 18.014409L/16 7.8125L/(2*B) 3.2022576L/H 12.002522

97% Lwl

Lkonstruksi 96% Lwl

Lwl

Lpp

Page 3: War Finish

DATA KAPAL PEMBANDING

No Nama Tipe Tahun Class Bendera DWT GT LOA LPP B H T Vs Power1 Antilles VI Bulk Carrier 2007 NK Panama 12,526 7,341 115.3 109 19.6 10.38 6.89 19.6 3,6402 Antilles VII Bulk Carrier 2007 NK Panama 12,523 7,341 115.3 109 19.6 10.38 6.83 19.6 3,6403 George Bulk Carrier 1999 NK Marshall Island 12,530 7,918 116 109 19.8 10.79 7.6 13.3 4,0004 Estesun Bulk Carrier 2006 GL Panama 12,530 7,959 116.53 110 19.75 10.5 6.89 11.8 2,9705 Amadore Bulk Carrier 1987 RMR Malta 12,840 8,253 125.91 125 20.5 11.34 8.12 12 3,8506 Rainbow Spring Bulk Carrier 1998 BV China 13,000 9,529 135.48 128 22.03 11.8 8.67 14.4 4,0007 Siam Victory Bulk Carrier 2007 NK Panama 12,509 7,404 115.3 109 19.46 10.35 6.65 14 3,6408 Siam Win Bulk Carrier 2006 NK Panama 12,519 7,404 115.33 110.25 19.54 10.67 6.7 13.3 3,6409 Sunrose E Bulk Carrier 2011 BV Italy 13,000 8,890 137.6 129 22.56 11.78 8.6 12 3,310

10 Thai Binh Bay Bulk Carrier 2010 VSR Vietnam 12,843 8,333 127.7 121.3 21.8 11.5 8.25 13.2 3,30911 Tvisha Bulk Carrier 1999 GL India 12,840 7,918 125.04 119 21.76 10.79 8 13 4,00012 BBC Indiana Bulk Carrier 2012 GL Antigua & Barbuda 12,823 9,627 122.52 116.5 21 10.62 7.89 15 6,00013 Vladmir M Bulk Carrier 2010 BV Panama 13,000 8,887 137 129.8 22.56 11.7 8.5 12.6 4,05014 Yamayuri Bulk Carrier 2003 NK Japan 12,523 15,128 117.92 112.08 19.59 10.56 6.5 14.8 4,60015 Infinite Wisdom Bulk Carrier 2003 NK Thailand 12,523 7,295 118.2 112 19.55 10.69 7.9 15.8 3,88316 J.A.W Iglehart Bulk Carrier 1936 ABS U.S.A 12,650 9,460 123.89 117.5 20.73 10.58 7.95 13 1,64117 Senata Bulk Carrier 2008 GL Liberia 12,796 8,289 123.55 118 20.98 10.75 7.96 14 3,31018 Harmony SW Bulk Carrier 2008 BV Panama 12,983 7,271 135.82 129.5 21.8 11.43 8.36 15.4 3,90019 Vine 2 Bulk Carrier 2007 RINA Malta 12,509 9,299 115.3 110.5 19.57 10.21 6.52 14.5 5,73720 Hayate Bulk Carrier 2011 BV Panama 12,900 8,158 132.9 126.8 20.6 11.2 8.3 14 4,44021 Maasgracht Bulk Carrier 2011 LR Netherland 13,000 9,524 137.4 130.8 21.4 11.86 8.86 15 5,43022 HHL Amazon Bulk Carrier 2009 GL Liberia 12,750 9,611 121.4 115.2 19.67 11 8 15 5,40023 Merwedegracht Bulk Carrier 2011 LR Netherland 12,970 9,524 135 129 21.4 11.4 8.1 15 5,43024 Johanna C Bulk Carrier 2009 GL U.K 12,947 9,530 133.1 127 21 11 8 14.5 5,40025 Julie C Bulk Carrier 2009 GL U.K 12,951 9,530 133.9 127.9 21.5 11.15 8.06 14 5,40026 Nuri Sonay Bulk Carrier 2006 BV Turkey 12,996 9,490 137 131 22 11.65 8.5 14 4,44027 Clipper Anne Bulk Carrier 2010 ABS Liberia 12,845 9,627 127.8 121.8 20.96 11.5 8 15 5,40028 Megan C Bulk Carrier 2011 GL U.K 12,961 9,530 134.07 128 21 11.35 8.05 14 5,40029 Mercy Wisdom Bulk Carrier 2003 BV Panama 12,950 7,373 133.12 129.06 20.6 11.12 8.27 15 4,200

Page 4: War Finish

30 Michelle C Bulk Carrier 2010 GL U.K 12,946 9,530 133.08 129 19.98 11 8.06 14 5,400

12,400 12,500 12,600 12,700 12,800 12,900 13,000 13,100100

105

110

115

120

125

130

135

f(x) = 0.0410415008329836 x − 404.231205470055R² = 0.940774498827368

DWT dan LPP

DWT dan LPPLinear (DWT dan LPP)

DWT

LPP

12,400 12,500 12,600 12,700 12,800 12,900 13,000 13,100100105110115120125130135140

f(x) = 0.0413674173192281 x − 402.450492643113R² = 0.940034232448878

DWT dan LOA

DWT dan LOALinear (DWT dan LOA)

DWT

LOA

Page 5: War Finish

12,400 12,500 12,600 12,700 12,800 12,900 13,000 13,1009

9.5

10

10.5

11

11.5

12

12.5

f(x) = 0.00214391990522333 x − 16.3845206998601R² = 0.735517500689324

DWT dan H

DWT dan H

Linear (DWT dan H)

DWT

H

12,400 12,500 12,600 12,700 12,800 12,900 13,000 13,1006

6.5

7

7.5

8

8.5

9

9.5

f(x) = 0.00308802315454032 x − 31.6613996001164R² = 0.782564551313229

DWT dan T

DWT dan T

Linear (DWT dan T)

DWT

T

12,400 12,500 12,600 12,700 12,800 12,900 13,000 13,100100105110115120125130135140

f(x) = 0.0413674173192281 x − 402.450492643113R² = 0.940034232448878

DWT dan LOA

DWT dan LOALinear (DWT dan LOA)

DWT

LOA

Page 6: War Finish

12,400 12,500 12,600 12,700 12,800 12,900 13,000 13,1006

6.5

7

7.5

8

8.5

9

9.5

f(x) = 0.00308802315454032 x − 31.6613996001164R² = 0.782564551313229

DWT dan T

DWT dan T

Linear (DWT dan T)

DWT

T

Page 7: War Finish

NORMALISASI

DWT Mean = 12,789 DWT LPP B H T DWT 12500St. Dev = 195.9598 1.3443232 1.406977 1.155222 1.337095 1.378068

1.3596324 1.406977 1.155222 1.337095 1.465781 Lpp awal 0.041042 DWT -404.2312Lpp Mean = 120.6663 1.3239108 1.406977 0.953083 0.500135 0.340131 b awal 0.004234 DWT -33.41007

St. Dev = 8.291775 1.3239108 1.286375 1.003618 1.092131 1.378068 T awal 0.003088 DWT -31.66140.2580461 0.522646 0.245598 0.622617 0.420048 H 0.002144 DWT -16.38452

B Mean = 20.743 1.07454 0.884451 1.300762 1.561645 1.224083St. Dev = 0.98942 1.4310756 1.406977 1.296719 1.398336 1.72892 Lpp awal (Lppo) 125 Lpp 112.5

1.3800448 1.256225 1.215863 0.745099 1.655826 B awal (Bo) 19.51748 T 6.869501H Mean = 11.035 1.07454 1.005052 1.836429 1.520818 1.121751 T awal (To) 6.93889

St. Dev = 0.489868 0.2733553 0.076421 1.068302 0.949235 0.610092 H awal (Ho) 10.414480.2580461 0.200962 1.027874 0.500135 0.244622

T Mean = 7.832667 0.1712936 0.502466 0.259748 0.847167 0.083815 12.5St. Dev = 0.684049 1.07454 1.101533 1.836429 1.357508 0.975563 0.069389

1.3596324 1.035524 1.165329 0.969649 1.9482021.3596324 1.045172 1.205756 0.704271 0.0984330.7115404 0.381864 0.013139 0.928822 0.1715280.0335103 0.321564 0.239534 0.581789 0.1861460.9877875 1.065353 1.068302 0.80634 0.7708991.4310756 1.226074 1.185543 1.684127 1.9189650.5642313 0.739729 0.144529 0.336825 0.683186

1.07454 1.222135 0.664025 1.684127 1.5018410.2012317 0.659248 1.084473 0.071448 0.2446220.9214474 1.005052 0.664025 0.745099 0.390810.8040764 0.763849 0.259748 0.071448 0.2446220.8244887 0.872391 0.765094 0.234757 0.3323351.0541276 1.246255 1.270441 1.25544 0.9755630.2835615 0.136722 0.21932 0.949235 0.2446220.8755196 0.884451 0.259748 0.64303 0.3177160.8193856 1.012288 0.144529 0.173516 0.63933

Page 8: War Finish

0.7989733 1.005052 0.771159 0.071448 0.332335

12,400 12,500 12,600 12,700 12,800 12,900 13,000 13,10017

18

19

20

21

22

23

f(x) = 0.00423420420979615 x − 33.4100724609071R² = 0.703260073921478

DWT dan B

DWT dan BLinear (DWT dan B)

DWT

B

Page 9: War Finish

RESISTANCE

METODE HOLTROP

v = 5.658Fn = 0.162v = 0.000Rn = 595370370.370Cstern = 0.000CI4 = 1.000LR/L = 0.222 LR = 28.8662ρ = 1025.000 kg/m3

CB = 0.834CM = 0.997CWP = 0.896Cp = 0.836LCB = 2.722V = 15042.623V = 14675.729467653

( PNA vol II ; page 90 )

= 0= 0.0016= 1.269

S = 3718.935

= 126580.5116709 Newton

( PNA vol II ; page 92-93 )

Viscous Resistance (Rv)

ABT

CFO

1+k1

RV

Wave Making Resistance (RW)

22

d1 Fn λ cos mFn m

321W eCCC

W

R

Page 10: War Finish

ie =d =

===

= 21742.7321979 Newton =======

W =

( Practical Ship Design - Watson ; page 208 )

v =S rudder =

= 3343.455151873 Newton Bilge Keel =Bilge Depth =S bilge =S app =

===

= 151.6666990207 KN= 151666.6990207 Newton

C5

m1

C6

Rw m2

λ

C4

C2

AT

C3

C1

Appandages Resistance (RAPP)

Rapp = 1/2.ρ.v^2.Cfo.(1+k2).Sapp

RAPP

(1+K2) bilge(1+K2) rudder(1+K2) total

Total Resistance (RT)

RT

RT

22

d1 Fn λ cos mFn m

321W eCCC

W

R

Page 11: War Finish

B/T = 2.812767 L^3/V = 146.0517B/L = 0.150134 0T/L = 0.053376 L/T = 18.73499

4.503537 L/B = 6.660696L^3/V = 146.0517 T/B = 0.355522

0.1637982T+B = 33.39526

0

Ta - Tf =

L/LR =

1-Cp =

ABT/CB =

Page 12: War Finish

45.553-0.9

1.139-1.929-1.694

-7.82165E-071.0090.150

101

3.001151257331.9

( Practical Ship Design - Watson ; page 208 )

5.65815.179 1

111

65.0190.284

73.88889.067

1.41.41.4

c1 =

c2 =

c3 =

c4 =

Page 13: War Finish

PROPULSION

( Chapter 11 Parametric Design - M.G. Parson ; page 11

= 151666.699v = 5.6584Fn = 0.16158615

= 858.1908 kW( Chapter 11 Parametric Design - M.G. Parson ; page 11

w = 0.38488534k = 0.975t = 0.3752632

= 3.48056481T = 246566.548μh = 1.01564283μs.μb = 0.98

= 844.9731 kW( Chapter 11 Parametric Design - M.G. Parson ; page 11

μr = 0.98μ0 = 0.5D = 4.51027839Rn = 595370370μp = 0.49

= 1724.435 kW( Chapter 11 Parametric Design - M.G. Parson ; page 11

= 1759.627 kW( Chapter 11 Parametric Design - M.G. Parson ; page 11

μt = 0.975= 1804.746 kW

2453.772 BHP

MCR = NCR + 15 %

Main Engine = 2075.458 kW= 2821.838 HP

Genset Power = 518.8645 kW= 705.4594 HP

RT

PE

vA

PT

PD

Ps

PB

Page 14: War Finish

( propeller B-series = 0.5 - 0.6 )

( Chapter 11 Parametric Design - M.G. Parson ; page 11-33 )

Page 15: War Finish

Engine Data

[ Adapted from : MAN B&W Diesel Engine ]

No. Type Eng. Main Data[ kW ] Bore Stroke Speed mep

1 12 V32/44CR 6720 320 440 750 25.32 12 V32/40 6000 320 400 750 24.93 10 L32/44CR 5600 320 440 750 25.34 9 L32/44CR 5040 320 440 750 25.35 9 L32/40 4500 320 400 720 25.96 8 L32/44CR 4480 320 440 750 25.37 8 L32/40 4000 320 400 750 24.98 7 L32/44CR 3920 320 440 750 25.39 7 L32/40 3500 320 400 720 25.9

10 6 L32/44CR 3360 320 440 750 25.311 9 L27/38 3060 270 380 800 23.512 6 L32/40 3000 320 400 750 24.913 8 L27/38 2720 270 380 800 23.514 7 L27/38 2380 270 380 800 23.515 6 L27/38 2040 270 380 800 23.516 9 L21/31 1935 210 310 1000 24.1

No. Typespeed (900 r/min) speed (1000 r/min)

BoreEng. [ kW Gen. [kW]Eng. [ kW ] Gen. [kW]

5 L21/31 1000 950 1000 950 2109 L16/24 990 940 855 812 160

Page 16: War Finish

Keterangan :Consumption Diesel Fuel Operation No

P Fuel oil * Lube oil * Cyl. No. H W L Dry mass 1100% 179 0.5 12 4039 3100 7195 70 3100% 183 0.5 12 4100 3140 6915 61 5100% 179 0.5 10 4369 2359 8603 58 6100% 179 0.5 9 4369 2359 7984 53.5 8100% 183 0.5 9 4490 2715 7530 51 9100% 179 0.5 8 4369 2359 7454 49.5 11100% 183 0.5 8 4490 2715 7000 47 12100% 179 0.5 7 4369 2359 6924 44.5 13100% 183 0.5 7 4010 2630 6470 42 14100% 179 0.5 6 4163 2174 6312 39.5 15100% 185 0.8 9 3565 2715 6405 39.5100% 183 0.5 6 4010 2630 5940 38100% 185 0.8 8 3565 2035 5960 36100% 185 0.8 7 3595 2035 5515 32.5100% 185 0.8 6 3595 2035 5070 29100% 190 0.8 9 3269 1820 5290 20.5

Stroke Cyl. No. A B C H Dry Mass

310 5 3959 1870 5829 3183 21.5240 9 3033 1680 4713 2495 13.1

Page 17: War Finish

Keterangan :Item Unit

Speed r/minmep barEngine power [ eng. ] kWGensets power [ gen. ] kWSpecific fuel oil consumption g/kWhSpecific lube oil consumption g/kWhCylinder number -Height engine [ H ] mmWidth engine [ W ] mmLength engine [ L ] mmDry mass engine ton

Page 18: War Finish

No. Type Eng. Main Data[ kW ] Bore Stroke Speed

14 7 L27/38 2380 270 380 800

Main Engine = YANMAR 8 L27/38

max Power =2380 kW3236 HP

Revolution (n) = 800 rpmWeight (ton) = 32.5 ( engine )

Dimensionl = 5515 mm

h = 3595 mm

b = 2035 mm

1 Main Engine (tercantum di katalog)

We = 32.5 ton

2 Gearbox ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 175 )

Wgr = 0.37(PB/n) n = 110 ( asumsi rpm propeller )

8.005 ton

3 Shafting ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 175 )

Ws = lp.0.081(PD/n)^2/3 ( asumsi material memiliki tensile strength 700N/mm^2 )

3.044 ton ds = 0.288 m

lp = 6 ( asumsi panjang shaft 6 meter )

4 Propeller ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 175 )

W prop = D^3.K ( asumsi material berbahan 'manganese bronze' )

6.423 ton z = 4 ( asumsi menggunakan 4 daun )D = 4.510

AE/A0 = 0.5 ( PNA vol II ; page 166 )

K = 0.07 ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 176 )

5 Electricity ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 176 )

Page 19: War Finish

Wagg = 0.001 x Pgen(15+0.014 x Pgen ) Pgen = 519 kWn Genset = 3 ( asumsi menggunakan 2 genset utama + 1 genset cadangan )

11.552 ton/genset34.656 ton

6 Other Weight ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 177 )

M = (0.04-0.07)P (t/kW) C = 0.15 ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 175 )P = 2380 kW

130.9

Wother = M.C

19.635 ton

TOTAL WEIGHT = 104.263 ton

Page 20: War Finish

Main Data Consumption Diesel Fuel Operationmep P Fuel oil * Lube oil * Cyl. No. H W23.5 100% 185 0.8 7 3595 2035

1 PK = 0.76 KW1 KW = 1.36 PK

( asumsi rpm propeller )

( asumsi material memiliki tensile strength 700N/mm^2 )

( asumsi panjang shaft 6 meter )

( asumsi menggunakan 4 daun )

( PNA vol II ; page 166 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 176 )

Page 21: War Finish

( asumsi menggunakan 2 genset utama + 1 genset cadangan )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 175 )

Page 22: War Finish

Diesel Fuel OperationL Dry mass

5515 32.5

Page 23: War Finish

STEEL WEIGHT

1 Superstructure Weight ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 163-164 )Wsp = Berat Forecastle + Berat PoopWsp = 133.115 ton Cforecastle = 0.130

Cpoop = 0.075Hsuperstructure = 2.5

Lpoop = 16.875Lforecastle = 22.500

Bsuperstructure = 19.517Vpoop = 823.394

Vforecastle = 548.929Berat Forecastle = 71.361

Berat Poop = 61.755

2 Hull Weight ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 154-156 )

Wst = L.B.DA.Cs ( incl. Superstructure + Deckhouse ) Cso = 0.07015418.688

2073.82 ton u = 2.188Cs = 0.081

DA = 11.682Vsuperstructure = 1372.323

Vdeckhouse = 1411.616Cbd = 0.859

C1 = 0.103Vu = VD + VS + VB + VL

Vdeck = 19650.65564Vsheer = 0

Vcamber = 515.574Vhatchaway = 141.105

Vu = 20307.335

Wstr = 1657.4 ton

3 Deckhouse Weight ( Chapter 11 Parametric Design - M.G. Parson ; page 11-21 )

Wdh = 283.313 ton

4 Koreksi ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 157-158 )

Δ =

Page 24: War Finish

Bulkhead Construction = 41.435 ton( 2.5%Wstr )

Engine Foundation = 3.064 ton27PB/(n+250)(15+PB/1000)

Bulbous Bow = 0 ton

Double Bottom = 219.574 ton Hdb = 1.228Cdb = 0.1Vdb = 2195.737

HULL WEIGHT TOTAL = 2337.889 ton

Page 25: War Finish

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 163-164 ) 112.500Lpp

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 163 )( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 164 )( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 163 )( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 163 )( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 163 )

m3m3tonton

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 154-156 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 154 ) V Layer II =ton V Layer III =( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 154 ) V Layer IV =( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 154 ) V Wheelhouse =( Harvald & Jensen Method, 1992 )m3 Hdeckhouse =m3 L Wheelhouse =( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 101 ) h camber =

C3 =VD + VS + VB + VL ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 156 )

(L.B.D.CBD)( asumsi kapal w/o sheer )

(lL.bL.hL)m3

( Chapter 11 Parametric Design - M.G. Parson ; page 11-21 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 157-158 )

(L.B.b.C3)

Page 26: War Finish

( BKI vol II ; page 8-2 )( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 157 )

Page 27: War Finish

19.517 10.414 6.870 0.834 0.997B H T Cb Cm

642.946 15%*lpp*(B-2)*Hdeckhouse379.693 10%*lpp*(B-4)*Hdeckhouse248.067 7.5%*lpp*(B-6)*Hdeckhouse140.909 5%*lpp*(B-8)*Hdeckhouse

2.175 ( BKI 2006 vol II ; page 16 -2 )5.6250.3900.602 ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 156 )

Page 28: War Finish

EQUIPMENT & OUTFIT WEIGHT

Wo = KLB ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 168 )

515.993381770837 ton K = 0.235 ( bulker without crane )

Wo = 0.055L^2+1.63Vhold^(2/3) ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 168 )

846.56360295852 ton Vhold = 11706.56

Group I ( Hatchway Cover ) ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 170 )

Wh = 0.0533Lhatchway.Bhatchway^1.53 Bhatchway = 9.407Lhatchway = 18.750

30.84092.519 ton

Group II ( Loading Equipment ) ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 170-171 )

Wwinch = 24 ton

Wcrane = 48 ton

Wsling = 45 ton

Group III ( Accommodation ) ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 171-172 )

Wa = Ca.Acommodation Vol Ca = 65 kg/m3Vol Superstructure = 823.394 m3

Wsuperstructure = 53520.59 Vol Layer II = 642.946 m3Wlayer II = 41791.51 Vol Layer III = 379.693 m3

Wlayer III = 24680.07 Vol Layer IV = 248.067 m3Wlayer II = 16124.35 Vol Wheelhouse = 140.909 m3

Wwheelhouse = 9159.096

Wa = 145.2756 ton

Group IV ( Misc. ) ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 172 )

Page 29: War Finish

Wm = (LBD)^2/3.C C = 0.22 ton/m2

177.241412052082 ton

E & O WEIGHT TOTAL = 532.036 ton

Page 30: War Finish

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 168 ) 112.500 19.517 10.414 6.870 0.834Lpp B H T CB

( bulker without crane )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 168 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 170 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 170-171 )

n Crane = 2

Cwinch = 0.8 ton/lifting capacityCsling = 1.5 ton/lifting capacity

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 171-172 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 172 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 172 )

Page 31: War Finish
Page 32: War Finish

PERENCANAAN JUMLAH CREWPerencanaan Susunan ABK

I MasterCaptain (Nahkoda) = 1 orang

II Deck DepartmentChief Officer = 1 orangSecond Officer = 1 orangThird Officer = 1 orangRadio Operator = 2 orangDokter = 1 orangQuarter Master (Juru Mudi) = 3 orangSeaman (Kelasi) = 2 orang

III Engine DepartmentChief Engineer (Kepala Kamar Mesin) = 1 orangSecond Engineer = 1 orangThird Engineer = 1 orangOiler = 2 orangElectrician = 1 orangFitter = 1 orang

IV ServicesChief Cook = 1 orangAssistant Cook = 1 orangSteward = 3 orang

V Cadet = 1 orang

Total Crew = 25 orang

BERAT CONSUMABLE ITEM

1 Crew & Luggage ( Chapter 11 Parametric Design - M.G. Parson ; page 11-25 )

Wc&e = 0.17ton/person

4.250 ton

2 Main Engine Fuel Oil ( Chapter 11 Parametric Design - M.G. Parson ; page 11-24 )

Wfo = SFR.MCR.range/speed.margin SFR = 0.00019MCR = 2075

47.679 v = 11113.664 ton range = 1330

margin = 2.384Vf = Wfo/ρfo + koreksi ρfo = 0.95

Page 33: War Finish

koreksi = 4.786119.646124.432 m3

3 Auxilary Engine Fuel Oil

Wdo = Wfo.Cdo Cdo = 0.15ρdo = 0.85

17.050 ton koreksi = 0.802

20.05820.861 m3

4 Lubrication Oil ( Chapter 11 Parametric Design - M.G. Parson ; page 11-24 )

Wlo = 20 ton ρlo = 0.9koreksi = 0.889

Vlo = Wlo/ρlo + koreksi

22.222 Wlo/ρlo23.111 m3

5 Fresh Water ( Chapter 11 Parametric Design - M.G. Parson ; page 11-24 )

Wfw = 0.17ton/(person.day) ρfw = 1day = 5.038

21.411 ton koreksi = 0.856

Vfw = Wfw/ρfw + koreksi

21.41122.267 m3

6 Provision & Store ( Chapter 11 Parametric Design - M.G. Parson ; page 11-25 )

Wpr = 0.01ton/person.day 0.756day = 5.038

1.259 ton koreksi = 0.033

Vpr = Wpr/ρpr + koreksi

1.6661.699 m3

CONSUMABLE WEIGHT TOTAL = 177.634 ton

Vdo = Wdo/ρdo + koreksi

ρpr =

Page 34: War Finish

ton/kWhr ( average diesel consumption )kWknotnautical miles

ton/m^3

Page 35: War Finish

( 0.1~0.2 )ton/m3

ton/m^3

ton/m^3

ton/m^3

Page 36: War Finish

Displacement = LWT + DWT

LWT DWT

Machinery = 104.263 ton Payload = 11250 tonE & O = 532.036 ton Consumable = 177.6341 tonHull = 2337.889 ton +

+ 11427.63 ton2974.188 ton

Displacement = 2974.188 + 11427.63 = 14401.822 tonDisplacement = 15042.62

SELISIH = 4.260 %

Page 37: War Finish

HOLD VOLUME

ρ(fertilizer, acid phosphate) = 0.961 ton/m3Payload = 11250 ton

Volume Muatan ≈ 11706.556 m3

Bhatchway = 0.4B+1.6 ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 155 )

9.407 m

Lhatchway = 0.5L/juml ruang muat ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 155 )

( juml ruang muat = 3 )

18.750 m

Hhatchway = 0.8-1.3 m ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 159 )

0.8 m

1 Volume Camber ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 156 )

Vc = L.B.Hcamber.C3 L = 95.63 ( Lpp - Lpoop )

Hcamber = 0.390313.991 m3 Cbd = 0.859 ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 101 )

C3 = 0.602 ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 156 )

2 Volume Sheer ( asumsi kapal bulker tdk mempunyai sheer )

0 m3

3 Volume Under Upperdeck ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 156 )

Vh = L.B.H.Cbd

19650.656

4 Volume Hatchcoaming ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 156 )

423.315 m3

5 Volume Kamar Mesin ( Vkm )

1636.278 m3 Lkm = 16.100B = 9.759

Page 38: War Finish

Hdb KM = 1.474

6 Volume Aft. Peak Tank ( Vap )

248.999 m3 Lcollision bh =

b =x =

Volume Fore Peak Tank ( Vfp ) Lfore peak =

Frame space =301.085 m3 Laft peak =

B =

L excl. peak =

7 Volume Double Bottom ( Vdb )

1980.474 m3 L hold =

Hdb =

8 Volume Side Tank ( Vst )

Top Side Tank ( Vtst ) = 2.Lhold.Atst

2127.334 m3

Hopper Side Tank ( Vust ) = 2.Lhold.Aust

539.399 m3

9 Volume Hold ( Practical Ship Design - Watson ; page 61 )

Vr = (Vh-Vm)(1+s)+Vu 1+s =Vm =

16881.881 m3 Vu =

Vh =

10 Koreksi ( Vdb + Vst)

4647.207 m3

VOLUME HOLD TOTAL = 12234.673 m3

4.317STATUS = OK

Selisih Volume Total - Muatan ( ± 5% ) =

Page 39: War Finish

112.50 19.52 10.41Lpp B H

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 155 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 155 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 159 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 156 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 101 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 156 )

( asumsi kapal bulker tdk mempunyai sheer )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 156 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 156 )

Page 40: War Finish

7.200 ( Lpp < 200 ; 0.05 - 0.08 Lpp )

8.8881.688

8.888

0.705 0.800 ( L/500+0.48 ; BKI 2004 )

4.900 0.7009.759

98.712

82.612

1.228 ( BKI vol II ; page 8-2 )

Top Side Tank

( Practical Ship Design - Watson ; page 61 )

1.02 b = 4.155 (B-B hatchway)/2-0.93822.641

737.305 0.700

19650.656 Atst = 12.88 (b+0.9)*(b*tan θ+0.75)-(0.5*b*tan θ*b)*0.93

%

θ = 45°tan θ =

Page 41: War Finish

6.87 0.83T Cb

Page 42: War Finish

Hopper Side Tank

1.619775overlap = 2.5

w = 7.203 B harchway/2+overlap

(b+0.9)*(b*tan θ+0.75)-(0.5*b*tan θ*b)*0.93 1.000

Aust = 3.265 0.5*(B/2-w)^2*tan θ

h = 2.555 (B/2-w)*tan θ

h^2/2 3.265

θ = 45°tan θ =

Page 43: War Finish

PERHITUNGAN FREEBOARD

FREEBOARD CALCULATION( International Convention on Load Lines, 1966 and Protocol of 1988 )

L1 = 96%Lwl at 0.85H 0.85H = 8.852L2 = Lpp at 0.85H

L1 = 97.825L = 106.250 m L2 = 106.250

B = 19.517 m

h = 85%H8.852 m

h = 8.852 m

Cb = 0.799

1 Freeboard Standard ( table )

Tipe Kapal = B

Freeboard = 1386.75 mm

2 Koreksi ( Ship Construction - D.J. Eyres ; page 336 )

Fb2 = 0.965 mm ( 24 < L < 100 )

Fb3 = 1508.548 mm ( Cb > 0.68 )

Fb4 = 391.570 mm ( h > L/15 )L/15 = 7.083

R = 221.354 ( L < 120 )

Koreksi Bangunan Atas L[ m ]

hs = 8.413 m 30 or lessls = 39.375 m ( h > hs ) 75

125 or morels < L ( gunakan tabel ) 106.250x/L = 0.371

% = 21.000Fb5 = -291.218 mm

% Total Panjang Efektif Superstructurex / L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I 0 5 10 15 23.5 32 46 63 75.3 87.7 100

II 0 6.3 12.7 19 27.5 36 46 63 75.3 87.7 100

Line

Kapal dengan forecastle dan tanpa bridge

Kapal dengan forecastle dan

bridge

Page 44: War Finish

Koreksi Sheer

Fbsheer = 0 mm ( tdk ada sheer )

3 Minimum Bow Height

Bwm = 56L(1 - L/500)(1.36/(Cb + 0.68)) ( L < 250 )

4307.314073 mm

TOTAL FREEBOARD ( TOTAL Fb ) = 2.997ACTUAL FREEBOARD ( TOTAL FbA ) = 3.476

MIN BOW HEIGHT ACTUAL = 5.976 mMIN BOW HEIGHT = 4.307 m

% Total Panjang Efektif Superstructurex / L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I 0 5 10 15 23.5 32 46 63 75.3 87.7 100

II 0 6.3 12.7 19 27.5 36 46 63 75.3 87.7 100

Line

Kapal dengan forecastle dan tanpa bridge

Kapal dengan forecastle dan

bridge

Page 45: War Finish

L Freeboard [ mm ] 130.000 19.517 10.414 6.939 125[ m ] Tabel A Tabel B Lwl B H T Lpp

90 984 107591 999 1096 0.834 0.997 0.896 0.836

92 1014 1116 CB CM CWP CP

93 1029 113594 1044 115495 1059 117296 1074 119097 1089 120998 1105 122999 1120 1250

100 1135 1271

Standart Height [ m ]Raised Quarterdeck Other Superstructure

0.9 1.81.2 1.81.8 2.3

1.575 2.113

% Total Panjang Efektif Superstructurex / L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I 0 5 10 15 23.5 32 46 63 75.3 87.7 100

II 0 6.3 12.7 19 27.5 36 46 63 75.3 87.7 100

Line

Kapal dengan forecastle dan tanpa bridge

Kapal dengan forecastle dan

bridge

Page 46: War Finish

mm

% Total Panjang Efektif Superstructurex / L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I 0 5 10 15 23.5 32 46 63 75.3 87.7 100

II 0 6.3 12.7 19 27.5 36 46 63 75.3 87.7 100

Line

Kapal dengan forecastle dan tanpa bridge

Kapal dengan forecastle dan

bridge

Page 47: War Finish

TABEL FREEBOARD STANDART Tinggi Superstructure standart[ Adapted from : International Convention on Load[ Adapted from : International Convention on Load

1966 and Protocol of 1988 ] 1966 and Protocol of 1988 ]

Length of shipsFreeboard [ mm ]

L

Tabel A Tabel B [ m ]

80 841 88781 855 905 30 0.9 1.882 869 923 75 1.2 1.883 883 942 125 1.8 2.384 897 96085 911 97886 926 99687 940 101588 955 103489 969 105490 984 107591 999 109692 1014 111693 1029 113594 1044 115495 1059 117296 1074 119097 1089 120998 1105 122999 1120 1250

100 1135 1271101 1151 1293102 1166 1315103 1181 1337104 1196 1359105 1212 1380106 1228 1401107 1244 1421108 1260 1440109 1276 1459110 1293 1479111 1309 1500112 1326 1521113 1342 1543114 1359 1565115 1376 1587116 1392 1609117 1409 1630

Standart Height [ m ]

Raised quarter

deck

All other superstructure

Page 48: War Finish

118 1426 1651119 1442 1671120 1459 1690121 1476 1709122 1494 1729123 1511 1750124 1528 1771125 1546 1793126 1563 1815127 1580 1837128 1598 1859129 1615 1880130 1632 1901131 1650 1921132 1667 1940133 1684 1959134 1702 1979135 1719 2000136 1736 2021137 1753 2043138 1770 2065139 1787 2087140 1803 2109141 1820 2130142 1837 2151143 1853 2171144 1870 2190145 1886 2209146 1903 2229147 1919 2250148 1935 2271149 1952 2293150 1968 2315151 1984 2334152 2000 2354153 2016 2375154 2032 2396155 2048 2418156 2064 2440157 2080 2460158 2096 2480159 2111 2500160 2126 2520

Page 49: War Finish

Prosentase pengurangan untuk kapal tipe " A "[ Adapted from : International Convention on Load Lines

1966 and Protocol of 1988 ]

Total Panjang Efektif Superstructure

x . L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 7 14 21 31 41 52 63 75.3

Prosentase pengurangan untuk kapal tipe " B "[ Adapted from : International Convention on Load Lines

1966 and Protocol of 1988 ]

LineTotal Panjang Efektif Superstructure

x . L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

I 0 5 10 15 23.5 32 46 63

II 0 6.3 12.7 19 27.5 36 46 63

Prosentase

Pengurangan

Kapal dengan

forecastle dan tanpa bridgeKapal

dengan forecastl

e dan bridge

Page 50: War Finish

0.9 1.0

87.7 100

0.8 0.9 1

75.3 87.7 100

75.3 87.7 100

Page 51: War Finish

STABILITY CHECKING

19.1.1. Input DataWeight = [ long ton ]Length = [ feet ]1 feet = 0.305 m

L = 426.509 ft LWL/1 feetB = 64.034 ft B/1 feet

Bw = 64.034 ft (maximum waterline breadth = B)T = 22.538 ft T/1 feet

Dm = 34.168 ft H/1 feet= 0 ft

= 0 ft

(∆ (ton)/1.016)= 14657.674 long ton

(length of superstructure which extend to sides of ship)= 129.183 ft (Lpoop+Lforecastle)/1 feet

d = 8.202 ft Hsuperstructure/1 Feet= 0.834

= 0.896

(midship section coefficient at draft H = CM)= 0.997

19.1.2. Perhitungan Awal(Vertical prismatic coff.) Cb/Cw

= 0.930(Area of waterline plan at designed draft)

= 24471.346(Area of immersed midship section)

= 1438.634S (Mean Sheer) (Ld*d)+(0.5*L*(SF/3))+(0.5*L*(SA/3)

= 1059.572(Area of vertical centerline plane to depth)

= 15341.177D (Mean Depth) (S/L)+Dm

= 36.653F (Mean freeboard) D-T

= 14.115 (Area of waterline plane at depth D maybe estimate from A0 and nature ofstations above waterline) 1.01 . A0

= 24716.060

SF

SA

∆0

Ld

CB

CW

CX

CPV

A0

AM

A2

A1

Page 52: War Finish

19.1.3. Perhitungan Koeffisien GZ∆T ∆0+(((A0+A1)/2)*(F/35))

= 24575.82ϑ ∆T/2-∆o

= -2369.77A2/(L*D)

= 0.981(Am - B*F) / B*D

= 0.22835*∆T / (A1*D)

= 0.94935*∆T / (A2*B)

= 0.876CW'-[(140*ϑ)*(1-CPV'')/B*D*L]

= 1.023T*(A1/A0)-1) / (2*F*(1-CPV))

= 0.115D*(1-(Ao/A1) / (2*F*(1-CPV'))

= 0.255jika CX'>=0.89, maka = 9.1*(CX'-0.89), jika tidak = 0

= 0KG = 21.81 VCG TOTAL/1feet

3.1 factor h1f=0 = 0.479

f=0.5 = 0.485f=1.0 = 0.583

untuk h1, h0 dan h2jika 0<=f1,f0,f2<=0.5, maka = (f=0)+(f(1,0,2)-0/0.5-0)*((f=0.5)-(f=0))jika tidak = (f=0.5)+[(f1-0.5)/1-0.5)]*(f=1)-f=0.5)

h1 = 0.482KG' (D(1-h1)∆T - ϑ )/(2*∆0)

= 16.00GG' (KG’ – KG)

= -5.813.2 factor h0

f=0 = 0.473f=0.5 = 0.479f=1.0 = 0.542

= 0.474

(1-h0)T= 11.852

CW'

CX'

CPV'

CPV''

CW''

f0

f1

f2

h0

KB0

Page 53: War Finish

(KG’ – KB0)= 4.150

3.3 factor h2f=0 = 0.455

f=0.5 = 0.465f=1.0 = 0.474

h2 = 0.455[(∆T*h2*B)/4*∆0]-[ϑ^2/∆0*(17.5/(A2-(70*ϑ/8)*(1-CPV''))]

= 11.841= 0.069 (CW-0.833)/(0.903-0.833)*0.01+0.060

= 15.072 C1*L*Bw^3/(35*∆0)

= 0.090 (CW''- 0.884)/(0.954-0.884)*0.01+0.07

[CI'*L*D^3/(35*∆0)]+[(Ld*d*D^2)/(140*∆0)]= 4.374

(KB0 + BM0 – KG)= 5.116

(KB0 + BM0 – KG’)= 10.922

G'M90 (BM90 - G'B90)= -7.467

[9*(G'B90-G'B0)/8]-[(G'M0-G'M90)/32]= 8.078

(G'M0+G'M90) / 8= -0.294

[3*(G'M0-G'M90)/32-3*(G'B90-G'B0)/8]= 1.003

19.1.4. Perhitungan Lengan Statis ( GZ [ feet ] )

GG' sin 1f GG'*sin(0)*(PI/180)= 0

b1*sin(2*0)*(PI/180)= 0

b2*sin(4*0)*(PI/180)= 0

b3*sin(6*0)*(PI/180)= 0

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 0

G'B0

G'B90

CI

BM0

CI'BM90

GM0

G'M0

b1

b2

b3

Heel Angle ( f ) = 0

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 5

Page 54: War Finish

GG' sin 1f GG'*sin((5*PI())/180= -0.506

b1*sin((2*5*PI())/180= 1.403

b2*sin((4*5*PI())/180= -0.101

b3*sin((6*5*PI())/180= 0.501

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 1.298

GG' sin 1f GG'*sin((5*PI())/180= -1.008

b1*sin((2*5*PI())/180= 2.763

b2*sin((4*5*PI())/180= -0.189

b3*sin((6*5*PI())/180= 0.869

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 2.434

GG' sin 1f GG'*sin((5*PI())/180= -1.503

b1*sin((2*5*PI())/180= 4.039

b2*sin((4*5*PI())/180= -0.255

b3*sin((6*5*PI())/180= 1.003

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 3.284

GG' sin 1f GG'*sin((5*PI())/180= -1.986

b1*sin((2*5*PI())/180= 5.192

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 10

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 15

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 20

b1sin 2f

Page 55: War Finish

b2*sin((4*5*PI())/180= -0.289

b3*sin((6*5*PI())/180= 0.869

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 3.786

GG' sin 1f GG'*sin((5*PI())/180= -2.454

b1*sin((2*5*PI())/180= 6.188

b2*sin((4*5*PI())/180= -0.289

b3*sin((6*5*PI())/180= 0.501

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 3.946

GG' sin 1f GG'*sin((5*PI())/180= -2.903

b1*sin((2*5*PI())/180= 6.996

b2*sin((4*5*PI())/180= -0.255

b3*sin((6*5*PI())/180= 0.000

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 3.838

GG' sin 1f GG'*sin((5*PI())/180= -3.331

b1*sin((2*5*PI())/180= 7.591

b2*sin((4*5*PI())/180= -0.189

b3*sin((6*5*PI())/180= -0.501

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 25

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 30

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 35

b1sin 2f

b2 sin 4f

b3 sin 6f

Page 56: War Finish

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 3.570

GG' sin 1f GG'*sin((5*PI())/180= -3.733

b1*sin((2*5*PI())/180= 7.955

b2*sin((4*5*PI())/180= -0.101

b3*sin((6*5*PI())/180= -0.869

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 3.254

GG' sin 1f GG'*sin((5*PI())/180= -4.106

b1*sin((2*5*PI())/180= 8.078

b2*sin((4*5*PI())/180= 0.000

b3*sin((6*5*PI())/180= -1.003

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 2.969

GG' sin 1f GG'*sin((5*PI())/180= -4.448

b1*sin((2*5*PI())/180= 7.955

b2*sin((4*5*PI())/180= 0.101

b3*sin((6*5*PI())/180= -0.869

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 2.739

Heel Angle ( f ) = 40

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 45

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 50

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 55

Page 57: War Finish

GG' sin 1f GG'*sin((15*PI())/180= -4.757

b1*sin((2*15*PI())/180= 7.591

b2*sin((4*30*PI())/180= 0.189

b3*sin((6*15*PI())/180= -0.501

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 2.522

GG' sin 1f GG'*sin((15*PI())/180= -5.029

b1*sin((2*15*PI())/180= 6.996

b2*sin((4*30*PI())/180= 0.255

b3*sin((6*15*PI())/180= 0.000

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 2.221

GG' sin 1f GG'*sin((15*PI())/180= -5.263

b1*sin((2*15*PI())/180= 6.188

b2*sin((4*30*PI())/180= 0.289

b3*sin((6*15*PI())/180= 0.501

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 1.716

GG' sin 1f GG'*sin((15*PI())/180= -5.457

b1*sin((2*15*PI())/180= 5.192

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 60

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 65

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 70

b1sin 2f

Page 58: War Finish

b2*sin((4*30*PI())/180= 0.289

b3*sin((6*15*PI())/180= 0.869

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= 0.894

GG' sin 1f GG'*sin((15*PI())/180= -5.609

b1*sin((2*15*PI())/180= 4.039

b2*sin((4*30*PI())/180= 0.255

b3*sin((6*15*PI())/180= 1.003

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= -0.313

GG' sin 1f GG'*sin((15*PI())/180= -5.719

b1*sin((2*15*PI())/180= 2.763

b2*sin((4*30*PI())/180= 0.189

b3*sin((6*15*PI())/180= 0.869

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= -1.898

GG' sin 1f GG'*sin((15*PI())/180= -5.785

b1*sin((2*15*PI())/180= 1.403

b2*sin((4*30*PI())/180= 0.101

b3*sin((6*15*PI())/180= 0.501

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 75

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 80

b1sin 2f

b2 sin 4f

b3 sin 6f

Heel Angle ( f ) = 85

b1sin 2f

b2 sin 4f

b3 sin 6f

Page 59: War Finish

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= -3.780

GG' sin 1f GG'*sin((15*PI())/180= -5.807

b1*sin((2*15*PI())/180= 0.000

b2*sin((4*90*PI())/180= 0.000

b3*sin((6*15*PI())/180= 0.000

GZ GG' sin 1f + b1sin 2f + b2 sin 4f + b3 sin 6f= -5.807

19.5.1 h[radian] (karena jarak sudut yang dibuat 5, maka dimasukkan = 5 / (180/phi)

= 0.0873

seperti simpson dari 0 - 10 derajat 1/3*h*(a+4*b+c)= 0.2218= 0.5631= 0.6809= 0.5439

= 2.0097

19.2. REKAPITULASI PERHITUNGAN STABILITAS

unit : metric

Lengan Statis ( GZ [ m ] )

GZ0 = 0.0000 105 = 0.3955 20

10 = 0.7419 3015 = 1.0011 4020 = 1.153825 = 1.202830 = 1.1698

Heel Angle ( f ) = 90

b1sin 2f

b2 sin 4f

b3 sin 6f

19.5. Perhitungan Lengan Dinamis ( LD [ feet.rad ] )

19.5.2 LD

10O

20O

30O

40O

LDTotal

Lengan Dinamis ( L D [ m.rad ] )

LD

LDTotal

Page 60: War Finish

35 = 1.088140 = 0.991745 = 0.905050 = 0.834855 = 0.768660 = 0.677165 = 0.523170 = 0.272475 = -0.095380 = -0.578685 = -1.152190 = -1.7699

Sudut MaksimumGz max (nilai maksimum GZ dari semua sudut 0-90)

= 1.203

= 6

= 25Titik

X1 = 20X2 = 25X3 = 30Y1 = 1.1538Y2 = 1.2028Y3 = 1.1698

Hasil perkalian matriksa = -4.618b = 0.348c = -0.004

= 40

e [ m . rad ] GZ q max

0.2075 0.1658 0.0417 1.170 40

Standards of IMO Regulation A. 749 (18)

[ feet ] [ m ]

5.116 1.559 Accepted Accepted Accepted

Kolom ke- (nilai terbesar tersebut pada kolom ke berapa)

Heel at Gz max (pada sudut heel berapa)

q max [ Xo ]

30o 40o 30o - 40o 30o [ Xo ]

GM0

e0.30o

>= 0.055 e0.40o

>= 0.09 e30,40o

>= 0.03

Page 61: War Finish

130.000 19.517Lwl B

0.834 0.997CB CM

(maximum waterline breadth = B) 2.722 14528.972LCB ( %Lpp ) V

(length of superstructure which extend to sides of ship)(Lpoop+Lforecastle)/1 feetHsuperstructure/1 Feet

L.Bw.Aw

Bw.T.Cx

(Ld*d)+(0.5*L*(SF/3))+(0.5*L*(SA/3)

D = 0.98*L*Dm+S

Page 62: War Finish

0.949f = 0 f = 0.5

Y

0.500 0.333 0.5000.522 0.340 0.516

jika 0<=f1,f0,f2<=0.5, maka = (f=0)+(f(1,0,2)-0/0.5-0)*((f=0.5)-(f=0)) 0.581 0.360 0.5610.643 0.380 0.6130.706 0.400 0.6680.768 0.420 0.7250.830 0.440 0.7890.891 0.460 0.8560.954 0.480 0.9331.000 0.500 1.000

0.930f = 0 f = 0.5

Y

0.500 0.333 0.500

0.522 0.340 0.5160.581 0.360 0.561

CPV' =

CPV' CPV'

CPV =

CPV CPV

Page 63: War Finish

0.643 0.380 0.6130.706 0.400 0.6680.768 0.420 0.7250.830 0.440 0.7890.891 0.460 0.8560.954 0.480 0.9331.000 0.500 1.000

[(∆T*h2*B)/4*∆0]-[ϑ^2/∆0*(17.5/(A2-(70*ϑ/8)*(1-CPV''))] 0.876f = 0 f = 0.5

(CW-0.833)/(0.903-0.833)*0.01+0.060 Y

C1*L*Bw^3/(35*∆0) 0.500 0.333 0.500

(CW''- 0.884)/(0.954-0.884)*0.01+0.07 0.522 0.340 0.516

0.581 0.360 0.5610.643 0.380 0.6130.706 0.400 0.6680.768 0.420 0.7250.830 0.440 0.7890.891 0.460 0.8560.954 0.480 0.9331.000 0.500 1.000

Line 1 Line 2

Cw CI Cw'

0.500 0.024 0.5000.569 0.030 0.5780.668 0.040 0.6550.754 0.050 0.7310.833 0.060 0.8070.903 0.070 0.8840.958 0.080 0.954

CPV'' =

CPV" CPV"

Page 64: War Finish
Page 65: War Finish
Page 66: War Finish
Page 67: War Finish
Page 68: War Finish
Page 69: War Finish

seperti simpson dari 0 - 10 derajat 1/3*h*(a+4*b+c)

= 0.0676= 0.1716= 0.2075= 0.1658= 0.6126

Lengan Dinamis ( L D [ m.rad ] )

Page 70: War Finish

Roll Period [ s ]B G'Mo Period

19.517 10.922 4.7

Standards of IMO Regulation A. 749 (18) Status

Accepted Accepted Accepted OK

h30o >= 0.2 fmax >= 25o GM0 >= 0.15

J425
0.79*B / G'Mo^1/2
Page 71: War Finish

10.414 6.870H T

0.896 0.836CWP CP

14892.196 213.401Δ MTC

Page 72: War Finish

f = 1.0

Y Y

0.335 0.5000 0.33510.340 0.5106 0.3400.360 0.5447 0.3600.380 0.5838 0.3800.400 0.6302 0.4000.420 0.6804 0.4200.440 0.7393 0.4400.460 0.8109 0.4600.480 0.9000 0.4790.500 1.0000 0.500

f = 1.0

Y Y

0.335 0.5000 0.3351

0.340 0.5106 0.3400.360 0.5447 0.360

CPV'

CPV

Page 73: War Finish

0.380 0.5838 0.3800.400 0.6302 0.4000.420 0.6804 0.4200.440 0.7393 0.4400.460 0.8109 0.4600.480 0.9000 0.4790.500 1.0000 0.500

f = 1.0

Y Y

0.335 0.5000 0.3351

0.340 0.5106 0.340

0.360 0.5447 0.3600.380 0.5838 0.3800.400 0.6302 0.4000.420 0.6804 0.4200.440 0.7393 0.4400.460 0.811 0.4600.480 0.900 0.4790.500 1.000 0.500

CI'

0.0200.0300.0400.0500.0600.0700.080

CPV"

Page 74: War Finish

TRIM CHECKING

KB/T = ( 0.9 - 0.36Cm ) ( Chapter 11 Parametric Design - M.G. Parson ; page 11-18 )

3.717 m

CI = (0.096 + 0.89Cwp^2)/12 ( Chapter 11 Parametric Design - M.G. Parson ; page 11-19 )

0.068 IT = 65284.8

CIL = 0.35Cwp^2 - 0.405Cwp + 0.146 ( Chapter 11 Parametric Design - M.G. Parson ; page 11-19 )

0.064 IL = 2749091

BMT = 4.493( Chapter 11 Parametric Design - M.G. Parson ; page 11-18 )

BML = 189.214

LCG = 55.331 mLCB = 55.687 m

KML = KB + BML ( PNA vol I ; page 34 )

192.932 m

GML = KML - KG ( PNA vol I ; page 39 )

186.287 mTrim = Ta - Tf = (LCG - LCB)L / GML

TRIM = (0.249) ( trim buritan )

BATASAN TRIM = LCG - LCB < 0.1%Lpp LCG - LCB 0.1%Lpp0.356 0.113

Page 75: War Finish

112.50 130.00 19.52 10.41 6.87LPP LWL B H T

0.834 0.997 0.896 0.836CB CM CWP CP

2.722 14528.97 213.401LCB ( %Lpp ) V MTC

V = L.B.T.CB MTC = V*1.025*GML/(100*LWL)LCB at Lpp = 53.187 LPP/2-LCB%.LPPLCB at Lwl = 55.687 (LWL/2-LPP/2)+ LCB at LPP

Page 76: War Finish

TONNAGE MEASUREMENT

Gross Tonnage ( Practical Ship Design - Watson ; page 367 )

( Ship Construction - D.J. Eyres ; page 330 )GT = K1.V ( inner shell )

V = Vh + Vu6657.269 m3 Vh = Underdeck Volume

Vu = Vsp + Vdh + Vhatch + VcamberVh = 19650.656

Vsp = 1372.323Vdh = 1411.616

Vhatch = 423.315Vcamber = 313.991

Vu = 3521.244V = 23171.899 m3

K1 = 0.287

Net Tonnage( Ship Construction - D.J. Eyres ; page 331 )

Vc = 12234.673d = 6.939D = 10.414

K2 = 0.282K3 = 2.082N1 = 2N2 = 23

NT = 2729.408 m3

K2.Vc(4d/3D)^2 >= 0.25GTStatus = OK

NT >= 0.3GTStatus = OK

Page 77: War Finish

GROSS TONNAGE = 6657.269 tonNET TONNAGE = 2729.408 ton

Page 78: War Finish
Page 79: War Finish

SUMMARY

Design Parameter130 meter CB 0.834125 meter CP 0.836

B 19.52 meter CM 0.997T 6.94 meter CWP 0.896H 10.41 meter LCB 2.722 meterρ 1.025 ton/m3

WEIGHT CATEGORY ton VCG LCGHull Structure 1657.388 7.729 53.356

Superstructure 133.115 11.664 56.182Deckhouse 283.313 16.438 10.497

Outfit 532.036 11.664 28.444Machinery 104.263 2.358 13.657Total LWT 2710.115 49.854 162.137

Payload 11250Fuel Oil 113.664

Auxiliary Fuel Oil 17.050Lube Oil 20

Fresh Water 21.411Crew & Luggage 4.250

Provision & Store 1.259Total DWT 11427.63

Berat Total Kapal 14137.75Displacement 14675.73

Margin (2 - 10%) 3.666 % OK

Lwl

Lpp

Page 80: War Finish

Resistance 151.667 kN

Main EngineDaya Mesin 2380 kNTipe Mesin YANMAR 8 L27/38

Panjang 5.515 meterLebar 3.595 meterTinggi 2.035 meter

MAIN DIMENSION CONSTRAINT(s)L/B 6.405 OK hambatan MIN MAXL/H 2.813 OK kekuatan memanjang 3.5 10B/H 1.874 OK stabilitasB/T 2.813 OK stabilitasL/2B 3.202L/T 18.014H/T 1.501

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 160 )

FREEBOARDTotal Freeboard ( Fb ) 2.997 meter

OKFreeboard Actual ( Fba) 3.476 meter

Total Bow Weight 4.307 meterOK

Bow Weight Actual 5.976 meter

STABILITYe [ m . rad ] GZ q max Roll Period [ s ]

30o 40o 30o - 40o 30o [ Xo ] B G'Mo Period Status0.2075 0.1658 0.0417 1.170 40 19.517 10.922 4.67

GM0 Standards of IMO Regulation A. 749 (18)Status[ feet ] [ m ] e0.30o >= 0.055 e0.40o >= 0.09 e30,40o >= 0.03 h30o >= 0.2 fmax >= 25o GM0 >= 0.15

Page 81: War Finish

5.115557 1.559221875 Accepted Accepted Accepted Accepted Accepted Accepted OK

HOLD CAPACITYVolume Muatan 11706.556 m3

Volume Ruang Muat 12234.673 m3 OK

Margin = ± 5%

Page 82: War Finish
K63
0.79*B / G'Mo^1/2
Page 83: War Finish
Page 84: War Finish

"LWT" CENTRE GRAVITY CALCULATION

1 Machinery Weight Centre Gravity ( Chapter 11 Parametric Design - M.G. Parson ; page 11-25 )

VCGm = Hdb+0.35(D'-Hdb) Hdb KM = 1.474D' = 4

2.358 m Lshaft = 6Lmesin = 5.515

LCGm = Lap+Lshaft+1/2Lmesin Lap = 4.900Wmesin = 104.263

13.657 m

2 Hull Weight Centre Gravity ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 163 )

VCGhull = (58.3-0.517*(0.824-Cbd)*(L/H)^2)*Ds*0.01

7.729 m

VCGhull = Ckg.DA ( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 150 )

6.601 m ( w/ superstructure & deckhouse )

LCGhull (%) = -0.15+LCB ( Chapter 11 Parametric Design - M.G. Parson ; page 11-25 )

2.57253.356 m

3 Superstructure & Deckhouse Centre GravityWsuperstructure = 133.115

VCGsp = 11.66 m Wpoop = 61.755Wforecastle = 71.361

VCGdh = 16.438 m Wdeckhouse = 283.313Hsuperstructure = 2.500

LCGpoop = 8.438 m Hdeckhouse = 2.175

LCGforecastle = 97.500 m Wdh2 = 129.040Wdh3 = 76.205

LCGdh = 10.497 m Wdh4 = 49.787

Page 85: War Finish

LCGsp = 56.18235 m Wwheelhouse = 28.281

4 E&O Weight Centre Gravity ( Chapter 11 Parametric Design - M.G. Parson ; page 11-25 )

VCGo = H+1.25 We&o = 521.398

11.66 m

LCGo1 = 25% at LCGm LCGo1 = 130.350LCGo2 = 37.5% at LCGdh LCGo2 = 195.524LCGo3 = 37.5% amidship LCGo3 = 195.524

LCGo = 28.444 m

"DWT" CENTRE GRAVITY CALCULATION

1 Crew & Luggage

VCG = (W.VCG)/Wtotal crew = 25berat/crew = 0.075

12.842 m total berat = 1.875Lhold = 82.612

LCG = (W.LCG)/Wtotal Lap = 4.900Lpoop = 16.875

8.663 m Hpoop = 2.5LlayerII = 16.875

LlayerIII = 11.250LlayerIV = 8.438

Hlayer = 2.175

2 Fresh Water

VCG = 0.737 m Wfw = 21.411Vfw = 22.267

LCG = 5.495 m Hfw = 1.474Bfw = 12.686Lfw = 1.191

3 Lubrication Oil

VCG = 8.642 m Wlo = 20Vlo = 23.111

LCG = 3.300 m Hlo = 3.545

Page 86: War Finish

Blo = 3.622Llo = 1.8

4 Auxilary Engine Fuel Oil

VCG = 8.642 m Wdo = 17.050Vdo = 20.861

LCG = 1.500 m Hdo = 3.545Bdo = 3.269Ldo = 1.8

5 Main Engine Fuel Oil

VCG = 8.642 m Wfo = 113.664Vfo = 119.646

LCG = 5.100 m Hfo = 3.545Bfo = 18.751Lfo = 1.8

6 Provision & Store

VCG = 10.914 m Wpr = 1.259Vpr = 1.70

LCG = 15.375 m Hpr = 1.0Bpr = 0.6Lpr = 3.0

6 Hold ( Fertilizer - Acid Phosphate )

VCG = 5.944 m payload = 11250

LCG = 59.208 m

LWT TOTAL WEIGHT = 2963.550 tonDWT TOTAL WEIGHT = 11425.259 ton

"LWT" VCG TOTAL = 9.242 meterLCG TOTAL = 43.606 meter ( thd AP )

"DWT"VCG TOTAL = 5.972 meterLCG TOTAL = 58.372 meter ( thd AP )

Page 87: War Finish

LWT + DWTVCG TOTAL = 6.645

meter ( thd AP )LCG TOTAL = 55.331

Page 88: War Finish

( Chapter 11 Parametric Design - M.G. Parson ; page 11-25 )

( BKI vol II ; page 11-1 )

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 163 )

Whull = 1921.461Cbd = 0.859

Ds = 12.789

( Ship Design for Efficiency & Economy - SCHNEEKLUTH ; page 150 )

Ckg = 0.565DA = 11.682

( Chapter 11 Parametric Design - M.G. Parson ; page 11-25 )

Superstructure VCG LCGPoop 11.664 8.438

Forecastle 11.664 97.500

Deckhouse VCG LCG

V layer II/(V deckhouse*W deckhouse) Layer II 14.437 8.438V layer III/(V deckhouse*W deckhouse) Layer III 16.612 11.250V layer IV/(V deckhouse*W deckhouse) Layer IV 18.787 12.656

Page 89: War Finish

V Wheelhouse/(V deckhouse*W deckhouse) Wheelhouse 20.962 14.063

( Chapter 11 Parametric Design - M.G. Parson ; page 11-25 )

Ruang Akomodasi VCG thd base line LCG thd APPoop ( 12 org ) 11.664 8.438Layer II ( 8 org ) 14.002 8.438Layer III ( 2 org ) 16.177 11.250Layer IV ( 2 org ) 18.352 12.656

Page 90: War Finish

meter ( thd AP )

Page 91: War Finish

112.50 19.52 10.41 6.87 0.83Lpp B H T Cb

SuperstructureVCG Poop = +0.5𝐻 𝐻𝑠𝑠VCG Forecastle = +0.5𝐻 𝐻𝑠𝑠DeckhouseVCG Layer II = +𝐻 𝐻𝑠𝑠VCG Layer IIIVCG Layer IV

VCG Wheelhouse = H+Hss+Hdh+Hdh+Hdh+0.7HdhLCG

LCG Poop = 0.5 . L poop𝐿LCG Forecastle = − +1/3* 𝐿𝑝𝑝 𝐿𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑙𝑒 𝐿 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑙𝑒

Page 92: War Finish

LCGLCGLCG

Wcrew0.90.6

0.150.15

Page 93: War Finish

ESTIMASI VOLUME TANGKI (METODE SIMPSON 1)

1 Water Ballast Tankframe 55 s/d 75 h = 12.250

H = 0.615

no. y fs y.fs no. y1 5.999 1 5.999 1 13.2662 16.837 4 67.349 2 18.9933 17.533 1 17.533 3 19.219

bawah 90.881 tengahA (m2) = 371.098

A.fs = 371.098

TOTAL = 533.330 m3 266.665 m3/tangki

frame 65 s/d 100 h = 12.250H = 0.615

no. y fs y.fs no. y1 17.533 1 17.533 1 19.2192 17.443 4 69.774 2 19.2023 16.834 1 16.834 3 18.972

bawah 104.140 tengahA (m2) = 425.240

A.fs = 425.240

TOTAL = 569.966 m3 284.983 m3/tangki

frame 100 s/d 145 h = 15.750H = 0.615

no. y fs y.fs no. y1 16.834 1 16.834 1 18.9722 14.716 4 58.865 2 17.8773 1.533 1 1.533 3 5.459

bawah 77.232 tengahA (m2) = 405.465

A.fs = 405.465

TOTAL = 604.264 m3 302.132 m3/tangki

Volume Ballast = 1707.560 m3

∑0 =

∑0 =

∑0 =

Page 94: War Finish

2 Cargo Holdframe 30 s/d 65 h = 12.250

H = 4.461

no. y fs y.fs no. y1 14.891 1 14.891 1 19.3162 19.503 4 78.013 2 19.5323 19.526 1 19.526 3 19.544

bawah 112.430 tengahA (m2) = 459.090

A.fs = 459.090

TOTAL = 4235.556 m3

frame 65 s/d 100 h = 12.250H = 4.461

no. y fs y.fs no. y1 19.526 1 19.526 1 19.5442 19.478 4 77.910 2 19.5333 19.320 1 19.320 3 19.487

bawah 116.756 tengahA (m2) = 476.752

A.fs = 476.752

TOTAL = 4266.562 m3

frame 100 s/d 145 h = 15.750H = 4.461

no. y fs y.fs no. y1 19.320 1 19.320 1 19.4872 18.533 4 74.131 2 19.2443 6.962 1 6.962 3 12.214

bawah 100.412 tengahA (m2) = 527.162

A.fs = 527.162

TOTAL = 5056.902 m3

Volume Cargo Hold = 10998.579 m3

3 Volume Side Tank

∑0 =

∑0 =

∑0 =

Page 95: War Finish

HST533.330 5.333569.966 5.700604.264 6.043

17.076

frame 30 s/d 65 162.346 m3 81.173 m3/tangkiframe 65 s/d 100 173.498 m3 86.749 m3/tangkiframe 100 s/d 145 183.938 m3 91.969 m3/tangkiTOTAL HST = 519.782 m3

TST4235.556 42.3564266.562 42.6665056.902 50.569

135.590

frame 30 s/d 65 637.459 m3 318.730 m3/tangkiframe 65 s/d 100 642.126 m3 321.063 m3/tangkiframe 100 s/d 145 761.074 m3 380.537 m3/tangki

TOTAL TST = 2040.659 m3

ESTIMASI VOLUME TANGKI (METODE SIMPSON 1)

1 Water Ballast Tanka frame 35 s/d 75

h = 24.0405 mLuas area = 225.127 m2

V=1/3*La*h Volume = 1804.053 m3

Kapasitas volume per tangki 902.026 m3 / tangki

b frame 75 s/d 115h = 24 m

Luas area = 173.463 m2

V=1/3*La*h Volume = 1387.706 m3

Kapasitas volume per tangki 693.853 m3 / tangki

c frame 115 s/d 160h = 26.7539 m

Luas area = 193.219 m2

V=1/3*La*h Volume = 1723.121 m3

Page 96: War Finish

Kapasitas volume per tangki 861.560 m3 / tangki

d frame 160 s/d 200h = 24.2274 m

Luas area = 109.810 m2

V=1/3*La*h Volume = 886.800 m3

Kapasitas volume per tangki 443.400 m3 / tangki

Volume Ballast = 2039.279 m3

2 Cargo Holda frame 35 s/d 75

h = 24.0163 mLuas area = 59.272 m2

V=1/3*La*h Volume = 474.499 m3

Kapasitas volume Cargo Hold 474.499 m3 / tangki

b frame 75 s/d 115h = 24 m

Luas area = 59.232 m2

V=1/3*La*h Volume = 473.856 m3

Kapasitas volume Cargo Hold 473.856 m3 / tangki

c frame 115 s/d 160h = 27 m

Luas area = 66.636 m2

V=1/3*La*h Volume = 599.724 m3

Kapasitas volume Cargo Hold 599.724 m3 / tangki

d frame 160 s/d 200h = 24.2274 m

Luas area = 59.232 m2

V=1/3*La*h Volume = 478.346 m3

Kapasitas volume Cargo Hold 478.346 m3 / tangki

Volume Ballast = 1426.701 m3

3 Volume Side TankHST

a 1804.053 18.041b 1387.706 13.877c 1723.121 17.231d 478.346 4.783

Page 97: War Finish

total 53.932

frame 35 s/d 75 180.431 m3 90.216 m3/tangkiframe 75 s/d 115 138.790 m3 69.395 m3/tangkiframe 115 s/d 160 172.337 m3 86.168 m3/tangkiframe 160 s/d 200 47.841 m3 23.921 m3/tangki

TOTAL HST = 539.399 m3 269.700 m3/tangki

TST474.499 4.745473.856 4.739599.724 5.997478.346 4.783

20.264

frame 35 s/d 75 74.446 m3 37.223 m3/tangkiframe 75 s/d 115 74.345 m3 37.173 m3/tangkiframe 115 s/d 160 94.093 m3 47.047 m3/tangkiframe 160 s/d 200 75.050 m3 37.525 m3/tangki

317.935 m3 158.967 m3/tangki

Page 98: War Finish

fs y.fs no. y fs y.fs1 13.266 1 14.891 1 14.8914 75.972 2 19.502 4 78.0071 19.219 3 19.526 1 19.526

108.456 atas 112.423A (m2) = 442.863 A (m2) = 459.062

A.fs = 1771.451 A.fs = 459.062

fs y.fs no. y fs y.fs1 19.219 1 19.526 1 19.5264 76.807 2 19.479 4 77.9171 18.972 3 19.321 1 19.321

114.998 atas 116.764A (m2) = 469.574 A (m2) = 476.785

A.fs = 1878.297 A.fs = 476.785

fs y.fs no. y fs y.fs1 18.972 1 19.321 1 19.3214 71.506 2 18.548 4 74.1901 5.459 3 6.962 1 6.962

95.937 atas 100.473A (m2) = 503.669 A (m2) = 527.485

A.fs = 2014.677 A.fs = 527.485

∑0 = ∑0 =

∑0 = ∑0 =

∑0 = ∑0 =

Page 99: War Finish

fs y.fs no. y fs y.fs1 19.316 1 19.515 1 19.5154 78.127 2 19.532 4 78.1271 19.544 3 19.546 1 19.546

116.987 atas 117.188A (m2) = 477.696 A (m2) = 478.516

A.fs = 1910.784 A.fs = 478.516

fs y.fs no. y fs y.fs1 19.544 1 19.546 1 19.5464 78.131 2 19.547 4 78.1891 19.487 3 19.535 1 19.535

117.161 atas 117.270A (m2) = 478.409 A (m2) = 478.851

A.fs = 1913.638 A.fs = 478.851

fs y.fs no. y fs y.fs1 19.487 1 19.535 1 19.5354 76.975 2 19.462 4 77.8501 12.214 3 15.261 1 15.261

108.676 atas 112.646A (m2) = 570.547 A (m2) = 591.391

A.fs = 2282.188 A.fs = 591.391

∑0 = ∑0 =

∑0 = ∑0 =

∑0 = ∑0 =


Top Related