dgps

12
DGPS DGPS (Differential Global Positioning System) adalah sebuah sistem atau cara untuk meningkatkan GPS, dengan menggunakan stasiun darat, yang memancarkan koreksi lokasi. Dengan sistem ini, maka ketika alat navigasi menerima koreksi dan memasukkannya kedalam perhitungan, maka akurasi alat navigasi tersebut akan meningkat. Oleh karena menggunakan stasiun darat, maka sinyal tidak dapat mencakup area yang luas. Walaupun mempunyai perbedaan dalam cara kerja, SBAS (Satelite Based Augmentation System) secara umum dapat dikatakan adalah DGPS yang menggunakan satelit. Cakupan areanya jauh lebih luas dibandingkan dengan DGPS yang memakai stasiun darat. Ada beberapa SBAS yang selama ini dikenal, yaitu WAAS (Wide Area Augmentation System), EGNOS (European Geostationary Navigation Overlay Service), dan MSAS (Multi-functional Satellite Augmentation System). WAAS dikelola oleh Amerika Serikat, EGNOS oleh Uni Eropa, dan MSAS oleh Jepang. Ketiga system ini saling kompatibel satu dengan lainnya, artinya alat navigasi yang dapat menggunakan salah satu sistim, akan dapat menggunakan kedua sistem lainnya juga. Pada saat ini hanya WAAS yang sudah operasional penuh dan dapat dinikmati oleh pengguna alat navigasi di dunia. Walaupun begitu, sebuah DGPS dengan stasiun darat yang berfungsi baik, dapat meningkatkan akurasi melebihi/sama dengan peningkatan yang dapat dicapai oleh SBAS. Secara umum, bisa dibagi menjadi dua bagian besar, yaitu “real time (langsung)” dan “Post processing (setelah kegiatan selesai)”. Maksud dari ‘real time’ adalah alat navigasi yang menggunakan sinyal SBAS ataupun DGPS secara langsung saat digunakan. Sedangkan ‘post processing’ maksudnya adalah data yang dikumpulkan oleh alat navigasi di proses ulang dengan menggunakan data dari stasiun darat DGPS. Ada banyak stasiun darat DGPS diseluruh dunia yang dapat kita pakai untuk hal ini, baik versi yang gratis maupun berbayar, bahkan kita dapat langsung menggunakannya melalui internet.

Upload: winwin-sparkling

Post on 08-Apr-2016

457 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: DGPS

DGPS

DGPS (Differential Global Positioning System) adalah sebuah sistem atau cara untuk meningkatkan GPS, dengan menggunakan stasiun darat, yang memancarkan koreksi lokasi. Dengan sistem ini, maka ketika alat navigasi menerima koreksi dan memasukkannya kedalam perhitungan, maka akurasi alat navigasi tersebut akan meningkat. Oleh karena menggunakan stasiun darat, maka sinyal tidak dapat mencakup area yang luas.

Walaupun mempunyai perbedaan dalam cara kerja, SBAS (Satelite Based Augmentation System) secara umum dapat dikatakan adalah DGPS yang menggunakan satelit. Cakupan areanya jauh lebih luas dibandingkan dengan DGPS yang memakai stasiun darat. Ada beberapa SBAS yang selama ini dikenal, yaitu WAAS (Wide Area Augmentation System), EGNOS (European Geostationary Navigation Overlay Service), dan MSAS (Multi-functional Satellite Augmentation System). WAAS dikelola oleh Amerika Serikat, EGNOS oleh Uni Eropa, dan MSAS oleh Jepang. Ketiga system ini saling kompatibel satu dengan lainnya, artinya alat navigasi yang dapat menggunakan salah satu sistim, akan dapat menggunakan kedua sistem lainnya juga. Pada saat ini hanya WAAS yang sudah operasional penuh dan dapat dinikmati oleh pengguna alat navigasi di dunia. Walaupun begitu, sebuah DGPS dengan stasiun darat yang berfungsi baik, dapat meningkatkan akurasi melebihi/sama dengan peningkatan yang dapat dicapai oleh SBAS.

Secara umum, bisa dibagi menjadi dua bagian besar, yaitu “real time (langsung)” dan “Post processing (setelah kegiatan selesai)”. Maksud dari ‘real time’ adalah alat navigasi yang menggunakan sinyal SBAS ataupun DGPS secara langsung saat digunakan. Sedangkan ‘post processing’ maksudnya adalah data yang dikumpulkan oleh alat navigasi di proses ulang dengan menggunakan data dari stasiun darat DGPS. Ada banyak stasiun darat DGPS diseluruh dunia yang dapat kita pakai untuk hal ini, baik versi yang gratis maupun berbayar, bahkan kita dapat langsung menggunakannya melalui internet.

Walaupun DGPS ataupun SBAS dapat meningkatkan akurasi, tetapi dengan syarat sinyal yang dipancarkan berisikan koreksi untuk wilayah dimana kita menggunakan alat navigasi. Bila tidak berisikan koreksi data bagi wilayah tersebut, tidak akan terjadi peningkatan akurasi.

http://quraicity.blogspot.com/2010/04/gps-dan-dgps.html

Page 2: DGPS

DGPS   DGPS (Differential Global Positioning System) adalah sebuah sistem atau cara untuk meningkatkan GPS, dengan menggunakan stasiun darat, yang memancarkan koreksi lokasi. Dengan sistem ini, maka ketika alat navigasi menerima koreksi dan memasukkannya kedalam perhitungan, maka akurasi alat navigasi tersebut akan meningkat. Oleh karena menggunakan stasiun darat, maka sinyal tidak dapat mencakup area yang luas.Walaupun mempunyai perbedaan dalam cara kerja, SBAS (Satelite Based Augmentation System) secara umum dapat dikatakan adalah DGPS yang menggunakan satelit. Cakupan areanya jauh lebih luas dibandingkan dengan DGPS yang memakai stasiun darat. Ada beberapa SBAS yang selama ini dikenal, yaitu WAAS (Wide Area Augmentation System), EGNOS (European Geostationary Navigation Overlay Service), dan MSAS (Multi-functional Satellite Augmentation System). WAAS dikelola oleh Amerika Serikat, EGNOS oleh Uni Eropa, dan MSAS oleh Jepang. Ketiga system ini saling kompatibel satu dengan lainnya, artinya alat navigasi yang dapat menggunakan salah satu sistim, akan dapat menggunakan kedua sistem lainnya juga. Pada saat ini hanya WAAS yang sudah operasional penuh dan dapat dinikmati oleh pengguna alat navigasi di dunia. Walaupun begitu, sebuah DGPS dengan stasiun darat yang berfungsi baik, dapat meningkatkan akurasi melebihi/sama dengan peningkatan yang dapat dicapai oleh SBAS.   Secara umum, bisa dibagi menjadi dua bagian besar, yaitu “real time (langsung)” dan “Post processing (setelah kegiatan selesai)”. Maksud dari ‘real time’ adalah alat navigasi yang menggunakan sinyal SBAS ataupun DGPS secara langsung saat digunakan. Sedangkan ‘post processing’ maksudnya adalah data yang dikumpulkan oleh alat navigasi di proses ulang dengan menggunakan data dari stasiun darat DGPS. Ada banyak stasiun darat DGPS diseluruh dunia yang dapat kita pakai untuk hal ini, baik versi yang gratis maupun berbayar, bahkan kita dapat langsung menggunakannya melalui internet.   Walaupun DGPS ataupun SBAS dapat meningkatkan akurasi, tetapi dengan syarat sinyal yang dipancarkan berisikan koreksi untuk wilayah dimana kita menggunakan alat navigasi. Bila tidak berisikan koreksi data bagi wilayah tersebut, tidak akan terjadi peningkatan akurasi.

http://gpstracker38.blogspot.com/2011/11/dgps.html

DGPS (Differential Global Positioning System)Maret 16, 2010Posted by aditya777 in Uncategorized. trackback

DGPS (Differential Global Positioning System) adalah sebuah sistem atau cara untuk meningkatkan GPS, dengan menggunakan stasiun darat, yang memancarkan koreksi lokasi. Dengan sistem ini, maka ketika alat navigasi menerima koreksi dan memasukkannya kedalam perhitungan, maka akurasi alat navigasi tersebut akan meningkat. Oleh karena menggunakan stasiun darat, maka sinyal tidak dapat mencakup area yang luas.

Page 3: DGPS

Walaupun mempunyai perbedaan dalam cara kerja, SBAS (Satelite Based Augmentation System) secara umum dapat dikatakan adalah DGPS yang menggunakan satelit. Cakupan areanya jauh lebih luas dibandingkan dengan DGPS yang memakai stasiun darat. Ada beberapa SBAS yang selama ini dikenal, yaitu WAAS (Wide Area Augmentation System), EGNOS (European Geostationary Navigation Overlay Service), dan MSAS (Multi-functional Satellite Augmentation System). WAAS dikelola oleh Amerika Serikat, EGNOS oleh Uni Eropa, dan MSAS oleh Jepang. Ketiga system ini saling kompatibel satu dengan lainnya, artinya alat navigasi yang dapat menggunakan salah satu sistim, akan dapat menggunakan kedua sistem lainnya juga. Pada saat ini hanya WAAS yang sudah operasional penuh dan dapat dinikmati oleh pengguna alat navigasi di dunia. Walaupun begitu, sebuah DGPS dengan stasiun darat yang berfungsi baik, dapat meningkatkan akurasi melebihi/sama dengan peningkatan yang dapat dicapai oleh SBAS.

Secara umum, bisa dibagi menjadi dua bagian besar, yaitu “real time (langsung)” dan “Post processing (setelah kegiatan selesai)”. Maksud dari ‘real time’ adalah alat navigasi yang menggunakan sinyal SBAS ataupun DGPS secara langsung saat digunakan. Sedangkan ‘post processing’ maksudnya adalah data yang dikumpulkan oleh alat navigasi di proses ulang dengan menggunakan data dari stasiun darat DGPS. Ada banyak stasiun darat DGPS diseluruh dunia yang dapat kita pakai untuk hal ini, baik versi yang gratis maupun berbayar, bahkan kita dapat langsung menggunakannya melalui internet.

Walaupun DGPS ataupun SBAS dapat meningkatkan akurasi, tetapi dengan syarat sinyal yang dipancarkan berisikan koreksi untuk wilayah dimana kita menggunakan alat navigasi. Bila tidak berisikan koreksi data bagi wilayah tersebut, tidak akan terjadi peningkatan akurasi.

Beberapa pengertian istilah yang terdapat pada DGPS Cold & Warm start

Pada detail spesifikasi alat navigasi, biasanya tertulis waktu yang diperlukan untuk cold dan warm start. Ketika alat navigasi dimatikan, alat tersebut masih menyimpan data-data satelit yang ‘terkunci’ sebelumnya. Salah satu data yang tersimpan adalah data ephemeris, dan data ini masih valid untuk sekitar 4-6 jam (untuk lebih mudah, pakai acuan waktu 4 jam saja). Ketika dinyalakan kembali, maka alat navigasi tersebut akan mencari satelit berdasarkan data simpanan. Bila data yang tersimpan masih dalam kurun waktu tersebut, maka datadata tersebut masih bisa dipakai oleh alat navigasi untuk mengunci satelit, dan menyebabkan alat navigasi lebih cepat ‘mengunci’ satelit. Inilah yang disebut “Warm start”. Ketika data yang tersimpan sudah kadaluwarsa, artinya melebihi kurun waktu diatas, maka alat navigasi tidak dapat memakainya. Sehingga alat navigasi harus memulai seluruh proses dari awal, dan menyebabkan waktu yang diperlukan menjadi lebih lama lagi. Inilah yang disebut “Cold start”. Seluruh proses ini hanya berlangsung dalam beberapa menit saja.

Waterproof IPX7Standard ini dibuat oleh IEC (International Electrotechnical Commission), angka pertama menjelaskan testing ketahanan alat terhadap benda padat, dan angka kedua menjelaskan ketahanan terhadap benda cair (air). Bila alat hanya diuji terhadap salah satu kondisi (benda padat atau benda cair), maka huruf ‘X’ ditempatkan pada angka pertama atau kedua.IP X7 artinya: X menunjukkan alat tersebut tidak diuji terhadap benda padat, sedangkan angka 7 berarti dapat direndam dalam air dengan kedalaman 15 cm – 1 meter (pada situs garmin ditambahkan: selama 30 menit). Keterangan lengkap dapat dilihat pada alamat:http://www.iec.ch.

RoHS versionPada buku manual alat navigasi berbasis satelit, mungkin akan ditemukan spesifikasi ini. Ini adalah ketentuan yang dibuat oleh Uni Eropa mengenai batasan penggunaan enam jenis bahan yang

Page 4: DGPS

berbahaya pada alat elektronik yang diproduksi setelah 1 Juli 2006. RoHS adalah singkatan dari Restriction of use of certain Hazardous Substances. Enam jenis bahan yang dibatasi adalah Cadmium (Cd), Air raksa/mercury (Hg), hexavalent chromium (Cr (VI)), polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) dan timbal/lead (Pb). Semua jenis bahan ini dapat mengganggu kesehatan manusia, termasuk limbah alat elektronik yang kita pakai.

Proposition 65Ini adalah sebuah ketentuan yang dibuat oleh pemerintah negara bagian Kalifornia, Amerika Serikat. Ketentuan ini bertujuan untuk melindungi penduduk kalifornia dan sumber air minum dari pencemaran bahan berbahaya. Berdasarkan ketentuan ini, setiap pabrik wajib mencantumkan peringatan pada produknya, sehingga pengguna dapat membuat keputusan untuk melindungi dirinya sendiri.Ada banyak bahan yang dianggap berbahaya, dan daftar ini bisa berubah seiring dengan waktu. Sebuah bahan yang dianggap berbahaya dapat dicabut dari daftar bila dikemudian hari ternyata terbukti tidak berbahaya. Untuk keterangan lebih lanjut mengenai daftar bahan yang dianggap berbahaya

GeocachingIstilah ini berasal dari kata ‘Geo’ yang diambil dari geografi, dan ‘caching’ yang diambil dari kegiatan menyimpan/menyembunyikan sesuatu. Geocaching sebenarnya adalah sebuah permainan untuk menemukan ‘harta karun’ tersembunyi dengan menggunakan alat navigasi berbasis satelit.Kegiatannya sederhana, pertama sembunyikan beberapa barang kecil (pen, pensil, dan lain lain) pada beberapa tempat yang terpisah, sedemikian rupa sehingga tidak mudah terlihat. Catat koordinat masing-masing tempat tersebut. Lalu beberapa kelompok berusaha menemukan semua barang yang disembunyikan. Tentunya tidak akan terlalu mudah untuk menemukannya, karena masing-masing alat memiliki akurasi yang berbeda.Kegiatan ini dapat digabungkan dengan aktivitas lainnya, sebagai contoh, aktivitas membersihkan sampah di taman, atau kegiatan outbound, dan sebagainya. Beberapa situs di internet mengelola permainan yang mengambil tempat diseluruh dunia, salah satu contohnya dapat dilihat di http://indogeocachers.wordpress.com

DOPMerupakan singkatan dari ‘Dillution of Precision’, berhubungan erat dengan lokasi satelit di angkasa. Nilai DOP didapatkan dari perhitungan matematis, yang menunjukkan ‘tingkat kepercayaan’ perhitungan sebuah lokasi. Ketika satelit-satelit terletak berdekatan, maka nilai DOP akan meningkat, yang menyebabkan akurasi alat navigasi berbasis satelit menjadi berkurang. Ketika satelit-satelit terletak berjauhan, maka nilai DOP akan berkurang sehingga alat navigasi menjadi lebih akurat.Bila nilai DOP lebih kecil dari 5 (ada yang mengatakan dibawah 4), maka akurasi yang akan didapatkan cukup akurat. Ada beberapa nilai akan sering dijumpai, yaitu HDOP (Horizontal Dilution of Precision), VDOP (Vertical Dilution of Precision), dan PDOP (Positional Dilution of Precision – posisi tiga dimensi).

Koordinat lokasiSebuah titik koordinat dapat ditampilkan dengan beberapa format. Masing-masing pengguna dapat mengatur format ini pada alat navigasi, program mapsource, ataupun program komputer lainnya. Format ini dapat diatur dari bagian setting dari masing-masing program/alat navigasi.Ada beberapa format yang umum digunakan: hddd.ddddd0 ; hddd0mm,mmm’ ; hddd0mm’ss.s” ; +ddd,ddddd0. Sehingga sebuah titik dapat ditunjukkan dengan beberapa cara, sebagai contoh: titik S6010.536’ E106049.614’ sama dengan titik S6.175600 E106.826910 sama dengan titik S6010’32.2” E106049’36.9” sama dengan -6.175600 106.826910. Bagian pertama adalah koordinat Latitude, yang diikuti oleh koordinat Longitude atau sering disingkat Lat/LongKegunaan dari DGPS adalah:

MiliterGPS digunakan untuk keperluan perang, seperti menuntun arah bom, atau mengetahui posisi pasukan berada. Dengan cara ini maka kita bisa mengetahui mana teman mana lawan untuk menghindari salah target, ataupun menetukan pergerakan pasukan.

NavigasiGPS banyak juga digunakan sebagai alat navigasi seperti kompas. Beberapa jenis kendaraan telah dilengkapi dengan GPS untuk alat bantu nivigasi, dengan menambahkan peta, maka bisa digunakan untuk memandu pengendara, sehingga pengendara bisa mengetahui jalur mana yang sebaiknya dipilih untuk mencapai tujuan yang diinginkan.

1. Sistem Informasi GeografisUntuk keperluan Sistem Informasi Geografis, GPS sering juga diikutsertakan dalam pembuatan peta, seperti mengukur jarak perbatasan, ataupun sebagai referensi pengukuran.

Sistem pelacakan kendaraanKegunaan lain GPS adalah sebagai pelacak kendaraan, dengan bamtuan GPS pemilik

Page 5: DGPS

kendaraan/pengelola armada bisa mengetahui ada dimana saja kendaraannya/aset bergeraknya berada saat ini.

Pemantau gempaBahkan saat ini, GPS dengan ketelitian tinggi bisa digunakan untuk memantau pergerakan tanah, yang ordenya hanya mm dalam setahun. Pemantauan pergerakan tanah berguna untuk memperkirakan terjadinya gempa, baik pergerakan vulkanik ataupun tektonik

http://aditya777.wordpress.com/2010/03/16/dgps-differential-global-positioning-system/

Differential GPS ExplainedBy Morag Chivers, TrimbleDifferential correction techniques are used to enhance the quality of location data gathered using global positioning system (GPS) receivers. Differential correction can be applied in real-time directly in the field or when postprocessing data in the office. Although both methods are based on the same underlying principles, each accesses different data sources and achieves different levels of accuracy. Combining both methods provides flexibility during data collection and improves data integrity.

The underlying premise of differential GPS (DGPS) requires that a GPS receiver, known as the base station, be set up on a precisely known location. The base station receiver calculates its position based on satellite signals and compares this location to the known location. The difference is applied to the GPS data recorded by the roving GPS receiver.

What Is GPS?GPS is a satellite-based positioning system operated by the United States Department of Defense (DoD). GPS encompasses three segments—space, control, and user. The space segment includes the 24 operational NAVSTAR satellites that orbit the earth every 12 hours at an altitude of approximately 20,200 kilometers. Each satellite contains several high-precision atomic clocks and constantly transmits radio signals using a unique identifying code.

Page 6: DGPS

One Master Control Station, five Monitor Stations, and Ground Antennas comprise the control segment. The Monitor Stations passively track each satellite continuously and provide this data to the Master Control Station. The Master Control Station calculates any changes in each satellite's position and timing. These changes are forwarded to the Ground Antennas and transmitted to each satellite daily. This ensures that each satellite is transmitting accurate information about its orbital path.

The user segment, comprised of both civilian and military users worldwide, acquires signals sent from the NAVSTAR satellites with GPS receivers. The GPS receiver uses these signals to determine where the satellites are located. With this data and information stored internally, the receiver can calculate its own position on earth. This positional information can be used in many applications such as mapping, surveying, navigation, and mobile GIS.

What GPS Can Do for GISGPS is an excellent data collection tool for creating and maintaining a GIS. It provides accurate positions for point, line, and polygon features. By verifying the location of previously recorded sites, GPS can be used for inspecting, maintaining, and updating GIS data. GPS provides an excellent tool for validating features, updating attributes, and collecting new features.

Mobile GIS accesses enterprise GIS in the field. Because GPS provides accurate location information in the field, it is an essential component for mobile GIS. Field inspectors, maintenance teams, utility crews, and emergency workers all require timely access to enterprise GIS data so they can make informed decisions. To facilitate the flow of information to and from the field, mobile GIS solutions leverage advances in wireless technology and the Internet. With mobile GIS, data is directly accessible to field-based personnel whenever and wherever it is needed.

How GPS WorksA GPS receiver must acquire signals from at least four satellites to reliably calculate a three-dimensional position. Ideally, these satellites should be distributed across the sky. The receiver performs mathematical calculations to establish the distance from a satellite, which in turn is used to determine its position. The GPS receiver knows where each satellite is the instant its distance is measured. This position is displayed on the datalogger and saved along with any other descriptive information entered in the field software.

Some LimitationsGPS can provide worldwide, three-dimensional positions, 24 hours a day, in any type of weather. However, the system does have some limitations. There must be a relatively clear "line of sight" between the GPS antenna and four or more satellites. Objects, such as buildings, overpasses, and other obstructions, that shield the antenna from a satellite can potentially weaken a satellite's signal such that it becomes too difficult to ensure reliable positioning. These difficulties are particularly prevalent in urban areas. The GPS signal may bounce off nearby objects causing another problem called multipath interference.

Page 7: DGPS

What's the Differential?Until 2000, civilian users had to contend with Selective Availability (SA). The DoD intentionally introduced random timing errors in satellite signals to limit the effectiveness of GPS and its potential misuse by adversaries of the United States. These timing errors could affect the accuracy of readings by as much as 100 meters.

With SA removed, a single GPS receiver from any manufacturer can achieve accuracies of approximately 10 meters. To achieve the accuracies needed for quality GIS records—from one to two meters up to a few centimeters—requires differential correction of the data. The majority of data collected using GPS for GIS is differentially corrected to improve accuracy.

The underlying premise of differential GPS (DGPS) is that any two receivers that are relatively close together will experience similar atmospheric errors. DGPS requires that a GPS receiver be set up on a precisely known location. This GPS receiver is the base or reference station. The base station receiver calculates its position based on satellite signals and compares this location to the known location. The difference is applied to the GPS data recorded by the second GPS receiver, which is known as the roving receiver. The corrected information can be applied to data from the roving receiver in real time in the field using radio signals or through postprocessing after data capture using special processing software.

Real-Time DGPSReal-time DGPS occurs when the base station calculates and broadcasts corrections for each satellite as it receives the data. The correction is received by the roving receiver via a radio signal if the source is land based or via a satellite signal if it is satellite based and applied to the position it is calculating. As a result, the position displayed and logged to the data file of the roving GPS receiver is a differentially corrected position.

Differential GPS ExplainedContinued...The Radio Technical Commission for Maritime Services (RTCM), a nonprofit scientific and educational organization that serves all aspects of maritime radio communications, radio navigation, and related technologies, defined the differential data protocol for relaying GPS correction messages from a base station to a field user. Its Special Committee 104 (RTCM SC-104) format recommendations define the correction message format. Each correction message includes data about the station position and health, satellite constellation health, and the correction to be applied. Using real-time differential corrections allows navigation to within one to two meters of any location depending on the service and the GPS receiver.

Satellite Differential ServicesAnother method for obtaining real-time differential correction data in the field is by using geostationary satellites. This system obtains corrections from more than one reference station. Reference stations collect the base station GPS data and relay this data in RTCM SC-104 format to a Network Control Center, which sends the information to a geostationary satellite for verification.

Page 8: DGPS

The verified information is sent to the roving GPS receiver to ensure it obtains GPS positions in real time.

The Wide Area Augmentation System, or WAAS, is being developed by the Federal Aviation Administration (FAA) to provide precision guidance to aircraft at airports and airstrips that currently lack these capabilities, using a system of satellites and ground stations that provide GPS signal corrections. Although not yet approved for aviation use, it is available to civilian users. WAAS is broadcast from geostationary satellites so the signal is often available in areas where other DGPS sources are not available. Two commercial satellite differential service providers, Thales Survey LandStar (formerly Racal LandStar) and OmniSTAR Inc., use a control hub where reference station data is checked, formatted, and uploaded to a geostationary satellite for rebroadcasting to subscribers.

DGPS radio beacon systems operate in many parts of the world. These stations—part of a large network that covers coastal areas, navigable rivers, and, more recently, inland agricultural areas—are used for marine navigation. However, these beacons have a range of a few hundred kilometers inland and can provide free real-time differential accuracy in the one-meter range, depending on the GPS receiver and the distance from the radio beacon.

Reprocessing Real-Time DataSome GPS manufacturers provide software that can correct GPS data that was collected in real time. This is important for GIS data integrity. When collecting real-time data, the line of sight to the satellites can be blocked or a satellite can be so low on the horizon that it provides only a weak signal, which causes spikes in the data. Reprocessing real-time data removes these spikes and allows real-time data that has been used in the field for navigation or viewing purposes to be made more reliable before it is added to a GIS.

Postprocessing CorrectionDifferentially correcting GPS data by postprocessing uses a base GPS receiver that logs positions at a known location and a rover GPS receiver that collects positions in the field. The files from the base and rover are transferred to the office processing software, which computes corrected positions for the rover's file. This resulting corrected file can be viewed in or exported to a GIS.

There are many permanent GPS base stations currently operating throughout the world that provide the data necessary for differentially correcting GPS. Depending on the technology preferred by the base station owner, this data can be downloaded from the Internet or via a bulletin board system (BBS). Because base station data is consistent (i.e., with no gaps due to multipath errors) and very reliable because base stations usually run 24 hours, seven days a week, it is ideal for many GIS and mapping applications. Sources of base station data for postprocessing fall into four categories—public sources, commercial sources, Web-based services, and base station ownership. Before purchasing a GPS receiver, it is best to identify the source of base station data.

Public sources—Government agencies worldwide collect and store base data. However, laws regarding public access to government data vary from country to country as well as between government agencies in the same country. Agencies that collect differential data have legitimate

Page 9: DGPS

concerns, such as legal liability and cost recovery, that affect decisions regarding offering this data to the public.Commercial sources—Some consulting firms and universities collect base data. Generally, this data can be purchased at per hour or daily rates. Information on these services can be found by browsing the Internet, by calling local base station distributors, or by talking to a local GPS sales representative. This can often be the most cost-effective way to obtain data for postprocessing.Web-based services—This is an easy and economical way to process GPS data. GPS data is submitted to a service with some processing criteria specified. The GPS data is processed and returned. This approach is excellent for use with large field crews or when there isn't time to train GPS users in processing techniques and requirements.Base station ownership—This is the most flexible way to obtain base data for postprocessing but it has additional setup costs because two GPS receivers must be purchased and managed. If large amounts of data will be collected, the investment is often worthwhile.

SummaryTo attain accuracy levels on the order of one to 10 meters, differential correction is essential. The three main methods currently used for ensuring data accuracy are real-time differential correction, reprocessing real-time data, and postprocessing. Each method will achieve similar levels of accuracy, so the decision regarding which technique is appropriate will depend on factors such as project specifications, the end use of the data, and the sources available for differential correction.

For more information on GPS and GIS, see Integrating GIS and the Global Positioning System. This book by Karen Steede-Terry is published by Esri Press and available online at www.esri.com/shop.

http://www.esri.com/news/arcuser/0103/differential2of2.html

ALTERNATE DESCRIPTION

Dalam kaitannya dengan metode survei untuk mendapatkan informasi luas bidang tanah obyek PBB, sampai saat ini kegiatan survei dilakukan secara terestris dengan cara pengukuran langsung menggunakan pita ukur. Salah satu alternatif yang mungkin diterapkan untuk penentuan luas bidang tanah obyek PBB adalah dengan memanfaatkan teknologi GPS menggunakan metode DGPS. Luas bidang tanah dapat dihitung dari koordinat titik-titik batas bidang tanah hasil pengukuran menggunakan DGPS. Tujuan penelitian ini adalah mengetahui kemampuan DGPS dengan receiver GPS Leica G S20 PDM untuk penentuan luas bidang tanah obyek PBB dengan cara membandingkan luas yang dihasilkan terhadap hasil pengukuran menggunakan pita ukur. Penelitian dilakukan pada 49 (empat puluh sembilan) bidang tanah persawahan dengan berbagai variasi bentuk dan luasan yang terletak di Kelurahan Panjer, Kecamatan Kebumen, Kabupaten Kebumen. Evaluasi dilakukan dengan cara membandingkan luas bidang tanah hasil kedua cara pengukuran dan beda luas yang dihasilkan dianalisis secara statistik untuk mengetahui signifikansi perbedaannya. Uji signifikansi beda luas selain menggunakan uji-t diuji pula dengan membandingkan simpangan baku beda luas (ÏâL) masing-masing bidang tanah terhadap beda luas� �� (âL ) . Hasil penelitian menunjukkan bahwa pada tingkat kepercayaan 95 %, luas bidang tanah hasil�� pengukuran dengan menggunakan metode DGPS berbeda secara nyata (signifikan) dengan luas

Page 10: DGPS

bidang tanah hasil pengukuran dengan pita ukur, thitung (0,171) < ttabel pada derajat kebebasan (df) 46 dan tingkat signifikansi 5 % (2,021). Uji signifikansi beda luas per bidang tanah diperoleh hasil sebanyak 47 bidang tanah memenuhi kriteria beda luas (âL) > simpangan baku beda luas (ÏâL) , sehingga dapat dikatakan bahwa sebesar�� � �� 95,92 % luas bidang tanah hasil pengukuran kedua metode berbeda secara nyata (signifikan). Kata kunci : Metode DGPS, pita ukur, luas bidang tanah, beda luas, simpangan baku. .

http://www.thedigilib.com/doc/230457-aplikasi-dgps-untuk-penentuan-luas-bidang-tanah-obyek-pbb