Transcript
Page 1: Turbin Uap Dan Turbin Gas

Pengartian Turbin Gas

Turbin gas/ Gas-turbine adalah suatu alat yang memanfaatkan gas sebagai fluida untuk memutar turbin dengan memanfaatkan kompresor dan mesin pembakaran internal. Di dalam turbin gas, energi kinetik dikonversikan menjadi energi mekanik melalui udara bertekanan yang memutar sudu turbin sehingga menghasilkan daya. Sistem turbin gas terdiri dari tiga komponen utama, yaitu kompresor, ruang bakar dan turbin.

Gambar Sistem Turbin Gas

Turbin gas digunakan sebagai penggerak generator listrik. Agar turbin dapat berputar, dibutuhkan beberapa komponen yang lain. Turbin gas merupakan serangkain komponen yang dirangkai menjadi kesatuan yang dinamakan siklus brayton. Siklus ini terdiri dari kompresor, combuster, dan turbin. Agar turbin gas dapat beroperasi dengan baik dan seefisien mungkin, turbin gas diperlukan peralatan-peralatan lain seperti lubrication system, control system, cooling system, fuel system, dan lain-lain.

Pada pembangkit listrik, turbin gas tidak hanya digunakan untuk menggerakkan generator listrik. Akan tetapi turbin gas ini juga digunakan sebagai pemanas ada HRSG (Heat Recovery SteamGenerator). Temperatur pada sisi exhaust turbine masih cukup tinggi. Apabila gas sisa dari turbin gas dibuang ke atmosfir akan sia-sia.

Aplikasi Turbin Gas

Dalam aplikasinya, turbin gas tidak dapat bekerja tanpa komponen kompresor dan ruang bakar/combuster. Ketiga komponen tersebut membentuk siklus yang dikenal dengan nama ”Siklus Brayton”. Fungsi dan prinsip kerja dari siklus ini dapat dilihat pada gambar di bawah ini:

Page 2: Turbin Uap Dan Turbin Gas

Gambar Skema Turbin Gas

Turbin gas pada kondisi ideal memanfaatkan gas bertekanan yang didapat dari udara atmosfir yang dimampatkan dengan menggunakan kompresor pada kondisi isentropik (reversibel adiabatik/entropi konstan). Udara yang bertekanan tinggi ini kemudian dibakar dalam ruang bakar pada tekanan tetap. Dari ruang bakar, gas yang sudah dibakar bersama dengan bahan bakar diekspansikan ke turbin sebagai penggerak beban generator. Apabila digambar dalam diagram P-V dan T-S, siklus turbin gas akan terlihat seperti gambar dibawah ini:

Siklus Diagram P-V dan T-S Turbin Gas Ideal

Keterangan :

proses 1-2 : Proses pemempatan udara secara isentropik dengan menggunakan kompresor

proses 2-3 : Pemasukan bahan bakar pada tekanan konstan. Pemasukan bahan baker ini dilakukan di dalam combuster

Page 3: Turbin Uap Dan Turbin Gas

proses 3-4 : Proses ekspansi gas hasil pembakaran (dari combuster). Ekspansi gas panas hasil pembakaran dilakukan pada turbin. Ekspansi dilakukan dalam kondisi isentropik.

proses 4-1 : Proses pembuangan panas pada tekanan konstan.

Pada proses pemampatan udara (proses 1-2), secara termodinamika kompresor membutuhkan kerja sebesar selish entalpi antara inlet kompresor dengan exhaust kompresor. Pada combuster (proses 2-3) terjadi pemasukan kalor dari pembakaran bahan bakar bersama dengan udara yang dimampatkan. Sedangkan pada proses ekspansi pada turbin (proses 3-4), gas hasil pembakaran digunakan sebagai tenaga untuk memutar sudu-sudu pada rotor turbin. Rotor yang berputar ini akan memutar poros/shaft yang akan memutar poros generator. Generator inilah yang akan membangkitkan listrik. Isentropik merupakan kondisi entropi yang terjadi konstan. Secara matematis kerja dan panas yang dihasilkan atau dilepaskan pada siklus brayton dituliskan sebagai berikut.

Kerja yang dilakukan kompresor Wc= ma (h2-h1). Kalor yang diberikan pada Combuster Qc= (ma+mf)(h3-h2) Kerja yang dihasilkan turbin Wt= (ma+mf)(h3-h4)

dimana ma adalah massa dari udara dan mf adalah massa bahan bakar. Namun pada aplikasi di lapangan, siklus secara ideal ini sangat sulit tercapai. Entropi akan naik dan tekanan akan turun. Apabila dinyatakan dalam T-s dan diagram akan terlihat seperti gambar berikut: 

Siklus Diagram T-S Turbin Gas Aplikasi

Pada kenyataannya, tidak ada proses yang selalu ideal. Tetap terjadi kerugian-kerugian yang dapat menyebabkan turunnya daya yang dihasilkan oleh turbin gas dan berakibat pada menurunnya performansi turbin gas itu sendiri jika dibanding dengan kondisi ideal. Kerugian-kerugian tersebut dapat terjadi pada ketiga komponen sistem turbin gas. Sebab-sebab terjadinya kerugian antara lain:

Page 4: Turbin Uap Dan Turbin Gas

1. Adanya gesekan fluida yang menyebabkan terjadinya kerugian tekanan (pressure losses) di ruang bakar.

2. Adanya kerja yang berlebih waktu proses kompresi yang menyebabkan terjadinya gesekan antara bantalan turbin dengan angin.

Prinsip Kerja Kompresor Pada Turbin Gas

Kompresor yang biasanya dipakai pada turbin gas adalah axial compressore dan centrifugal compressore. Pada axial compressore, bentuk dari sudu-sudu rotor mendekati bentuk dari airfoils. Secara global kompresor bekerja dengan cara menyedot udara kemudian mendorong udara ini ke sudu tetap. Pada sudu tetap ini, bentuknya menyerupai bentuk dari difusor. Difusor ini berfungsi untuk memperbesar tekanan dan menurunkan kecepatan dari udara (prinsip bernoully aparatus).

Prinsip Kerja Combuster Pada Turbin Gas

Dari kompresor, udara bertekanan dibawa ke ruang bakar (combuster). Di ruang bakar, udara bertekanan dibakar bersama dengan fuel/bahan bakar. Bahan bakar yang umum dipakai dalam ruang bakar ini adalah gas alam (natural gas). Selain gas alam, bahan bakar yang biasa dipakai sebagai bahan bakar adalah fuel oil/ minyak (dengan efisiensi tinggi). Bahan bakar yang dibakar berfungsi untuk menaikkan temperatur. Combuster didesain untuk menghasilkan campuran, pengenceran dan pendinginan sehingga gas yang keluar dari ruang bakar merupakan temperatur rata-rata dari campuran. Panjang dari ruang bakar didesain dengan mempertimbangkan waktu dan tempat yang cukup untuk bahan bakar bisa terbakar sempurna dan memudahkan pemantik untuk membakar bahan bakar menjadi lebih mudah. Desain ruang bakar juga mempertimbangkan masalah residu pembakaran. Desain ruang bakar harus mempertimbangkan bagaimana mereduksi gas NOx.

Prinsip Kerja Dan Fluida Kerja Dari Turbin Gas

Prinsip kerja dari turbin gas tidak jauh berbeda dengan turbin-turbin yang lain. Putaran dari rotor turbin, diakibatkan oleh adanya gas bertekanan yang melewati sudu-sudu turbin. Gas dengan tekanan tinggi didapatkan dari pembakaran bahan bakar dengan udara, sesaat sebelum masuk turbin. Ekspansi udara hasil proses pembakaran inilah yang digunakan untuk menggerakkan sudu-sudu turbin.

Page 5: Turbin Uap Dan Turbin Gas

Aliran Fluida Kerja Turbin Gas

Turbin gas menggunakan udara atmosfer sebagai media kerjanya. Udara masuk melalui sisi inlet akibat terhisap oleh kompresor. Kompresor ini berfungsi untuk memampatkan udara hingga mencapai tekanan tertentu. Biasanya, tekanan di akhir sudu kompresor mencapai 30 kali tekanan inlet kompresor. Pada sisi akhir kompresor udara bertekanan akan melewati difuser. Difuser ini berfungsi untuk mendukung kompresor meningkatkan tekanan udara.

Area Pembakaran Turbin Gas(Udara bertekanan mengalir dari kanan ke kiri)

Proses selanjutnya adalah masuknya udara bertekanan yang keluar dari kompresor untuk menuju area pembakaran (biasa disebut combustion chamber). Di area ini, dilakukan injeksi bahan bakar diikuti dengan proses pembakaran bahan bakar tersebut di dalam udara. Pembakaran ini mengakibatkan terjadinya ekspansi dari udara sehingga volume udara hasil pembakaran meningkat, dan tentu saja temperaturnya yang juga meningkat. Proses

Page 6: Turbin Uap Dan Turbin Gas

pembakaran di dalam chamber tidak akan meningkatkan tekanan udara, karena peningkatan volume udara akibat pemanasan cepat mengakibatkan udara berekspansi ke sisi turbin. Sedangkan kenaikan suhu udara hasil pembakaran, mengindikasikan kandungan energi dalam udara (entalpi) yang naik pula. Energi inilah yang akan dikonversikan menjadi tenaga putaran poros oleh turbin gas.

Udara hasil pembakaran selanjutnya masuk ke sisi turbin. Turbin gas terdiri atas beberapa stage sudu. Stage pertama yang dilewati oleh udara pembakaran disebut sisi high pressure stage (tekanan tinggi), sedangkan sudu yang paling akhir disebut dengan sisi low pressure stage (tekanan rendah). Sudu-sudu dari tiap stage turbin uap berfungsi sebagai nozzle, yang akan mengubah energi panas yang terkandung di dalam udara hasil pembakaran untuk menjadi energi gerak. Selain sisi rotor, sudu turbin juga terdapat pada sisi stator. Untuk lebih memahami bagaimana proses perubahan energi panas menjadi energi gerak putaran pada poros turbin.

Kompresor pada sistem turbin gas, berada pada satu poros (shaft) dengan turbin. Sebagian energi mekanis berupa rotasi poros yang dihasilkan oleh turbin, digunakan untuk memutar rotor kompresor. Pada pembangkit listrik, sebagian energi mekanis digunakan untuk memutar generator yang juga berada satu poros dengan turbin dan kompresor.

Keuntungan Dan Kerugian Dari Turbin Gas

1. Pembakaran dengan gas alam akan berlangsung lebih sempurna dibanding dengan minyak bakar ataupun bahan bakar padat.

2. Peralatan pembakar yang lebih sederhana, sehingga pelayanan dan perawatan menjadi lebih sederhana.

3. Gas alam diperkirakan tidak mengandung belerang maka temperatur cerobong dapat diturunkan, sehingga pembakaran tidak menyebabkan asap hitam yang dapat mencemari lingungan sekitar.

4. Peralatan pembakaran untuk gas alam jauh lebih sederhana dibandingkan dengan peralatan pembakar dari minyak bakar ataupun bahan bakar padat lainnya, yang tidak memerlukan pengabut dan tidak memerlukan pemanasan, sehingga akan lebih ringan biaya investasinya.

5. Harga bahan baku gas alam rata-rata lebih murah dibanding dengan minyak bakar.

6. Menggunakan bahan bakar dengan gas alam akan lebih awet, karena gas alam tidak mengandung belerang (S), natrium (Na) dan Vanadium (Va), serta tidak berjelaga, sehingga tidak membawa banyak kesukaran-kesukaran.


Top Related