bab i karakteristik

42
Karakteristik Motor PRINSIP KERJA DAN KARAKTERISTIK MOTOR A. PENDAHULUAN Setiap motor maupun sepeda motor biasanya memuat data utama dan karakteristik mesin yang digunakan. Data tersebut terdapat pada buku pedoman pemilik, brosur penjualan dan buku pedoman perbaikan sepeda motor. Pemahaman data utama dan karekteristik mesin sepeda motor penting dipahami oleh mekanik maupun penjual sepeda motor. Bagi mekanik pemahaman karakteristik sepeda motor sebagai dasar untuk perawatan dan perbaikan sehingga kinerja sepeda motor optimal, namum bagi penjual informasi ini dapat disampaikan kepada calon pembeli sebagai pertimbangan dalam memilih sepeda motor sesuai dengan karakteristik penggunaan sepeda motor. Berikut ini merupakan contoh data utama dan karakteristik sepeda motor merk Yamaha Crypton dan Honda Astrea Grand: Tabel 1. Perbandingan data dua model sepeda motor Bagian Merk Tipe/ Model Yamaha Crypton Honda Astrea Grand Type Mesin 4 tak, SOHC, Pendinginan udara tekan 4 tak, OHC, Pendinginan udara Susunan Silinder Satu silinder, kemiringan 10º dari vertical Silinder tunggal Kapasitas silinder 101,8 CC 97,1 Cm 2 Diameter x Langkah 49,0 x 54,0 mm 50 x 49,5 mm 1

Upload: fikri-muhammad-iqbal

Post on 25-Jul-2015

145 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Bab i Karakteristik

Karakteristik Motor

PRINSIP KERJA DAN KARAKTERISTIK MOTOR

A. PENDAHULUANSetiap motor maupun sepeda motor biasanya memuat data utama dan karakteristik mesin yang digunakan. Data tersebut terdapat pada buku pedoman pemilik, brosur penjualan dan buku pedoman perbaikan sepeda motor. Pemahaman data utama dan karekteristik mesin sepeda motor penting dipahami oleh mekanik maupun penjual sepeda motor. Bagi mekanik pemahaman karakteristik sepeda motor sebagai dasar untuk perawatan dan perbaikan sehingga kinerja sepeda motor optimal, namum bagi penjual informasi ini dapat disampaikan kepada calon pembeli sebagai pertimbangan dalam memilih sepeda motor sesuai dengan karakteristik penggunaan sepeda motor.

Berikut ini merupakan contoh data utama dan karakteristik sepeda motor merk Yamaha Crypton dan Honda Astrea Grand:

Tabel 1. Perbandingan data dua model sepeda motor

BagianMerk Tipe/ Model

Yamaha Crypton Honda Astrea GrandType Mesin 4 tak, SOHC,

Pendinginan udara tekan

4 tak, OHC, Pendinginan udara

Susunan Silinder

Satu silinder, kemiringan 10º dari vertical

Silinder tunggal

Kapasitas silinder

101,8 CC 97,1 Cm2

Diameter x Langkah

49,0 x 54,0 mm 50 x 49,5 mm

Perbandingan Kompresi

9,0 : 1 8,8 : 1

Daya Maksimum

8,3 PS/ 8000 rpm 7,5 DK/ 8000 rpm

Torsi Maksimum

0,87 Kg-m pada 6500 rpm

0,77 kg-m pada 6000 rpm

Kapasitas pelumas

0,80 liter penggantian periodik dan 1 liter

0,75 l peng. Periodik0,90 l bongkar mesin

1

Page 2: Bab i Karakteristik

Karakteristik Motor

bila bongkar mesin Oli SAE 20W/50, API Service SE

Oli SAE 20W/50, API Service SE

B. KLASIFIKASI MOTORMotor bakar dapat diklasifikasikan menjadi dua kelompok, yaitu:

1. Motor pembakaran luar (Exsternal Combustion Engine), yaitu motor yang pembakarannya diluar mesin. Contoh : mesin uap, turbin uap dan lain-lain.

2. Motor pembakaran dalam (Internal Combustion Engine), yaitu motor yang proses pembakaran berada di dalam mesin itu sendiri.Contoh : Motor diesel, motor bensin, motor wankel dan lain-lain.

Gb 1.1 Macam motor bakar

Sedangkan motor pembakaran dalam (Internal Combustion Engine) dapat diklasifikasikan:1. Berdasarkan aplikasinya

Motor penggerak mobil, truk, lokomotif, pesawat ringan, kapal, penggerak serbaguna dan pembangkit listrik.

2. Berdasarkan dasar disain mesinnya :

2

Page 3: Bab i Karakteristik

Karakteristik Motor

a. Gerak bolak-balik dengan susunan silinder In-line, V, rotary dan berlawanan

b. Gerak putar seperti motor Wankel.3. Berdasarkan siklus kerjanya : Motor 4 tak dan motor 2 tak4. Berdasarkan katup dan desain lubang katup

a. Susunan katup: model I, L, H, Fb. Jumlah katup : Single Valve (Tiap silinder katup In

maupun Ex adalah satu), Multi Valve (Tiap silinder katup In maupun Ex lebih dari satu)

c. Mekanik katup : OHV (Over Head Valve), OHC (Over Head Cam Shaft), DOHC (Double Over Head Cam Shaft).

5. Berdasarkan bahan bakarnya :a. Bensin,b. solar, c. LPG (Liquit Petroleum Gas), d. alchohol, e. hydrogen.

6. Berdasarkan metode mencampurnya :a. Karburator,b. injeksi pada saluran masuk,c. injeksi ke dalam silinder.

7. Berdasarkan metode pengapian: a. Percikan busi (motor bensin),b. tekanan kompresi ( motor diesel).

8. Berdasarkan desain ruang bakar: a. Ruang bakar langsung: b. Ruang bakar tak langsung:

9. Berdasarkan metode kontrolnya : a. Throttling yaitu mengatur jumlah campuran udara dan

bahan bakar dengan throttle, b. Hanya mengatur aliran bahan bakarc. Kombinasi

10. Berdasarkan sistem pendinginnya:a. Pendinginan air b. Pendinginan udara

C. MOTOR 4 TAKMotor 4 tak merupakan motor yang satu siklus kerjanya diperlukan 4 langkah piston atau 2 putaran engkol. Empat langkah piston tersebut adalah:

1. Langkah Hisap

3

Page 4: Bab i Karakteristik

Karakteristik Motor

2. Langkah Kompresi3. Langkah Usaha4. Langkah Buang

Siklus motor 4 tak ini ditemukan oleh seorang insiyur Jerman, yaitu Nikolas A. Otto pada tahun 1876, untuk mengenang jasanya maka motor 4 tak sering disebut motor Otto. Proses kerja motor 4 tak tersebut adalah sebagai berikut:

Langkah Hisap

Gb. 1.2 Langkah Hisap

Piston bergerak dari TMA (Titik Mati Atas) menuju TMB (Titik Mati Bawah). Posisi katup hisap terbuka dan katup buang tertutup. Akibat gerakan piston volume didalam silinder membesar sehingga tekanan turun. Turunnya tekanan di dalam silinder menyebabkan adanya perbedaan tekanan diluar silinder dengan didalam silinder sehingga campuran bahan bakar terhisap masuk ke dalam silinder.

Langkah Kompresi

Gb. 1. 3 Langkah Kompresi

Piston bergerak dari TMB menuju TMA. Posisi katup hisap dan katup buang tertutup. Gerakan piston menyebabkan volume didalam silinder mengecil dan memampatkan/ mengkompresi campuran bahan bakar didalam silinder sehingga tekanan dan temperatur naik.

Langkah UsahaBeberapa saat sebelum TMA, busi memercikkan api sehingga membakar campuran bahan bakar. Terbakarnya campuran bahan bakar menyebabkan temperatur dan tekanan didalam silinder naik. Tekanan mendorong piston dari TMA menuju TMB, melalui batang

4

Page 5: Bab i Karakteristik

Karakteristik Motor

Gb. 1. 4 Langkah Usaha

piston gaya tekan piston digunakan untuk memutar poros engkol, pada poros engkol digunakan untuk memutar beban.

Langkah Buang

Gb. 1. 5 Langkah Buang

Piston bergerak dari TMB menuju TMA. Posisi katup hisap tertutup dan katup buang terbuka. Gerakan piston menyebabkan piston mendorong gas buang ke luar menuju knalpot melalui katup buang.

Setelah langkah buang maka motor melakukan langkah hisap, kompresi, usaha dan buang, demikian seterusnya sehingga selama ada proses pembakaran maka motor berputar terus. Siklus kerja motor 4 tak dapat digambarkan sebagai berikut:

5

Page 6: Bab i Karakteristik

Karakteristik Motor

Gb. 1.6 Siklus kerja motor 4 tak

D. MOTOR 2 TAKMotor 2 tak merupakan motor yang satu siklus kerjanya diperlukan 2 langkah gerakan piston atau 1 putaran engkol. Dalam 2 langkah piston di atas piston atau di dalam silinder terdapat proses pemasukan campuran bahan bakar, kompresi, usaha dan buang. Sedangkan di bawah piston atau didalam bak engkol terdapat dua proses yaitu menghisap campuran bahan bakar dari karburator dan proses memompa campuran ke dalam silinder.

Pada motor 2 tak proses pemasukan campuran bahan bakar ke dalam silinder bersamaan dengan proses pembuangan, proses ini lebih popular dengan istilah proses pembilasan, yaitu proses pemasukan gas baru dan mendorong gas buang agar gas buang. Tujuan pembilasan untuk menjamin gas dibuang didalam silinder dapat terbuang dengan sempurna. Sedangkan istilah proses pemasukan diguna untuk proses masuknya campuran ke dalam ruang engkol (crankcase).

Cara kerja motor 2 tak dapat digambarkan sebagai berikut:

6

Page 7: Bab i Karakteristik

Karakteristik Motor

Pemasukan dan kompresi

Gb. 1. 7 Proses pemasukan dan kompresi

Saat piston bergerak dari TMB menuju TMA, maka didalam silinder terjadi proses kompresi, proses ini dimulai saat lubang bilas dan buang tertutup piston, gerakan piston menyebabkan campuran bahan bakar yang masuk dikompresi sehingga tekanan dan temperatur naik.

Dibawah piston terjadi proses pemasukan campuran bahan bakar. Saat piston bergerak ke TMA, maka ruang bak engkol membesar sehinggga tekanan turun. Turunnya tekanan di dalam bak engkol menyebabkan adanya perbedaan tekanan di luar bak engkol dengan di dalam bak engkol sehingga campuran bahan bakar terhisap masuk ke bak engkol dengan membuka katup harmonika (reed valve).

Proses Usaha dan kompresi di bak engkol

Gb.1. 8 Proses usaha dan kompresi di bak engkol

Beberapa saat sebelum TMA, busi memercikkan api sehingga membakar campuran bahan bakar. Terbakarnya campuran bahan bakar menyebabkan temperatur dan tekanan didalam silinder naik. Tekanan mendorong piston dari TMA menuju TMB, melalui batang piston gaya tekan

7

Page 8: Bab i Karakteristik

Karakteristik Motor

piston digunakan untuk memutar poros engkol, pada poros engkol digunakan untuk memutar beban. Proses di bawah piston saat piston bergerak dari TMA ke TMB menyebabkan ruang engkol mengecil sehingga tekanan naik, naiknya tekanan menyebabkan reed valve menutup, proses pemasukan campuran terhenti.

Proses Buang

Gb. 1.9 Proses buang

Beberapa derajat langkah usaha, lubang buang terbuka sehingga gas buang mengalir ke luar melalui saluran buang ke knalpot. Sementara itu tekanan dibawah piston semakin besar akibat ruang engkol yang semakin mengecil.

Proses Pembilas

Gb. 10 Proses pembilasan

Saat piston semakin mendekati TMB tekanan di bak engkol semakin besar, sementara itu lubang bilas terbuka, sehingga campuran bahan bakar dari bak engkol mengalir ke dalam silinder untuk mengisi silinder dengan gas baru dan mendorong gas buang ke luar sehingga silinder benar-benar bersih dari gas buang.

E. VOLUME SILINDER

Volume silinder merupakan volume di dalam silinder yang terbentuk dari perubahan langkah piston. Volume silinder ditentukan oleh diameter silinder dan panjang langkah piston. Besar volume silinder dapat dihitung dengan rumus:

8

Page 9: Bab i Karakteristik

Karakteristik Motor

VL = π/4 D2 x L (1)

VL = Volume langkah …….. ccD = Diameter silinder …… cmL = Pangjang langkah …….. cm

Contoh : Tentukan volume langkah sepeda motor Honda Astrea Grand bila diketahui diameter silinder 50 mm dan panjang langkah piston 49,5 mm.

Solusi:D = 50 mm = 5 cm, L = 49,5 mm = 4,95 cm

VL = π/4 D2 x L = 3,14 / 4 x 52 x 4,95 = 97,19 cc

Ditinjau dari perbandingan diameter silinder dengan panjang langkah piston, motor dapat diklasifikasikan menjadi 3, yaitu:

1. Long stroke : panjang langkah piston lebih besar dari pada diameter silinder

2. Square : panjang langkah piston sama dengan diameter silinder

3. Over Square : panjang langkah piston lebih kecil dari pada diameter silinder

9

Page 10: Bab i Karakteristik

Karakteristik Motor

Gb. 1.11 Macam perbandingan diameter silinder dengan langkah

Perbandingan diameter silinder dengan panjang langkah piston (D/L) untuk motor bensin ukuran kecil sampai menengah adalah 0,8 sampai 1,2, sedangkan untuk motor ukuran besar kecepatan rendah adalah 0,5. Contoh beberapa perbandingan diameter silinder dengan panjang langkah beberapa merk dan tipe sepeda motor.

Tabel 2 Perbandingan diameter dan panjang langkah psiton

Merk / tipe Siklus D /L VL KategoriHonda Karisma 4 tak 52,4 / 57,9

mm124,9 cc Long stroke

Honda Tiger 4 tak 63,5 / 62,2 mm

196,9 cc Over square

Honda NSR 150R 2 tak 59,0 / 54,5 mm

149 cc Over square

Yamaha Force 1 2 tak 52,0 / 52,0 mm

110,4 cc Square

Yamaha αIIR 2 tak 50,0 / 52,0 mm

102,1 cc Long stroke

Yamaha Jupiter Z 4 tak 51,0 / 54,0 mm

110,3 cc Long stroke

Yamaha Cypton 4 tak 49,0 / 54,0 mm

101,8 cc Long stroke

Suzuki Tornado 2 tak 54,0 / 48,0 mm

109 cc Over square

Suzuki Shogun 4 tak 53,5 /48,8 mm 109 cc Over squareKawasaki Kaze 4 tak 53,0 /50,6 mm 111,6 cc Over squareKawasaki Ninja 2tak 59,0/54,4 mm 148 cc Over square

F. VOLUME KOMPRESI

Volume kompresi merupakan volume didalam silinder saat piston di TMA. Volume kompresi juga disebut volume ruang bakar karena saat piston di TMA

10

Page 11: Bab i Karakteristik

Karakteristik Motor

Gb. 1.12 Volume Kompresi

volume yang tersisa adalah volume pada ruang bakar.

Volume ruang bakar dapat berkurang akibat adanya endapan karbon sisa pembakaran yang menempel pada ruang bakar, atau penggantian gasket dengan ukuran yang lebih tipis.

G. PERBANDINGAN KOMPRESI

Perbandingan kompresi merupakan perbandingan volume di dalam silinder saat piston di TMB dengan saat piston di TMA. Volume silinder saat piston di TMB adalah volume langkah ditambah volume kompresi, sedangkan saat piston di TMA adalah volume kompresi.Dengan demikian perbandingan kompresi dapat dirumuskan:

Gb. 1. 13 Perbandingan Kompresi

VL + VC E =

VC(2)

E = Perbandingan kompresi VL = Volume langkah …….. cc

VC = Volume kompresi …… cc

ContohTentukan perbandingan kompresi sebuah sepeda motor bila diketahui volume langkah 100 cc dan volume kompresi 15 cc.

11

Page 12: Bab i Karakteristik

Karakteristik Motor

Solusi :VL = 100 cc dan VC = 15 cc

VL + VC 100 + 15 E = = = 7,67

VC 15

Jadi besar perbandingan kompresinya adalah = 7,67 : 1

Semakin tinggi perbandingan kompresi, semakin tinggi efisiensi mesin, namun semakin tinggi perbandingan kompresi menyebabkan tekanan dan temperatur kompresi semakin tinggi sehingga bahan bakar dapat terbakar sendiri sebelum busi memercikkan api bila hal itu terjadi maka proses pembakaran menjadi tidak terkendali, sehingga terjadi fluktuasi tekanan pembakaran, terdengar suara pukulan piston ke dinding silinder (knocking) dan mesin panas (over heating) keadaan tersebut sering disebut detonasi. Besar perbandingan kompresi pada sepeda motor

4 tak sebesar 8 – 10 : 12 tak sebesar 6 – 8 : 1

Meningkatkan perbandingan kompresi dapat dilakukan dengan mengurangi volume kompresi. Cara mengurangi volume kompresi adalah:

1. Mengurangi tebal gasket kepala silinder2. Mengurangi atau membubut kepala silinder

Hal-hal yang harus diperhatikan saat meningkat perbandingan kompresi antara lain:

1. Kompresi jangan sampai bocor (gasket yang tipis menyebabkan elasitas gasket menurun, daya rapat menurun, peluang bocor meningkat).

2. Piston jangan sampai membentur katup3. Perubahan perbandingan kompresi dapat diketahui

untuk menyesuaikan kebutuhan nilai oktan bahan bakar sehingga detonasi dapat dicegah.

Tabel 3. Hubungan perbandingan kompresi dengan nilai oktan

12

Page 13: Bab i Karakteristik

Karakteristik Motor

Perbandingan Kompresi Nilai Oktan6 : 1 817 : 1 878 : 1 929 : 1 96

10 : 1 10011 : 1 10412 : 1 108

Pada buku pedoman sepeda motor maupun brosur-brosur tentang sepeda motor biasanya tertulis infomasi tentang diameter silinder, panjang langkah piston dan perbandingan kompresi. Informasi tentang volume kompresi jarang ditentukan. Untuk mencari volume kompresi dapat dilakukan menggunakan rumus:

VL VC =

E – 1(3)

E = Perbandingan kompresi VL = Volume langkah …….. cc

VC = Volume kompresi …… cc

Contoh :Tentukan volume kompresi sepeda motor Honda Astrea Grand bila diketahui diameter silinder 50 mm dan panjang langkah piston 49,5 mm, perbandingan kompresi 8,8 : 1Solusi:

D = 50 mm = 5 cm, L = 49,5 mm = 4,95 cmE = 8,8

VL = π/4 D2 x L = 3,14 / 4 x 52 x 4,95 = 97,19 cc

VL 97,19 VC = = = 12,46 cc

E – 1 8,8 – 1

Contoh :

13

Page 14: Bab i Karakteristik

Karakteristik Motor

Tentukan perbandingan kompresi motor di atas bila gasket kepala silinder diganti dari tebal 0,8 mm menjadi 0,5 mm.

Solusi: t(awal) = 0,8 mm = 0,08 cm , t(akhir) = 0,5 mm = 0,05 cm

Perbedaan volume tebal gasket adalah:Semula VGa = = π/4 D2 x t(awal)

= 3,14/4 x 52 x 0,08 = 1,57 cc

Baru VGb = π/4 D2 x t(akhir)

= 3,14/4 x 52 x 0,05 = 0,98 cc

Perbedaan volume gasket = VGa – VGb = 1,57 - 0,98 = 0,59 cc

Volume kompresi baru (VCb) = Vc - (VGa –VGb)= 12,46 - 0,59 = 11,87 cc

VL + VCbPerbandingan kompresi baru =

VCb

97,19 + 11,87= = 9,187 11,87

Jadi dengan mengurangi tebal gasket sebesar 0,3 mm yaitu dari tebal 0,8 mm menjadi 0,5 mm maka perbandingan kompresi naik dari 8,8 menjadi 9,187 atau naik 9,187 – 8,8 = 0,387

H. KAPASITAS SILINDERKapasitas silinder merupakan total volume langkah pada suatu motor. Kapasitas silinder merupakan informasi pokok tentang suatu motor dan sering dijadikan indikator tentang kemampuan motor tersebut. Hal itu dapat dimengerti karena kapasitas silinder suatu motor relatitif tetap dibandingkan indikator kemampuan motor yang lain seperti daya, maupun momen maksimal.

14

Page 15: Bab i Karakteristik

Karakteristik Motor

Kapasitas silinder dipengaruhi oleh 3 faktor utama, yaitu :1. Diameter silinder2. Panjang langkah3. Jumlah silinder

Rumus:

Kapasitas Silinder = π/4 x D2 x L x K (4)

D = Diameter silinder ……… cmL = Panjang langkah ………. CmK = Jumlah silinder

Dari rumus di atas, maka kapasitas silinder merupakan volume langkah kali jumlah silinder.

Kapasitas Silinder = VL x K (1.5)

Contoh :Tentukan kapasitas silinder sepeda motor 4 tak 2 silinder, bila diketahui diameter silinder 50 mm dan panjang langkah 50 mm.

Solusi :D = 50 mm = 5 cm, L = 50 mm = 5 cm, K = 2

Kapasitas silinder = π/4 D2 x L x K = 3,14/ 4 x 52 x 5 x 2 = 196,34 cm3 = 196,34 cc

I. DIAGRAM INDIKATORDiagram indikator merupakan diagram yang menggambarkan perubahan tekanan di dalam silinder motor pada satu siklus kerja. Diagram indikator merupakan sumber informasi tentang proses yang terjadi didalam silinder. Diagram indikator motor 4 tak adalah sebagai berikut:

15

Page 16: Bab i Karakteristik

Karakteristik Motor

Keterangan:

0-1 Langkah hisap1-2 Langkah kompresi2-3 Naiknya tekanan

akibat proses pembakaran

3-4 Langkah usaha4-0 Langkah buang

Gb. 1. 14 Diagram tekanan VS volume motor 4 tak

J. TEKANAN RATA-RATADiagram indikator suatu motor diamati menggunakan Farnborough tester. Alat tersebut akan mendeteksi perubahan tekanan didalam silinder saat motor hidup. Perubahan tekanan akan digambar pada kertas yang telah tersedia, dari gambar yang dihasilkan dapat ditentukan berapa tekanan rata-rata didalam silinder saat putaran tertentu

Gb. 1.15 Farnborough test dan diagram yang dihasilkan

Tekanan rata-rata di dalam silinder tergantung dari tekanan hasil pembakaran, tekanan hasil pembakaran tergantung dari jumlah campuran bahan bakar yang dibakar. Semakin banyak campuran yang dibakar di dalam silinder semakin besar tekanan rata-ratanya.

16

Page 17: Bab i Karakteristik

Karakteristik Motor

K. DAYA INDIKATOR ( INDICATOR POWER)Daya indikator merupakan daya secara nyata yang dihasilkan silinder motor. Daya indikator merupakan daya motor yang dihitung berdasarkan indikator tekanan rata-rata di dalam silinder. Daya indikator dapat dihitung berdasarkan informasi:

Pm = tekanan rata-rata didalam silinder ….. ( Pa = N/m2)

A = luar permukaan piston ……………… m2

L = panjang langkah piston ………….. mn = langkah usaha per menit

Gaya yang mendorong piston: = tekanan rata-rata x luas piston

= P m x A (6) ( satuan: N/m2 x m2 = N)

Usaha yang dihasilkan tiap langkah usaha:= Gaya x jarak

= (P m x A) x L (7) (satuan: N x m = Nm = J)

Usaha per menit: = Usaha tiap langkah usaha x jumlah langkah usaha per menit = P m x A x L x n (satuan: J/ menit)

Usaha per detik:: = Usaha tiap langkah usaha x jumlah langkah usaha per menit P m x A x L x n = (8)

60( satuan : J / detik)

UsahaDaya indikator (ip) =

Waktu

P m A L n ip = joule/ detik atau watt

60

17

Page 18: Bab i Karakteristik

Karakteristik Motor

1 watt (W) = 1 joule/ detikSatuan metrik1 Horse Power (HP) = 735 Nm/detik= 735 J/detik = 735 W

Satuan Inggris1 Horse Power (HP) = 550 ft-lb/detik= 746 W

Ukuran daya juga menggunakan satuan PS dari bahasa Jerman Prerd Strarke (Yamaha Technical Academy). 1 PS merupakan tenaga yang diperlukan untuk menggerakkan obyek 75 kg sejauh 1 meter dalam 1 detik. Jadi 1 PS = 75 kg-m/detik, di Indonesia sama dengan Daya Kuda (DK).

L. DAYA INDIKATOR MOTOR 2 TAKPada motor 2 tak tiap satu siklus dibutuhkan 1 putaran mesin atau 1 Rpm (Revolution per minute) sama dengan 1 langkah usaha. Dengan demikian jumlah langkah usaha:

n = N x K (9) dimana :

N = putaran mesin …….. rpmK = jumlah silinder

Dengan demikian rumus daya indicator motor 2 tak adalah.

P m L A N K ip 2tak = (10)

60

ip = daya indicator ……….. wattP m = tekanan rata-rata ………. N/ m2

L = panjang langkah …………. mA = luas permukaan piston ……. m2

N = putaran mesin …………. RpmK = jumlah silinder

Contoh:

18

Page 19: Bab i Karakteristik

Karakteristik Motor

Tentukan daya motor 2 tak, 2 silinder bila diketahui panjang langkah 60 mm, diameter silinder 70 mm, tekanan rata-rata 750 kPa pada putaran 2500 rpm.

Solusi:P m = 750 kPa = 750.000 N/L = 60 mm = 0,06 mD = 70 mm = 0,07 mN = 2500 rpmK = 2

Luas permukaan pistonA = π/4 D2 = π/4 (0,07)2 = 0,003848 m2

Daya indikator: P m L A N K ip 2tak =

60750.000 x 0,06 x 0,003848 x 2500 x 2

= 60

= 14430 W = 14,43 kW

1 Horse Power (HP) = 735 WJadi daya motor tersebut dalam satuan HP adalah:

Ip = 14430/ 735 = 19,63 HP

Daya indicator motor 2 tak dalam satuan Prerd Strarke (PS) atau Daya Kuda (DK).

Rumus: P m L A N K ip 2tak = (11)

60 x 75 x 100

ip = daya indicator ……….. DKP m = tekanan rata-rata ………. Kg/ cm2

L = panjang langkah …………. cmA = luas permukaan piston ……. cm2

N = putaran mesin …………. Rpm

19

Page 20: Bab i Karakteristik

Karakteristik Motor

K = jumlah silinder

Tentukan daya motor 2 tak, 1 silinder bila diketahui panjang langkah 50 mm, diameter silinder 60 mm, tekanan rata-rata 7 kg/ cm2 pada putaran 3000 rpm.

Solusi :P m = 7 kg/ cm2

L = 50 mm = 5 cm N = 2500 rpmD = 60 mm = 6 m K = 1

Luas permukaan pistonA = π/4 D2 = π/4 62 = 28,274 cm2

P m L A N K ip 2tak =

60 x 75 x 100

7 x 5 x 28,274 x 3000 x 1=

60 x 75 x 100

= 6,597 Dk

20

Page 21: Bab i Karakteristik

Karakteristik Motor

Gb. 1.16 Motor Honda NSR 150R, 2 tak 1 silinder pendinginan air. Volume silinder 149 cc, Daya maks 27,7 PS pada 10500 rpm, Torsi maks 2,04 Kg-m pada 9500 rpm.

M. DAYA INDIKATOR MOTOR 4 TAKPada motor 4 tak tiap satu siklus dibutuhkan 2 putaran mesin atau 1 Rpm (Revolution per minute) sama dengan 1/2 langkah usaha. Dengan demikian jumlah langkah usaha:

n = ½ N x K (12) dimana :

N = putaran mesin …….. rpmK = jumlah silinder

Dengan demikian rumus daya indikator motor 4 tak adalah.

P m L A N K ip 4 tak = (13)

2 X 60

Ni = daya indicator ……….. wattP m = tekanan rata-rata ………. N/ m2

L = panjang langkah …………. mA = luas permukaan piston ……. m2

N = putaran mesin …………. RpmK = jumlah silinder

Contoh :Motor 4 tak, 1 silinder mempunyai panjang langkah 50 mm, diameter silinder 60 mm. Tentukan daya indikator motor bila tekanan rata-rata 600 kPa pada putaran 3000 rpm

Solusi:P m = 600 kPa = 600.000 N/ m2

L = 50 mm = 0,05 mD = 60 mm = 0,06 mN = 2000 rpmK = 1

21

Page 22: Bab i Karakteristik

Karakteristik Motor

Luas permukaan pistonA = π/4 D2 = π/4 (0,06)2 = 0,002827 m2

Daya indikator: P m L A N K ip 4 tak =

2 x 60600.000 x 0,5 x 0,002827 x 2000 x 1

= 2 x 60

= 14135 W = 14,135 kW

1 Horse Power (HP) = 735 WJadi daya motor tersebut dalam satuan HP adalah:

ip = 14135/ 735 = 19,23 HPDaya indicator motor 4 tak dalam satuan Prerd Strarke (PS) atau Daya Kuda (DK).

Rumus: P m L A N K ip 4 tak = (1.14)

2 x 60 x 75 x 100

ip = daya indicator ……….. DKP m = tekanan rata-rata ………. Kg/ cm2

L = panjang langkah …………. cmA = luas permukaan piston ……. cm2

N = putaran mesin …………. RpmK = jumlah silinder

Contoh: Tentukan daya motor 4 tak, 1 silinder bila diketahui panjang langkah 60 mm, diameter silinder 60 mm, tekanan rata-rata 8 kg/ cm2 pada putaran 4000 rpm

Solusi:P m = 8 kg/ cm2

L = 60 mm = 6 cmD = 60 mm = 6c mN = 4000 rpm

22

Page 23: Bab i Karakteristik

Karakteristik Motor

K = 1

Luas permukaan pistonA = π/4 D2 = π/4 x 6 2 = 28,27 c m2

Daya indikator: P m L A N K ip 4 tak =

2 x 60 x 75 x 100

8 x 6 x 28,27 x 4000 x 1= = 6,03 PS 2 x 60 x 75 x 100

Gb. 1.17 Motor Honda Astrea Grand, 4 tak 1 silinder pendinginan udara. Volume silinder 97,1 cc, Daya maks 7,5 DK pada 8000 rpm, Torsi maks 0,77 Kg-m pada 6000 rpm.

N. DAYA REM ( BRAKE POWER)Daya rem merupakan daya yang dihasilkan mesin yang diukur pada poros engkol. Daya rem sering pula disebut daya poros

23

Page 24: Bab i Karakteristik

Karakteristik Motor

atau daya efektif karena daya inilah yang digunakan untuk memutar beban.

Daya rem dihasilkan dari daya indikator, daya indikator dihasilkan dari proses pembakaran. Besar daya rem lebih kecil dari daya indikator karena sebagian daya indikator digunakan untuk mengatasi gesekan maupun beban pompa dan aksesoris. Dengan demikian daya rem adalah:

Daya rem = Daya indicator – Daya gesekan bp = ip - fp (15)

Perbandingan daya rem dengan daya indicator merupakan efisiensi mekanis motor, dengan demikian efisiensi mekanis dapat dirumuskan:

Daya remEfisiensi mekanis = x 100 %

Daya indicator

ηm = bp / ip x 100 % (16)

Hubungan daya indicator, daya rem dan daya gesek dapat digambarkan sebagai berikut:

24

Page 25: Bab i Karakteristik

Karakteristik Motor

Gb. 1.18 Grafik hubungan putaran mesin dengan daya indicator (ip), daya rem (bp), daya gesek (fp) dan efisiensi mekanis (ηm )

Ahli otomotif terus-menerus berupaya untuk meningkatkan efisiensi mekanis dengan cara mengurangi daya gesek. Upaya tersebut diantaranya:

1. Mencari formula minyak pelumas yang mempunyai daya gelincir tinggi dan tahan panas.

2. Mengurangi jumlah komponen yang bergesekan3. Memperbaiki sistem pelumas4. Mencari bahan piston, ring piston, silinder liner yang

mempunyai tahanan gesek kecil dan koefisien muai kecil sehingga saat motor pada mutaran tinggi piston tidak macet.

5. Mengurangi beban aksesoris motor seperti beban pompa pelumas, pompa bahan bakar, pompa air pendingin, kipas radiator, menggunakan alternator yang lebih efisien dan mengurangi mekanisme yang bergerak seperti membuat disain piston yang kuat dan lebih ringan, mengganti mekanisme katup OHV menjadi DOHC.

O. DINAMOMETERDinamometer berfungsi untuk mengetahui daya rem yang dihasilkan motor. Informasi yang diperlukan untuk mengetahui daya rem antara lain putaran poros engkol dan torsi. Tachometer digunakan untuk mengetahui putaran motor, sedangkan untuk mengetahui torsi digunakan pengukur beban/ gaya dengan jarak tertentu dari sumbu poros.

Terdapat beberapa tipe dinamometer, yaitu:1. Dinamometer chasis : mengukur daya pada roda

kendaraan2. Dinamometer mesin : mengukur daya yang

dihasilkan poros atau daya rem.

Dinamometer mesin ada beberapa macam diantaranya:1. Cradled electric generator : beban poros berupa

generator listrik.2. Eddy current brake : beban poros berupa gaya

magnet permanent

25

Page 26: Bab i Karakteristik

Karakteristik Motor

3. Hydroulic water brake : beban poros berupa tahanan air

4. Friction brake : beban poros berupa tahanan gesek

Gb.1 19 Macam dinamometer mesin

Dari beberapa model dinamometer diatas, maka model hydroulic water brake paling banyak digunakan. Contoh hydraulic water dinamometer adalah sebagai berikut:

26

Page 27: Bab i Karakteristik

Karakteristik Motor

Gb. 1.20 Dinamometer model hydroulic water brake

Daya rem = Torsi x kecepatan sudut = T x ω (17)

Torsi = gaya x jarak = (S + W) x R (18)

Kecepatan sudut ω = 2πN/ 60 (19)

Dengan demikian, besar daya rem adalah:

2πNRW+S) bp = watt

(20)60

dimana :bp = daya rem ……….. …………. wattN = putaran mesin …….. ………… rpmR = jarak sumbuh ke beban ………... mW = beban statis ………………….. NS = Pembacan pada spring balance ... N

Contoh:Suatu motor bensin 4 tak, 4 silinder mempunyai diameter silinder 76 mm, panjang langkah piston 100 mm. Pada putaran 2800 rpm tekanan rata-rata didalam silinder 860 kPa. Pengujian pada dinamometer dengan jarak ke beban 50 cm, menggunakan beban 100 N spring balance menunjukkan 98 N. Tentukan:

a. Daya indicatorb. Daya remc. Daya gesekd. Efisiensi mekanis

Solusi: D = 76 mm = 0,076 m

L = 100 mm = 0,1 mPm = 860 kPa = 860.000 N/m2

27

Page 28: Bab i Karakteristik

Karakteristik Motor

N = 2.800 rpmK = 4 R = 0,5 mW = 100 NS = 98 N

A = π/4 D2 = π/4 (0,076) 2 = 0,00454 m2

PmA L N K a. Daya indicator =

2 x 60

860.000 x 0,00454 x 0,1 x 2800 x 4=

2 x 60= 36.440 W = 36,44 kW

b. Daya rem 2πNR(W+S)

bp = watt60

2π x 2.800 x 0,5 (100 + 98) =

60

= 29.040 W = 29,04 kW

c. Daya gesek

fp = ip - bp = 36,44 - 29,04 = 7,4 kW

d. Efisiensi mekanis Daya rem

Efisiensi mekanis = x 100 %Daya indicator

ηm = bp / ip x 100 %

= 29,04/ 36,44 x 100 % = 79,7 %

28

Page 29: Bab i Karakteristik

Karakteristik Motor

P. TORSIProses pembakaran di dalam silinder menghasilkan tekanan hasil pembakaran, tekanan mendorong piston, gaya dorong piston diteruskan oleh batang piston untuk memutar poros engkol. Pena engkol dengan sumbu poros engkol mempunyai jarak sebesar jari-jari engkol (r), gaya dari piston menghasilkan momen atau torsi yang memutar poros engkol. Torsi yang dihasilkan oleh poros engkol diteruskan melalui flywheel (roda penerus), transmisi, propeller shaft, differential selanjutkan digunakan untuk memutar roda.

Gb.1.21 Torsi pada poros engkol

Gaya dari tekanan hasil pembakaran (F), mendorong piston sehingga terurai menjadi gaya kesamping (Fk) dan gaya diteruskan ke poros engkol (Fst). Torsi merupakan gaya yang bekerja tegak lurus maka gaya Fst terurai menjadi gaya Fp. Dengan demikian torsi yang dihasilkan adalah:

T = Fp x R (21)

Besar torsi yang dihasilkan mesin tergantung dari besarnya tekanan rata-rata didalam silinder

29

F

Page 30: Bab i Karakteristik

Karakteristik Motor

Gb. 1. 22 Karakteristik motor

Besarnya tekanan rata-rata didalam silinder ditentukan pada efisiensi volumetrik. Tekanan rata-rata (bmep) maksimal dicapai pada putaran tertentu. Pada tekanan rata-rata maksimal maka pemakaian bahan bakar paling minimal, sehingga bila kita mengendarai kendaraan pada putaran mesin dengan tekanan rata-rata maksimal maka bahan bakar paling ekonomis.

Q. EFISIENSI VOLUMETRIKEfisiensi volumetrik merupakan perbandingan antara jumlah campuran udara dan bahan bakar yang masuk ke dalam silinder dibanding dengan ruang yang ada di dalam silinder. Efisiensi volumetric dapat dirumuskan:

Campuran udara dan bahan bakarEfisiensi volumetrik = x 100%

Volume langkah + Volume kompresi

Besarnya torsi yang dihasilkan suatu motor sangat dipengaruhi oleh efisiensi volumetrik. Hal ini dapat dipahami karena torsi yang dihasilkan tergantung tekanan rata-rata di dalam silinder, tekanan rata-rata ditentukan dari jumlah campuran bahan bakar yang masuk kedalam silinder, jumlah campuran bahan

30

Page 31: Bab i Karakteristik

Karakteristik Motor

bakar yang masuk maksimal ke dalam silinder tergantung dari efisiensi volumetrik motornya. Efisiensi volumetrik merupakan parameter efektivitas dari sistem induksi. Pada motor bensin sistem induksi terdiri dari saringan udara, karburator, intake manifold, saluran masuk (intake port), pembukaan katup. Besar efisiensi volumetrik dengan pemasukan alami sebesar 80 - 90 %. Efisiensi volumetrik dipengaruhi oleh beberapa faktor, diantaranya :

1. Perbandingan udara dan bahan bakar, jenis bahan bakar, penguapan bahan bakar di saluran masuk.

2. Perbandingan tekanan saluran buang dengan saluran masuk.

3. Perbandingan kompresi4. Putaran mesin5. Disain lubang saluran masuk dan saluran buang6. Geometri, ukuran, tinggi angkat, saat pembukaan katup

masuk maupun katup buang.

Timing 10 0

19 10 30 20

Lift, mm 15 5 0 45 60

70 60

58,511

Gb. 1. 23 Hubungan putaran mesin dengan efisiensi volumetrik pada tinggi angkat katup tetap, timing valve berbeda

31

Page 32: Bab i Karakteristik

Karakteristik Motor

Gb. 1. 24 Hubungan putaran mesin dengan efisiensi volumetrik pada timing valve tetap, tinggi angkat katup berbeda

R. OFFSET ENGINE DAN OFFSET PISTONMesin offset engine adalah mesin yang sumbu silinder dengan sumbu poros engkol tidak segaris. Tujuan offset engine untuk meningkatkan torsi mesin dan mengurangi gaya gesek piston ke dinding silinder saat langkah usaha.

Offset piston adalah sumbu silinder dengan sumbu piston tidak segaris. Tujuan offset piston adalah bersama dengan offset engine untuk meningkatkan torsi mesin dan mengurangi gaya gesek piston ke dinding silinder saat langkah usaha.

Adanya offset piston dan offset engine mengharuskan pemasangan arah piston maupun arah batang piston harus tepat. Kesalahan pemasangan mengakibatkan gesekan ke piston ke dinding silinder menjadi sangat besar. Guna menghindari kesalahan tersebut pada piston diberi tanda pemasangan, yaitu tanda panah menghadap ke saluran buang, tanda in ke arah katup in. Pada batang piston berpedoman pada tulisan pada sisi batang piston.

32

Page 33: Bab i Karakteristik

Karakteristik Motor

Dampak offset engine terhadap reduksi gaya ke samping dan optimalisasi gaya yang memutar poros engkol dapat digambarkan sebagai berikut:

Gb. 1.25 Perbandingan non effset engine dengan offset engine

Dari gambar tersebut dapat kita lihat bahwa pada sudut engkol yang yang sama (β = βo ), dan gaya yang mendorong piston yang sama (F = Fo), gaya kesamping offset engine lebih kecil dibandingkan non offset engine ( F2 > Fo2). Gaya yang memutar poros engkol lebih besar mesin dengan offset engine dibanding dengan non offset engine (F1 < Fo1).

Offset engine mampu mereduksi gaya kesamping dan optimalisasi gaya yang memutar poros engkol saat langkah usaha, namun mempunyai kosekuensi kebutuhan gaya untuk langkah kompresi harus lebih besar, dan gaya gesek saat kompresi juga lebih besar. Gaya yang mendorong piston saat langkah usaha jauh lebih besar dibanding dengan gaya yang mendorong piston saat langkah kompresi, sehingga gaya kesamping saat langkah usaha lebih besar dibandingkan saat langkah kompresi. Dengan adanya offset engine maka besar gaya ke samping saat langkah usaha dengan saat kompresi hampir sama, sehingga keausan silinder lebih merata. Dampak offset engine saat langkah kompresi dapat digambarkan sebagai berikut:

33

Page 34: Bab i Karakteristik

Karakteristik Motor

Gb. 1.26 Gaya ke samping saat langkah usaha dan kompresi

Dari ilustrasi di atas, semakin besar offset, semakin kecil gaya yang menekan dinding silinder saat langkah usaha, namun gaya yang menekan dinding silinder saat langkah kompresi semakin besar.

Gb. 1.27 Offset Piston

34

Page 35: Bab i Karakteristik

Karakteristik Motor

Selain offset engine juga dilakukan offset piston, yaitu menggeser sumbu pena piston beberapa mm, sehingga terdapat offset antara sumbu pena piston dengan sumbu piston. Dengan adanya offset piston maka kemiringan piston akibat tekanan pembakaran saat langkah usaha, posisi batang piston dan celah antara silinder dengan dinding silinder dapat direduksi, sehingga piston relatif lurus dengan dinding silinder, gesekan ke dinding silinder dapat dikurangi. Besar offset piston dan offset engine 1-2 mm.

35