alfan

24
PRO FOTO PADA PHOT UV R Moha NRP. Dosen Prof. NIP. JURU Fakul Institu Surab OPOSA OKATA A SISTE TOCAT RAY SYS ammad K 3307.10 n Pembim Dr Yulin 1953070 USAN TE ltas Tekn ut Tekno baya 201 AL TUG ALISIS P EM SINA TALYSIS STEM W Khoirudin 00.080 mbing: nah T.MA 6198403 EKNIK L nik Sipil d ologi Sep 1 GAS A POLUTA AR UV D S POLL WITH CA n Alfan APP.Sc 32004 LINGKU dan Pere uluh Nop AKHIR AN MIN DENGA UTANT ATALY UNGAN encanaan pember R NYAK BU AN KATA T OIL IN YST TiO 2 UMI DI ALIS Ti N SEA W 2 AIR LA iO 2 WATER AUT ON

Upload: novitawahyunidly

Post on 17-Dec-2015

30 views

Category:

Documents


10 download

DESCRIPTION

you

TRANSCRIPT

  • PRO FOTOPADA PHOTUV R

    MohaNRP. DosenProf. NIP.

    JURUFakulInstituSurab

    OPOSA

    OKATAA SISTE

    TOCATRAY SYS

    ammad K3307.10

    n PembimDr Yulin1953070

    USAN TEltas Teknut Teknobaya 201

    AL TUG

    ALISIS PEM SINA

    TALYSISSTEM W

    Khoirudin00.080

    mbing: nah T.MA6198403

    EKNIK Lnik Sipil dologi Sep1

    GAS A

    POLUTAAR UV D

    S POLLWITH CA

    n Alfan

    APP.Sc 32004

    LINGKUdan Pereuluh Nop

    AKHIR

    AN MINDENGA

    UTANTATALY

    UNGANencanaanpember

    R

    NYAK BUAN KATA

    T OIL INYST TiO2

    UMI DI ALIS Ti

    N SEA W2

    AIR LAiO2

    WATER

    AUT

    ON

  • ABSTRAK

    Indonesia merupakan negara kepulauan yang memiliki luas wilayah laut sebesar 2/3

    dari luas total wilayah negara. Letak strategisnya menjadikan perairan Indonesia sebagai jalur pembawa tanker minyak. Selain itu, Indonesia pun memiliki ratusan anjungan eksplorasi dan anjungan eksploitasi lepas pantai. Tingginya aktivitas perminyakan tentunya menimbulkan resiko pencemaran minyak di laut, seperti: kecelakaan yang dialami tanker minyak dapat menimbulkan kebocoran muatan minyak mentah maupun bahan bakar. Hal ini menyebabkan berbagai macam zat berbahaya yang terkandung dalam minyak dilepaskan ke lingkungan perairan.

    Senyawa hidrokarbon yang terkandung dalam minyak bumi berupa benzene, touleuna, ethylbenzen, dan isomer xylena, dikenal sebagai BTEX, merupakan komponen utama dalam minyak bumi, bersifat mutagenic dan karsinogenik pada manusia. Senyawa ini bersifat rekalsitran, yang artinya sulit mengalami perombakan di alam, baik di air maupun didarat, sehingga hal ini akan mengalami proses biomagnetion pada ikan ataupun pada biota laut lain. Bila senyawa aromatik tersebut masuk ke dalam darah, akan diserap oleh jaringan lemak dan akan mengalami oksidasi dalam hati membentuk phenol yang membahayakan bagi tubuh Dapat disimpulkan pencemaran laut oleh tumpahan minyak membawa dampak negatif, sehingga diperlukan penanganan serius untuk mereduksi polutan minyak.

    Metode yang dapat digunakan dalam mengatasi pencemaran minyak di perairan yaitu dengan fotokatalisis dengan bantuan sinar UV. Teknologi fotokatalisis merupakan kombinasi dari proses fotokimia dan katalis yang terintegrasi untuk dapat melangsungkan suatu reaksi transformasi kimia. Reaksi transformasi tersebut berlangsung pada permukaan bahan katalis semikonduktor yang terinduksi oleh sinar. Beberapa jenis semikonduktor yang dapat dipakai untuk proses fotokatalisis dari kelompok oksida misalnya: TiO2, Fe2O3, ZnO, WO3, atau SnO2, sedangkan dari kelompok sulfida adalah CdS, ZnS, CuS, FeS, dan lain-lain. Diantara sekian banyak jenis semikonduktor, hingga saat ini serbuk TiO2 (terutama dalam bentuk kristal anatase) memiliki aktivitas fotokatalitik yang tinggi, stabil dan tidak beracun. Secara komersial serbuk TiO2 juga mudah didapat dan diproduksi dalam jumlah besar.

    Tujuan dari penelitian kali ini adalah Menentukan dosis penambahan TiO2 yang dapat menghasilkan prosentase (%) removal tertinggi untuk mengolah air laut yang tercemar minyak bumi dengan sitem sinar UV dan Menentukan laju removal 3 jenis minyak bumi, yaitu alifatik, aromatik, siklik pada air laut yang tercemar minyak bumi dengan sitem sinar UV . Pada penelitian Fotokatalisis dengan menggunakan katalis TiO2 dalam sistem sinar UV digunakan lampu UV 40 W Sampel yang digunakan adalah sampel buatan, yaitu sampel dengan kadar garam 3,5 % dan jumlah TiO2 yang dibubuhkan adalah sebesar0; 0,5; 1,0; 1,5; dan 2 gr/L. Sampel dengan dosis pembubuhan TiO2 sebesar 0 gr/L digunakan sebagai kontrol. Kata Kunci : Pencemaran Minyak Bumi, Fotokatalisis, TiO2, Sinar UV,

  • BAB I

    PENDAHULUAN

    1.1 Latar Belakang

    Pesatnya perkembangan aktivitas industri perminyakan akhir-akhir ini telah menyebabkan permasalahan lingkungan, salah satunya akibat pencemaran yang dihasilkan dari minyak bumi yang tertumpah ke permukaan. Minyak adalah pencemar utama di lautan (Connel, 1995). Tumpahan minyak baik yang berasal dari kegiatan penambangan lepas pantai, kebocoran, kecelakaan kapal tanker dan lain sebagainya menyebabkan minyak masuk ke dalam laut. Meski hanya terjadi dalam jangka waktu yang pendek, hal ini dapat menimbulkan efek lokal yang serius terhadap hewan dan tumbuhan yang berada di dalam laut (Goldberg, 1991). Selain itu Menurut Peraturan Pemerintah No.19/1999 tentang Pengendalian Pencemaran dan atau Perusakan Laut, pencemaran laut adalah masuknya atau dimasukkannya makhluk hidup, zat, energi, dan atau komponen lain ke dalam lingkungan laut oleh kegiatan manusia sehingga kualitasnya turun sampai ke tingkat tertentu yang menyebabkan lingkungan laut tidak sesuai lagi dengan baku mutu dan atau fungsinya.

    Beberapa pencemaran yang menjadi perhatian masyarakat sekarang ini diantaranya adalah pencemaran di daerah pantai yang diakibatkan oleh tersemburnya minyak bumi ke permukaan laut. Pada umumnya, pengeboran minyak bumi di laut dapat menyebabkan terjadinya peledakan (blow out) di sumur minyak. Ledakan ini mengakibatkan semburan minyak menyebar ke lokasi sekitar laut, sehingga menimbulkan pencemaran. Contohnya, ledakan anjungan minyak yang terjadi di Teluk Meksiko sekitar 80 kilometer dari Pantai Louisiana pada 22 April 2010. Pencemaran laut yang diakibatkan oleh pengeboran minyak di lepas pantai itu dikelola perusahaan minyak British Petroleum (BP). Ledakan itu memompa minyak mentah 8.000 barel atau 336.000 galon minyak ke perairan di sekitarnya dan daerah pantai.

    Berbagai metode digunakan untuk mengatasi tumpahan minyak, salah satunya adalah dengan cara proses biodegradasi, yaitu penguraian minyak bumi oleh aktifitas mikroorganisme, merupakan proses yang sangat penting dalam menurunkan kadar pencemaran minyak. Proses ini dapat berlangsung dengan bantuan mikroorganisme yang secara alami terdapat di laut atau dengan menambahkan mikroorganisme pengurai ke perairan yang tercemar (Arief, 2007). Namun cara ini memilik kelemahan, yaitu tidak dapat mengatasi tumpahan minyak dalam waktu yang singkat, yaitu kurang lebih sekitar 2 bulan.

    Cara lain yang digunakan adalah cara kimiawi, yaitu dengan menambahkan dispersan (pemecah) kimiawi yang berfungsi untuk memecah minyak menjadi tetesan kecil sehingga dapat dihindarkan berbagai dampak yang merugikan terhadap berbagai organisme laut. Namun cara ini juga memiliki banyak kelemahan. Selain hanya bisa menyisihkan 50 % minyak yang tumpah di laut, termasuk dispersi alami, dispersan juga berpotensi menimbulkan dampak negatif terhadap beberapa organisme laut. Besaranya dampak yang ditimbulkan juga tergantung dari jenis oraganisme yang terpapar, dosis, waktu pemaparan, jenis dispersan, dan minyak yang didispersikan (Sudarman, 2009).

  • Oleh karena itu diperlukan alternatif pengolahan yang lebih efektif dan efisien. Salah satunya adalah dengan pengolahan secara fotokatalitis, yaitu pengolahan dengan pembubuhan katalis dan cahaya, pada air limbah. Prinsip dari metode fotokatilisis ini adalah merubah hidrokarbon minyak bumi menjadi zat yang tidak berbahaya yaitu CO2 (Wise, 1991).. Fotokatalisis adalah proses reaksi kimia yang dibantu oleh cahaya dan katalis padat. Dimana dalam reaksi fotokatalisis itu sendiri melibatkan pasangan elektron-hole (e- dan h+). Dari definisi tersebut menunjukan bahwa beberapa langkah-langkah fotokatalis adalah merupakan reaksi redoks yang melibatkan pasangan e- dan h+ (Arutanti dkk. 2009).

    Menurut Herman (1999), metode fotokatalisis adalah suatu proses yang memerlukan bantuan cahaya dan katalis semikonduktor untuk melangsungkan atau mempercepat transformasi kimia, dimana sumber cahaya yang digunakan bisa berasal dari matahari atau lampu UV. Semikonduktor tersebut jika terkena oleh sinar UV atau sinar matahari yang mempunyai foton lebih dari energi bahan semikonduktornya ( hv EG ) akan menghasilkan elektron ( e- ) di pita konduksi yang dapat mereduksi senyawa logam dan hole (h +) di pita valensi yang dapat mengoksidasi senyawa organik yang berada di permukaan. Katalis semikonduktor yang banyak digunakan untuk proses fotokatalisis antara lain TiO2, Fe2O3, SnO2, ZnO, ZnS, CuS, CeO2 ZrO2 dan WO3 (Khalil et al., 1998). Tetapi hingga saat ini TiO2 lebih sering digunakan dalam aplikasi fotokatalisis khususnya pengolahan limbah, karena banyak terdapat di alam mempunyai sifat stabil terhadap cahaya, tidak beracun, kemampuan untuk mengoksidasi yang tinggi dan tidak larut dalam kondisi eksperimen (Linsebigler et al., 1995).

    Pada penelitian sebelumnya Ziolli dan Jardim (2001), menyebutkan bahwa fotokatalisis dengan menggunakan TiO2 dengan kadar berat/volume (w/v) 0,1% dan lampu Hg sebagai sumber cahaya dapat menyisihkan senyawa karbon sebesar 90% (berkisar 9-45 mg/L). Ziolli dan Jardim (2001), juga menyebutkan bahwa metoda tersebut merupakan metoda yang efisien dan ekonomis untuk digunakan dalam upaya remediasi air laut yang tercemar oleh minyak bumi.

    1.2 Perumusan Masalah

    Rumusan masalah dalam penelitian ini adalah :

    1. Berapakah dosis pembubuhan TiO2 yang dapat menghasilkan persentase (%) removal tertinggi untuk mengolah air laut yang tercemar minyak bumi dengan sinar UV ?

    2. Berapakah efisiensi removal dua jenis minyak bumi, yaitu solar (diesel) dan oli (lubricating oil) pada fotokatalisis TiO2 dengan sinar UV?

    1.3 Tujuan Tujuan dalam penelitian kali ini adalah :

    1. Menentukan dosis pembubuhan TiO2 yang dapat menghasilkan persentase (%) removal tertinggi untuk mengolah air laut yang tercemar minyak bumi. dengan sinar UV.

    2. Menentukan efisiensi removal dua jenis minyak bumi, yaitu solar (diesel) dan oli (lubricating oil) pada fotokatalisis TiO2 dengan sinar UV.

    1.4 Manfaat Manfaat yang diperoleh dari penelitian kali ini adalah mengetahui tingkat kinerja dari teknologi fotokatalisis TiO2 dengan sinar UV dalam menyisihkan minyak bumi yang mencemari air laut. 1.5 Ruang Lingkup

  • Ruang lingkup dari penelitian ini adalah: 1. Penelitian dilakukan dalam skala laboratorium. 2. Sampel merupakan sampel air laut buatan dengan salinitas 33 . 3. Pada penelitian kali ini dilakukan dua variasi yaitu variasi pembubuhan dosis TiO2

    dan variasi jenis pencemar minyak bumi. 4. Pada variasi pembubuhan dosis TiO2, dosis TiO2 yang ditambahkan sebesar 0 g/L

    (sebagai kontrol); 0,5 g/L; 1 g/L; 1,5 g/L; 2 g/L dengan lama penyinaran dengan sinar UV adalah selama 7 hari. Pengambilan sampel air pada hari ke-7 untuk menentukan dosis optimum dari TiO2.

    5. Pada variasi jenis pencemar minyak bumi yaitu, minyak solar dan minyak pelumas, dengan pembubuhan dosis TiO2 optimum. Lama penyinaran dengan sinar UV adalah selama 7 hari dengan pengambilan sampel air pada hari ke-0; hari ke-1; hari ke-3; hari ke-5; hari ke-7.

    6. Parameter yang dianalisa adalah Total Petroleum Hydrocarbons (TPH) dan gugus-gugus yang terbentuk yang ditentukan dengan spektrofotometri IR.

  • BAB II

    TINJAUAN PUSTAKA

    2.1 Hidrokarbon

    2.1.1 Pengertian Hidrokarbon

    Hidrokarbon merupakan persenyawaan antara hidrogen dan karbon. Hidrokarbon merupakan segolongan senyawa yang banyak terdapat di alam sebagai minyak bumi. Seluruh hidrokarbon memiliki rantai karbon dan atom-atom hidrogen yang berikatan dengan rantai tersebut. Istilah tersebut digunakan juga sebagai pengertian dari hidrokarbon alifatik. Sebagai contoh metana (CH4) adalah hidrokarbon dengan satu atom karbon dan empat atom hidrogen: Etana adalah hidrokarbon yang terdiri dari dua atom karbon bersatu dengan sebuah ikatan tunggal, masing-masing mengikat tiga atom karbon (C2H6). Propana memiliki tiga atom C (C3H8) dan seterusnya (CnH2n+2).

    2.1.2 Klasifikasi Hidrokarbon

    a. Berdasarkan Jenis Ikatan Atom Karbon

    Berdasarkan ikatan yang terdapat pada rantai karbonnya, hidrokarbon dibedakan menjadi:

    1. Hidrokarbon jenuh, yaitu hidrokarbon yang pada rantai karbonnya semua berikatan tunggal. Hidrokarbon ini disebut juga sebagai alkana.

    2. Hidrokarbon tak jenuh, yaitu hidrokarbon yang pada rantai karbonnya terdapat ikatan rangkap dua atau rangkap tiga.

    Hidrokarbon yang mengandung ikatan rangkap dua disebut alkena dan hidrokarbon yang mengandung ikatan rangkap tiga disebut alkuna. Tiap-tiap atom karbon tersebut dapat mengikat empat atom lain atau maksimum hanya 4 buah atom hidrogen. Jumlah atom hidrogen dapat ditentukan dari jenis hidrokarbonnya yaitu:

    a. Alkana (CnH2n+2)

    Alkana merupakan hidrokarbon alifatik jenuh yaitu hidrokarbon dengan rantai terbuka dan semua ikatan karbon-karbonnya merupakan ikatan tunggal. Alkana juga disebut parafin yang berarti sukar bereaksi. Alkana C1-C10 berguna sebagai sumber energi misalnya metana, etana, propana, dan butana sebagai bahan bakar gas.

    Sifat-sifat alkana adalah sebagai berikut:

    1. Pada umumnya alkana sukar bereaksi dengan senyawa lain maka disebut parafin. 2. Pada suhu kamar dapat bereaksi dengan Cl dan Br karena pengaruh sinar ultraviolet

    dari sinar matahari. 3. Pembakaran sempurna alkana dengan gas oksigen akan dihasilkan gas CO2 dan uap

    air serta dibebaskan panas.

    b. Alkena (Cn H2n)

  • Alkena adalah senyawa hidrokarbon yang mempunyai satu ikatan rangkap dua ( C=C ) pada rantai karbonnya. Sehingga alkena yang paling sederhana mempunyai 2 atom C. Alkena disebut juga olefin dari kata olefiant gas (gas yang membentuk minyak).

    c. Alkuna

    Alkuna adalah hidrokarbon alifatik tak jenuh yang mempunyai satu ikatan rangkap tiga (CC) pada rantai karbonnya. Dibandingkan dengan alkana dan alkena yang sesuai, alkuna mempunyai lebih jumlah atom (H) yang lebih sedikit (Syukri, 1999).

    b. Berdasarkan Bentuk Rantai Karbon

    1. Hidrokarbon alifatik terdiri atas rantai karbon yang tidak mencakup bangun siklik. Golongan ini sering disebut sebagai hidrokarbon rantai terbuka atau hidrokarbon siklik. Contoh hidrokarbon alifatik yaitu :

    C2H6 (etana); CH3CH2CH2CH2CH3 (pentana)

    2. Hidrokarbon alisiklik atau hidrokarbon siklik terdiri atas atom karbon yang tersusun dalam satu lingkar atau lebih.

    3. Hidrokarbon aromatik merupakan golongan khusus senyawa siklik yang biasanya digambarkan sebagai lingkar enam dengan ikatan tunggal dan ikatan rangkap bersilihganti. Kelompok ini digolongkan terpisah dari hidrokarbon asiklik dan alifatik karena sifat fisika dan kimianya yang khas (Syukri, 1999).

    2.1.3 Reaksi-Reaksi Senyawa Hidorkarbon

    Reaksi senyawa hidrokarbon pada umumnya merupakan pemutusan dan pembentukan ikatan kovalen. Ada beberapa jenis reaksi senyawa hidrokarbon, diantaranya yaitu reaksi substitusi, adisi, oksidasi, dan eliminasi.

    1. Reaksi Subtitusi

    Pada reaksi substitusi, atom atau gugus atom yang terdapat dalam suatu molekul digantikan oleh atom atau gugus atom lain. Reaksi substitusi umumnya terjadi pada senyawa yang jenuh (semua ikatan karbon-karbon merupakan ikatan tunggal), tetapi dengan kondisi tertentu dapat juga terjadi pada senyawa tak jenuh. Sebagai contoh adalah halogenasi hidrokarbon (penggantian atom H oleh halogen).

    2. Reaksi Adisi

    Reaksi adisi terjadi pada senyawa yang mempunyai ikatan rangkap dua atau rangkap tiga, senyawa alkena atau senyawa alkuna, termasuk ikatan rangkap karbon dengan atom lain.

  • Dalam reaksi adisi, molekul senyawa yang mempunyai ikatan rangkap menyerap atom atau gugus atom sehingga ikatan rangkap berubah menjadi ikatan tunggal. Untuk alkena atau alkuna, bila jumlah atom H pada kedua atom C ikatan rangkap berbeda, maka arah adisi ditentukan oleh kaidah Markovnikov, yaitu atom H akan terikat pada atom karbon yang lebih banyak atom H.

    3. Reaksi Eliminasi

    Pada reaksi eliminasi, molekul senyawa berikatan tunggal berubah menjadi senyawa berikatan rangkap dengan melepas molekul kecil. Jadi, eliminasi merupakan kebalikan dari adisi. Sebagai contoh adalah eliminasi air (dehidrasi) dari alkohol. Apabila dipanaskan dengan asam sulfat pekat pada suhu sekitar 1800C, alkohol dapat mengalami dehidrasi membentuk alkena.

    4.Reaksi Oksidasi

    Apabila senyawa alkana dibakar menggunakan oksigen, senyawa yang dihasilkan ialah karbon dioksida dan air. Reaksi tersebut dikenal dengan reaksi oksidasi atau pembakaran.

    2.1.4 Solar (Diesel) dan Oli (Lubricating Oil)

    Minyak solar merupakan salah satu fraksi dari minyak bumi yang diperoleh dengan cara destilasi yang dipisahkan berdasarkan titik didih dengan atom karbon per molekulnya C15-C18 dan titik didihnya 300-400C dan berbentuk liquid (Keenan et al., 1993).

    Salah satu jenis dari solar adalah biosolar. Biosolar didefinisikan sebagai ester alkil (RCOCH3) dari asam-asam lemak (SNI 04-7182-2006). Biosolar merupakan hasil rekasi minyak atau asam lemak dengan alcohol dan menghasilkan alkil eseter. Alkil ester ini lah yang disebut sebagai biosolar. Biosolar berebentuk cair dan memiliki titik nyala dan titik didih sebesar 60C dan 370C. Biosolar stabil terhadap cahaya (MSDS Pertamina, 2007).

    Oli juga merupakan salah satu fraksi dari minyak bumi yang diperoleh dengan cara destilasi yang dipisahkan berdasarkan titik didih. Oli merupakan rantai karbon panjang, yaitu memiliki atom karbon C20 C50 yang terdiri dari alkana, sikloalkana, dan cincin aromatik.

    Semua jenis oli pada dasarnya sama. Yakni sebagai bahan pelumas agar mesin berjalan mulus dan bebas gangguan. Sekaligus berfungsi sebagai pendingin dan penyekat. Oli mengandung lapisan-lapisan halus yang berfungsi mencegah terjadinya benturan antar logam dengan logam komponen mesin seminimal mungkin dan mencegah goresan atau keausan. Untuk beberapa keperluan tertentu, aplikasi khusus pada fungsi tertentu, oli dituntut memiliki sejumlah fungsi-fungsi tambahan. Mesin diesel misalnya, secara normal beroperasi pada kecepatan rendah tetapi memiliki temperatur yang lebih tinggi dibandingkan dengan Mesin bensin. Mesin diesel juga memiliki kondisi kondusif yang lebih besar yang dapat menimbulkan oksidasi oli, penumpukan deposit dan perkaratan logam-logam bearing (Keenan et al., 1993).

    2.2 Fotokatalisis

    Fotokatalisis adalah proses reaksi kimia yang menggunakan energi cahaya dan dipercepat katalis padat (Arutanti dkk., 2009). Dengan pencahayaan ultraviolet (254 nm) permukaan

  • TiO2 msenyawdapat mdan nitr

    Penyinadan holatau hihidrofob

    Fotokatdidasarkterirradlangkah

    Fenomesemikonpada pi

    ) padkembalsebagiapada amenginhal ini s

    Pada prdonasi pita valdihasilkmemilikmengok(Arutan

    mempunyai kwa organik dmembersihkrit yang bera

    aran permule positif paidrofilik (subik (tidak s

    talisis dengkan pada iasi-UV. D

    h fotokatalis

    TiO2 +

    ena fotokatnduktor tipita valensi (da pita vali, baik di p

    an lain dari akhirnya, (nisiasi reakssemikonduk

    rinsipnya, relektron dalensi ini cukan gugus ki potensiaksidasi sebanti dkk., 200

    kemampuandapat dioks

    kan air dari acun dapat

    ukaan TiO2 ada permukuka akan auka air) set

    gan titaniumpembentuk

    Definisi umus merupakan

    + hv e- alisis pada e n dikenai

    (vb) akan pilensi, disebpermukaan a

    ( / ) da) dapat

    si reduksi zktor tersebu

    reaksi oksidari substrat kukup besar

    hidroksil. al redoks agian besar09).

    n mengionissidasi menjapencemar odiubah men

    yang bersikaannya jugair) dan keelah bebera

    m dioksidakan pasanum tersebun reaksi red

    + h+

    permukaani cahaya (indah ke pit

    but eksitasi.ataupun di apat bertaha

    menginisiaat kimia yat adalah tita

    dasi pada peke ( ). Apuntuk menRadikal h

    sebesar 2,8r zat organi

    sasi reaksi kadi karbon organik. Sennjadi senyaw

    fat semikonga menjadikemudian beapa lama tid

    a didefinisingan elektrut mempundoks yang m

    n TiO2 dap) dengan

    ta konduksi. Sebagaiandalam bulkan sampai asi reaksi ang ada disanium dioks

    ermukaan spabila potenngoksidasi ahidroksil m8 Volt. Poik menjadi

    kimiawi. Didioksida d

    nyawa-senywa lain yang

    nduktor mekan permukaerubah lagi

    dak mendapa

    ikan sebagaron-lubang yai implika

    melibatkan (

    pat dijelaskaenergi yan

    i (cb), dan n besar (k partikel, dpada permuoksidasi d

    ekitar permsida (TiO2).

    emikonduknsi oksidasiair pada pe

    merupakan sotensial seb

    air, asam

    i dalam meddan air, berayawa anorgag relatif tida

    enghasilkan aan tersebuti menjadi natkan penyi

    ai proses r( / ),

    asi bahwa / ).

    an sebagai ng sesuai, mmeninggalk/ ) ini ak

    disebut de-eukaan semidan dilain

    mukaan sem

    ktor dapat bi yang dimiermukaan pspesi pengbesar ini cmineral da

    dia air, kebarti proses anik sepertiak beracun.

    pasangan ut bersifat pnonpolar dinaran.

    reaksi kimketika fotbeberapa l

    berikut. Jikmaka elektrkan lubang kan berekoeksitasi. Sedikonduktor,

    pihak (mikonduktor

    berlangsung iliki oleh (partikel, magoksidasi kcukup kuaan karbon d

    anyakan tersebut

    i sianida

    elektron olar dan

    dan atau

    mia yang tokatalis langkah-

    ka suatu ron ( ) positif (

    ombinasi dangkan dimana ) akan

    r. Dalam

    melalui ) pada

    aka akan uat dan

    at untuk dioksida

  • 2.3

    Titaniummempug/cm3. S

    Ditinjaulogam dcelah yamemunpenyinadaripadvalensi

    Titaniumdan brostabil. ATitaniumsinar ul

    2.4

    Cahayatransforsebenarkarena memantinggi u

    Gambar 2

    Titanium D

    m dioksida unyai masaaSedangkan

    u dari sifat dan isolatorang dimilik

    ngkinkan unaran pada peda band gap

    menuju pita

    m dioksidaookite. BenAnatase dam dioksidatraviolet da

    Sinar Ultra

    a dapat digurmasi yang rnya tidak m

    selain mecarkan radiuntuk meny

    2.1 Proses E

    Dioksida (T

    atau Titania molar 79,8untuk titik l

    kelistrikanr atau dapa

    ki titanium dntuk digunakermukaan ssemikondu

    a konduksi

    a yang terjatuk yang pan brookite, terutama d

    an cahaya.

    aviolet (UV

    unakan sebaluas pada dmungkin teremancarkaniasi ultravioyebabkan te

    Eksitasi danSumber:

    TiO2)

    ium (IV) ok87 g/mol danleburnya me

    nnya, titaniuat pula titandioksida sebkan sebagaisemikondukuktor tersebusehingga ak

    di di alam aling umum

    e baik untudalam bentu

    V)

    agai pemacudekomposisirjadi bila mn radiasi olet. Radiaserjadinya r

    n De-Eksitas Arutanti dk

    ksida mempn memiliki encapai 184

    um dioksidnium dioksibesar 3,2 eVi katalis dalaktor TiO2 oleut, maka akkan mengha

    seperti minm adalah ruuk dikonveruk anatase

    u terjadinyai polutan di

    memakai reainframerah

    si ultraviolereaksi kimia

    si Pada TiOkk., 2009

    punyai namwujud putih

    43 oC dan ti

    a memiliki ida memilik

    V. Adanya sam proses feh cahaya d

    kan bterjadi asilkan pasa

    neral juga dutil, juga mrsi ke rutiadalah foto

    a reaksi kimidalam air. Baktan konv

    h dan cahet tersebut ma (bila diba

    O2 di bawah

    ma lain yaituh padat denitik didihnya

    konduktiviki sifat semsifat ini padfotokatalisisdengan enerperpindaha

    angan elektr

    dikenal sebmerupakan b

    l dengan aokatalis den

    mia untuk mBeberapa reensional. Haya tampamempunyaiandingkan

    Sinar UV

    u Titania. Ungan kepadaa 2972 oC.

    vitas listrik mikonduktorda titanium ds. Setelah dirgi yang leban elektron ron dan hole

    agai rutil, abentuk yangadanya pemngan sumbe

    mendapatkaneaksi kimia

    Hal ini dapaak, matahai kemampudengan kan

    Unsur ini atan 4,23

    diantara r, energi dioksida ilakukan bih besar dari pita e.

    anatase, g paling

    manasan. er energi

    n seleksi tersebut

    at terjadi ari juga uan yang ndungan

  • energi radiasi inframerah dan cahaya tampak). Walaupun tidak semua polutan organik menyerap cahaya, namun banyak diantaranya yang mudah terdekomposisi dengan atau berbagai macam cara. Oleh karenanya, pengetahuan terhadap mekanisme kimia pada reaksi fotokimia akan bermanfaat dalam merencanakan sistem pengolahan secara fotokimia untuk air yang tercemar.

    Sumber cahaya dapat digolongkan menjadi dua, yaitu sinar matahari dan cahaya buatan.

    a. Sinar matahari

    Radiasi ultraviolet (UV) matahari adalah energi elektromagnetik dengan panjang gelombang antara 0,2 0,4 mikron dan mempunyai energi yang lebih besar dibanding cahaya tampak. Sinar matahari dimanfaatkan sebagai sumber cahaya untuk mengolah air yang terkontaminasi dengan fotolisis. Berdasarkan panjang gelombangnya, radiasi ultraviolet (UV) matahari terbagi atas:

    1. UV-A (0,32 0,4 mikron) merupakan panjang gelombang dan memancarkan radiasi yang besarnya konstan sepanjang tahun. Radiasi ini dapat menyebabkan penuaan dini pada kulit.

    2. V-B (0,28 0,32 mikron) merupakan panjang gelombang pendek dan lebih intens dibanding UV-A. UV B lebih kuat terabsorpsi oleh beberapa polutan bimolekul.

    3. UV-C (0,2 - 0,28 mikron ) merupakan radiasi UV yang paling intensif dan berbahaya serta berpotensi untuk menimbulkan kerusakan pada organisme.

    Pada dasarnya, tingkat kerusakan pada paparan radiasi UV tergantung dari kuantitas dan jenis radiasi yang dipaparkan. Dimana semakin pendek panjang gelombang radiasi maka energi yang dihasilkan semakin besar yang berarti tingkat kerusakannya juga tinggi. Berdasarkan kandungan energi kimianya, radiasi UV mempunyai kemampuan untuk menimbulkan kerusakan langsung pada molekul penting senyawa yang menyerapnya dan menghancurkan polutan didalam air (Richard dan Eric, 1994). Sesuai dengan hukum pertama fotokimia yang menyatakan bahwa perubahan kimia hanya akan terjadi bila sistem menyerap radiasi (Kopecky, 1992), maka cahaya harus diabsorpsi oleh sistem supaya reaksi dapat berlangsung. Molekul molekul harus bisa menyerap panjang gelombang minimal sebesar 290 nm supaya dapat dipengaruhi oleh cahaya matahari.

    b. Cahaya Buatan

    Sumber cahaya buatan untuk reaksi fotokimia dapat berasal dari lampu yang tersedia pada variasi luas mulai dari lampu bohlam (bulb) tungsten-filamen sederhana sampai lampu dengan pancaran bunga api listrik merkuri (mercury arc). Lampu bohlam tungsten filamen memancarkan secara kuat pada daerah tampak, sedangkan lampu mercury arc menghasilkan sinar UV dengan panjang gelombang kurang dari 290 nm (UV-C : 0,20,28) yang mempunyai intensitas tinggi. Sumber cahaya UV yang banyak digunakan adalah lampu dengan daya 4 40 watt dan intensitas maksimum pada panjang gelombang 254 nm. Lampu ini mudah didapatkan di pasaran dan banyak digunakan sebagai lampu germical.

    Reaksi fotokimia merupakan reaksi kimia yang menggunakan cahaya untuk mendekomposisi polutan organik didalam air dengan cara menyerap cahaya untuk memutuskan ikatan dari senyawasenyawa kimia. Cahaya dapat berupa panjang gelombang dan bersifat sebagai

  • partikel (particle like properties) dimana cahaya merupakan gabungan dari ayunan elektrikal terhadap arah propagasi dari gelombang (Schwarzenbach dan Gschwend, 1993).

    Energi sinar UV dan cahaya tampak dapat mengeksitasi elektron suatu molekul dari kondisi dasar kekondisi tereksitasi. Sehingga pada prinsipnya, ikatan dapat diputuskan dengan absorpsi cahaya (Schwarzenbach dan Gschwend, 1993).

    Pada reaksi fotokimia, penghancuran molekul diawali dengan penyerapan foton (Richard dan Eric, 1994). Saat foton mendekati molekul, terjadi interaksi antar medan elektromagnetik yang menyertai molekul. Terjadinya perubahan secara fotokimia disebabkan karena energi yang diabsorpsi mengubah molekul pada kondisi dasar (ground state) menjadi kondisi tereksitasi (excited state) yang tidak stabil.

    Supaya terjadi penyerapan foton guna mendapatkan kondisi eksitasi, molekul harus mempunyai pita absorpsi pada spektrum UV cahaya tampak yang mencakup panjang gelombang foton tersebut (Richard dan Eric, 1994). Karena radiasi UV C mempunyai panjang gelombang minimum 200 nm. Maka molekul organik harus menyerap cahaya diatas 200 nm supaya terjadi proses fotolisis (Larson and Weber, 1994). Energi radiasi ini berhubungan dengan energi eksitasi molekul dengan = 200 700 nm (Kopecky, 1992). Proses kimia yang dialami oleh molekul tereksitasi untuk kembali ke kondisi dasar merupakan suatu bentuk transformasi dan juga penyisihan (removal) suatu senyawa (Schwarzenbach dan Gschwend, 1993). Senyawasenyawa baru hasil transformasi dapat termasuk pemutusan ikatan, penyusunan kembali atau reaksi intermolekuler (Richard dan Eric, 1994). Selanjutnya senyawa-senyawa tersebut akan bereaksi dengan proses fotokimia, kimia atau biologi. Akibatnya sangat sulit untuk menentukan dan mengukur seluruh hasil transformasi fotokimia (Schwarzenbach dan Gschwend, 1993).

    2.5 Fotokatalisis TiO2 Pada Minyak Bumi (Crude Oil)

    Sebelumnya pernah dilakukan penelitian mengenai tingkat kinerja fotokatalisis titanium dioksida (TiO2) pada air laut yang tercemar oleh minyak bumi (crude oil) terlarut dengan sinar ultraviolet (UV). Sampel yang digunakan adalah air laut dengan salinitas 3,3 %, sedangkan sampel minyak bumi (crude oil) berasal dari hasil eksplorasi minyak bumi lepas pantai di campos Rio de Jeneiro, Brazil. Minyak bumi (crude oil) yang ditambahkan adalah sebesar 1/20 v/v terhadap air laut. Titanium dioksida yang digunakan adalah degusa P-25, dengan spesifik area 50 m2 g-1 dengan konsentrasi TiO2 dalam air sampel adalah 0,1 % w/v atau 1 g/L (Ziolli dan Jardim, 2001).

    Air sampel sebanyak 1200 mL, yaitu air laut dengan salinitas 3,3 %, konsentrasi TiO2 1 g/L, dan konsentrasi crude oil sebesar 1/20 v/v, diaduk dengan magnetic stirrer selama 30 menit dan kemudian disimpan dalam ruangan gelap dalam suhu ruangan selama 15 hari untuk mendapatkan minyak bumi (crude oil) yang terlarut. Setelah 15 hari, diambil 1200 mL sampel dengan tanpa mengganggu dari permukaan air sampel (Ziolli dan Jardim, 2001).

    Sampel kemudian diolah dengan menggunakan reaktor fotokatalisis yang terbuat dari gelas Pyrex dan sampel diaduk dengan magnetic stirrer untuk menjaga agar larutan tetap homogen atau partikel TiO2 tidak mengendap. Sumber cahaya berasal dari lampu mercury 125 W (Philips, HPL-N) dengan panjang gelombang maksimum mencapai 366 nm. Pengolahan ini dilakukan selama 7 hari (Ziolli dan Jardim, 2001).

  • Dalam pcrude o

    2.6

    2.6.1

    a.

    Alkana menghapuncak sangat s

    C H

    C H2

    C H3

    C H2

    C C

    Contoh

    b.

    penelitian yoil mencapai

    Analisis S

    Senyawa H

    Alkana

    menunjukasilkan empbending C

    sederhana d

    Stre

    Padfrek

    Jikaabsomem

    Gug146

    Gugucm-

    Gerdalapanj

    Stre

    :

    Alkena

    yang dilakuki sebesar 90

    Spektra Inf

    Hidrokarbo

    kkan sangatpat atau lebCH2 dan CHdan memilik

    etching terja

    da alkana (kkuensi kuran

    a senyawa morpsi C-H miliki hibrid

    gus metilen5 cm-1.

    us metil me1.

    rakan bendiam rantai te

    njang ).

    etching tidak

    G

    kan oleh Zi0 % setelah

    fra Red

    on : Alkana

    t sedikit pbih puncak

    H3 pada daeki sedikit pu

    adi pada dae

    kecuali senyng dari 3000

    memiliki vinadalah leb

    disasi sp2 da

    n memiliki

    emiliki kara

    ing (rockingerbuka terja

    k secara _ia

    Gambar 2.2Sumb

    iolli dan Jarpengolahan

    a, Alkena, A

    pita absorpk Stretchingerah 1475 uncak.

    erah sekitar

    yawa lingk0 cm-1 ( 300

    nilik, aromabih besar an sp.

    karakteristi

    akteristik ab

    g) digabungadi sekitar

    agnostic_ive

    2 Spektra IRber : Pavia,

    rdim (2001)n selama 7 h

    Alkuna

    si dalam sg disekitar 1365 cm-1

    r 3000 cm-1

    ar), absorps00 - 2800 cm

    atik, asetiledari 3000

    ik absorpsi

    bsorpsi bend

    gkan dengandaerah 720

    e berguna, b

    R dari dekan2001

    ), didapatkahari.

    spektra infrdaerah 300. Spektra da

    si C-H sp3 m-1 ).

    nik, atau sikcm-1. Sen

    bending p

    ding pada d

    n empat ata cm-1 ( din

    banyak punc

    na

    an efisiensi

    fra merah. 00 cm-1 dari alkana b

    selalu terja

    iklopropil hnyawa-seny

    pada daerah

    daerah sekit

    au lebih gugnamakan pit

    cak lemah.

    removal

    Mereka ditambah biasanya

    adi pada

    idrogen, awa ini

    h sekitar

    tar 1375

    gus CH2 ta rantai

  • Alkena diagnos3000 cdibawahdaerah melihat

    = C H

    = C H

    Pita pi

    C = C

    Contoh

    c.

    Alkuna hibridisspektrumfrekuenbendingpada 33spektrum

    C-H CC

    menunjukstic adalah pcm-1, dilanjhnya. Juga 1000-650

    t puncak Str

    H Stret3095

    H Bend

    ita ini dapat

    StretC=C

    Secamera

    Secaserin

    :

    Alkuna

    terminal asasi sp ikatam alkuna

    nsi Stretching untuk gu300 cm-1. m.

    Stre

    Stretfreku

    kkan lebih puncak Strejutkan denyang menocm-1. Untu

    retching C=

    tching untu5 3010 ).

    ding out of p

    t digunakan

    tching terjaC ke frekuen

    ara simetris ah (tidak ad

    ara simetrisng menghila

    Ga

    akan menunan C-H. Ikaterminal,mng C-H ungus CH2 daIkatan CC

    etching untu

    tching terjauensi lebih r

    banyak puetching C-Hngan puncaonjol yaitu ouk senyaw

    =C dekat 165

    uk C-H sp2

    f plane (oop)

    n untuk men

    adi pada 16nsi yang lebi

    menggantia perubahan

    s disubstituang, sedangk

    ambar 2.3 SSumb

    njukkan punatan CC ju

    mencapai sentuk atom an CH3. AlkC pada 215

    uk C-H sp b

    adi dekat rendah.

    uncak daripH untuk karak C-H unout of plane

    wa asimetris50 cm-1.

    terjadi den

    ) terjadi pad

    nentukan der

    660-1600 cih rendah d

    ikan ikatann dipol).

    usi (trans) ikan cis lebi

    Spektra IR dber : Pavia,

    ncak yang uga akan meekitar 2150karbon sp3

    kuna non te50 cm-1 ak

    iasanya terj

    2150 cm-

    pada diagnrbon sp2 padntuk atom e dari puncas, seharusn

    ngan harga

    da daerah 10

    rajat substit

    cm-1,sering an menaikk

    n-ikatan yan

    ikatan rangh kuat.

    dari 1-Heks2001

    menonjol penjadi karak

    cm-1. Ran3. Karakterierminal tidakkan sangat

    jadi sekitar

    1, konjuga

    o. Puncak da harga ya

    karbon spak bending nya mempe

    lebih besa

    000-650 cm

    tusi pada ika

    terjadi perkan intensita

    ng tidak dia

    gkap, absor

    ena

    pada sekitakteristik yanntai alkil aistik lain tek akan menlemah atau

    3300 cm-1.

    si mengge

    utama darang lebih bep3 mencap yang dicap

    erkecualikan

    ar dari 3000

    m-1.

    atan rangka

    rgerakan koas.

    absorp dala

    rpsinya lem

    ar 3300 cmng menonjoakan menuermasuk panunjukkan pu tidak ada

    eser Stretch

    ri harga esar dari pai nilai pai pada n untuk

    0 cm-1 (

    ap.

    onjugasi

    am infra

    mah dan

    m-1 untuk ol dalam unjukkan ada pita pita C-H a dalam

    hing ke

  • 2.6.2

    Senyawdari meharga leyang saantara sbiasanyuntuk adicapai cm-1, da

    = C- H

    = C-H

    C=C

    Overtonuntuk m

    Contoh

    Con

    Senyawa

    wa aromatikereka tidak mebih besar ama, ini musenyawa alkya mencapaalkena (165pada daera

    apat digunak

    Stre301

    dap

    Abscm-

    ne/kombinamenandai po

    :

    ntoh:

    G

    Cincin Aro

    k menunjukkmemiliki hadari 3000 cungkin sulitkena dan aroi antara 160

    50 cm-1). Yah 900-690 kan untuk m

    etching untu0 cm-1).

    Out of at digunaka

    sorpsi Stretc1.

    asi pita dicapola substitus

    G

    Gambar 2.4 SSumb

    omatik

    kan jumlah arga diagnocm-1. Karent untuk menomatik. Ak00 dan 145

    Yang juga mcm-1, yang

    menandai su

    uk C-H sp2

    plane (oopan untuk me

    ching cincin

    pai antara 2si cincin.

    Gambar 2.5Sumb

    Spektra IR dber : Pavia,

    pita absorpostik. Puncana pita Strenggunakan

    kan tetapi, p50 cm-1 dilumenonjol y

    g mana diiriubstitusi pad

    terjadi pada

    p) bending enandai pola

    n sering ter

    2000 dan 16

    Spektra IRber : Pavia,

    dari 1-Oktu2001

    psi dalam spak Stretchingetching untu

    pita Stretcita Stretchin

    uar daerah byaitu out ofingi pita ovda cincin (P

    a harga lebi

    terjadi pada substitusi

    rjadi pada p

    667 cm-1. Ab

    R dari Tolue2001

    una

    pektra infra g C-H untu

    uk alkena dhing C-H ung C=C untbiasanya dif plane punertone lema

    Pavia, 2001)

    ih besar dar

    da 900-690 pada cincin

    pasangan 16

    bsorpsi lema

    n

    merah,kebuk karbon mdicapai padauntuk membtuk cincin aimana C=Cncak bendinah pada 20).

    ri 3000 cm-

    cm-1. Pitan.

    600 cm-1 d

    mah dapat dig

    anyakan mencapai a daerah bedakan aromatik

    C dicapai ng yang 00-1667

    1 (3050-

    -pita ini

    an 1475

    gunakan

  • BAB III

    METODOLOGI PENELITIAN

    3.1 Umum

    Pada penelitian ini dilakukan penelitian mengenai kinerja Fotokatalisis TiO2 dalam menyisihkan minyak bumi pada air laut dengan bantuan sinar ultraviolet (UV).

    3.2 Kerangka Penelitian

    Kerangka penelitian merupakan gambaran dari tahapan tahapan penelitian yang akan dilakukan. Hal ini dilakukan untuk memudahkan dalam pelaksanaan penelitian sesuai tahapan yang ada, sehingga penelitian dapat dilakukan sesuai prosedur dan sistematis. Skema umum dari alur penelitian dapat dilihat pada Gambar 3.1.

    3.3 Tahapan 3.3.1 Ide Studi

    Ide studi adalah mencari suatu konsep removal yang lebih efektif dan efisien pada air laut yang tercemar oleh minyak bumi.

    3.3.2 Studi Literatur

    Studi literatur merupakan studi terhadap dasar dari penelitian ini. Studi literatur dapat berasal dari buku buku referensi, jurnal ilmiah, artikel, media cetak dan elektronik serta penelitian terdahulu. Studi literatur merupakan jawaban dari permasalahan yang ada dalam penelitian. Untuk penelitian ini menggunakan studi literatur mengenai pencemaran laut, fotokatalis, TiO2, hidrokarbon, sinar UV, dan spektrofotometer IR.

    3.3.3 Persiapan penelitian

    Persiapan penelitian merupakan langkah persiapan sebelum melakukan penelitian. Dalam penilitian ini dilakukan persiapan dengan penyediaan sampel air laut tercemar minyak bumi Selain itu juga dilakukan persiapan dengan pembuatan reaktor penyinaran dengan sinar UV.

    3.3.4 Penelitian Pendahuluan

    Pada penelitian pendahuluan kali ini ini dilakukan analisa Total Petroleum Hydrocarbons (TPH) untuk mengetahui jumlah awal hidrokarbon yang terkandung di dalam air limbah.

    3.3.5 Pelaksanaan Penelitian

    Pada penelitian kali ini dilakukan variasi pembubuhan dosis TiO2 sebesar 0 g/L (sebagai kontrol); 0,5 g/L; 1 g/L; 1,5 g/L; 2 g/L dengan lama penyinaran dengan sinar UV adalah selama 7 hari dengan pengambilan sampel air pada hari ke-7 untuk menentukan dosis optimum dari TiO2. Dilakukan variasi jenis pencemar minyak bumi yaitu minyak solar dan minyak pelumas, dengan pembubuhan dosis TiO2 optimum. Lama penyinaran dengan sinar UV adalah selama 7 hari dengan pengambilan sampel air pada hari ke-0; hari ke-1; hari ke-3; hari ke-5; hari ke-7 (Ziolli dan Jardim, 2001).

  • 3.3.6 Pengamatan Parameter

    Parameter yang diamati dalam penelitian kali ini adalah Total Petroleum Hydrocarbons (TPH). Dilakukan analisa TPH pada sampel air limbah pada ke-7 untuk penelitian penentuan dosis optimum dan pada hari ke-0; hari ke-1; hari ke-3; hari ke-5; hari ke-7 untuk menentukan laju removal atau pathway degradasi dengan pengambilan sampel tiap waktunya adalah 5 ml untuk mengetahui % removal dari minyak bumi pada air sampel. Kemudian juga dilakukan analisis Fourier Transform Infra Red (FTIR) untuk mendapatkan informasi tentang gugus hidrokarbon untuk menetukan pathway degradasi yang terjadi.

    3.3.7 Analisis Data dan Pembahasan

    Data yang diperoleh dari hasil pengamatan parameter kemudian diolah untuk dianalisa dan dibahas sehingga dapat menghasilkan tujuan dari penelitian kali ini.

    3.3.8 Kesimpulan dan Saran

    Pada tahap ini akan diambil kesimpulan yang didapat dari hasil analisa percobaan dan pembahasan yang telah dilakukan dengan mengacu pada tujuan yang ingin dicapai pada penelitian ini.

  • Gambar 3.1 Alur Penelitian

    3.4 Proses Penelitian

    Penelitian fotokatalisis dilakukan dengan cara sebagai berikut:

    1. Disiapkan air laut buatan dengan kadar salinitas 33 . Kadar salinitas air laut adalah antara 33 - 37 (Mangkoediharjo, 2005)

    2. Dimasukkan 1500 mL sampel air laut buatan ke dalam gelas ukur. 3. Ditambahkan minyak bumi pada gelas ukur tersebut dengan perbandingan 1 : 20 v/v

    terhadap air laut (Ziolli dan Jardim, 2001). 4. Larutan tersebut diaduk menggunakan magnetic stirrer selama 30 menit di tempat

    gelap. Setelah pengadukan selesai, larutan didiamkan selama 15 hari. 5. Diambil larutan dengan mengalirkan keluar sebanyak 1200 ml sampel melalui kran

    yang berada pada bagian bawah gelas ukur untuk mengambil bagian yang terlarut atau soluble.

    6. Dilakukan variasi pembubuhan TiO2 untuk menentukan dosis optimum TiO2. Disediakan 5 larutan sampel dari salah satu variasi hidrokarbon. Selanjutnya sampel

  • 7.

    8.

    9.

    y

    10.

    diberi dosis2 g/L. Samkontrol. Ilu

    G

    Sampel disyang telah Larutan dawaktu peny

    Gam

    Setelah pesebanyak Efisiensi re

    Keterangan

    y = kadar Tx = kadar T

    Disiapkan aromatik (didaptkan p

    s pembubuhmpel dengaustrasi samp

    Gambar 3.2.

    sinari dengadisiapkan

    alam kondisyinaran.

    mbar 3.3 Ske

    nyinaran d 5 ml untukemoval miny

    n :

    TPH pada hTPH pada h

    3 larutan s(minyak pepada percob

    han TiO2 sebn dosis pem

    pel dapat dil

    Variasi Pem

    an lampu Usebelumny

    si teraduk s

    ema Reakto

    dengan lamk penentuanyak dihitung

    hari ke-0 hari ke-n

    sampel varielumas) yanbaan pertam

    Lamp

    besar 0 g/L mbubuhan lihat pada G

    mbubuhan D

    UV fluoreseya. Skema secara stabi

    or Fotokalis

    mpu selama n kadar TPHg dengan ru

    iasi hidrokang diberi p

    ma

    mpu UV 6 W

    (sebagai koTiO2 sebes

    Gambar 3.2.

    Dosis TiO2

    en biru 6 Wreaktor dap

    il dengan m

    is (Ziolli da

    7 hari diH dan spektrumus sebaga

    arbon yaitupembubuha

    ontrol); 0,5 sar 0 gr/L

    Pada Samp

    W/G8T5 dapat dilihat

    magnetic sti

    an Jardim, 2

    lakukan perum IR. ai berikut :

    u: alifatik (man dosis op

    g/L; 1 g/L; digunakan

    pel

    alam sistempada Gam

    irrer hingg

    2001)

    engambilan

    minyak solptimum Ti

    1,5 g/L; sebagai

    m reaktor mbar 3.3.

    a 7 hari

    sampel

    lar), dan iO2.yang

  • 11.

    12.

    13.

    14.

    15.

    y

    3.5

    PelaksaLimbahKimia U

    Sampel disyang telah Larutan dawaktu penyDiambil samdilakukan. proses pengSetelah pensebanyak Pada hari kspektrum IREfisiensi re

    Keterangan

    y = kadar T

    Tempat Pe

    anaan peneh B3, JurusaUBAYA.

    sinari dengadisiapkan

    alam kondisyinaran. mpel pada sSetelah sam

    gadukan. Sanyinaran de

    5 ml pada ke-3, 5 dan 7R. emoval miny

    n :

    TPH pada h

    elaksanaan

    litian dilakan Teknik L

    an lampu Usebelumny

    si teraduk s

    saat pengammpel diambampel kemuengan lampuketiga samp7 dilakukan

    yak dihitung

    hari ke-0,

    n Penelitian

    kukan di LLingkungan

    UV fluoreseya. Skema secara stabi

    mbilan 5 mLbil dipasangudian diukuu selama 1pel untuk pe

    n prosedur y

    g dengan ru

    n

    Laboratoriumn ITS, dan d

    en biru 6 Wreaktor dap

    il dengan m

    L sampel pag lampu padr kadar hidr hari dilakuenentuan ka

    yang sama g

    umus sebaga

    x = kadar

    m Teknolodi Laborato

    W/G8T5 dapat dilihat

    magnetic sti

    ada t0, proseda reaktor tarokarbon deukan pengaadar TPH daguna mengu

    ai berikut :

    TPH pada h

    ogi Pengeloorium Polim

    alam sistempada Gam

    irrer hingg

    es pengadukanpa menghengan analisambilan saman spektrum

    ukur kadar T

    hari ke-n

    olaan Sampmer, Jurusan

    m reaktor mbar 3.3.

    a 7 hari

    kan terus hentikan sis TPH. mpel (t1) m IR. TPH dan

    pah dan n Teknik

  • BAB IV JADWAL KEGIATAN DAN RAB

    1.1 Pelaksanaan Tugas Akhir Pelaksanaan tugas akhir ini dilaksanakan 3 bulan. Rincian kegiatan selama pelaksanaan

    tugas akhir dapat dilihat pada tabel 4.1: Tabel 4.1 Jadwal Pelaksanaan Tugas Akhir

    No. Kegiatan Bulan

    Februari Maret April 2 3 4 1 2 3 4 1 2 3 4

    1 Studi literatur

    2 Persiapan Penelitian

    3 Penelitian

    4 Analisa data

    dan Pembahasan

    5 Kesimpulan dan Saran

    1.2 Rencana Anggaran Biaya

    Anggaran biaya yang direncanakan dalam penelitian ini sebagai berikut: Tabel 4.2 Rencana Anggaran Biaya Tugas Akhir

    No. Uraian Biaya 1 Pengadaan dan pembuatan proposal tugas akhir Rp 50.0002 Studi Literatur Rp 250.0003 Pengadaan peralatan dan bahan dan pengujian :

    - Papan triplek kayu - selotip - jirigen air (2 buah) - lampu uv - Pemesanan Reaktor - Uji TPH - Uji Kromatografi

    Rp Rp Rp Rp Rp Rp Rp

    200.0005.000

    30.000500.000

    1000.0001000.0001000.000

    5 Penulisan laporan:

    - kertas (2 rim) - tinta printer (3 buah) - penjilidan - sewa LCD (3 kali) - pengadaan CDRW (2 buah)

    Rp Rp Rp Rp Rp

    100.000350.000235.000150.00020.000

    6 Transportasi Rp 400.000 Total Rp 6.550.000

    DAFTAR PUSTAKA

  • Arutanti, O., Abdullah, M., Khairurrijal., dan Mahfudz, H. 2009. Penjernihan Air Dari Pencemar Organik dengan Proses Fotokatalisis pada Permukaan Titanium Dioksida (TiO2). Jurnal Nanosains dan Nanoteknologi. Edisi Khusus ISSN 1979-088V, 53-55, Agustus.

    Arief, B.M. 2007. Studi Pengaruh Bulking Agent Pada Proses Bioremediasi Lumpur Minyak. Universitas Diponegoro. Semarang.

    Bansal, P., Singh, D., and Sud, D. 2010. Photocatalytic degradation of azo dye in aqueous TiO2 suspension: Reaction pathway and identification of intermediates products by LC/MS. Journal of Hazardous Material 156.

    Connell, D. 1995. Kimia dan Ektoksikologi Pencemaran (Terjemahan Y. Koestoer, 2006).UI Press. Jakarta.

    Fatimah, I., dan Wijaya, K. 2005. Sintesis TiO2/Zeolit Sebagai Fotokatalisis pada Pengolahan Limbah Cair Industri Tapioka Secara Adsorpsi-Fotodegradasi, TEKNOIN, Vol. 10, No. 4, Desember, 257-267.

    Goldberg, R. 1991. Marine Oil Spil Academy of Natural Sciences. Philadelphia.

    Herman, J.M. 1999. Heterogenous Photocatalysis Fundamental and Aplication to the Removal of VariousTypes of Aqueous Pollutants, Catal Today, 53, 115-129.

    Khalil, L.B., Mourad, W.E., and Rophael, M.W. 1998. Photocatalytic reduction of Environmental pollutans Cr(VI) over some semiconductor under UV/Visible Light illumination, Appl. Catal, B:Environ., 173, 267- 273.

    Keenan, C.W., Kleinfelter, D.C., and Wood, J.H. 1989. Kimia Untuk Universitas jilid 1 (Terjemahan Hadyana A.P., 1999). Erlangga. Jakarta.

    Kopecky, J. 1992. Organic Photochemistry : A Visual Approach.VHC Publishers. New York.

    Linsebigler, A.L., Lu, G., and Yates, J.T. 1995. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Result, Chem. Rev. 95, 735-738.

    Mangkoediharjo, S. 2005. Pengendalian Pencemaran Dan Kerusakan Wilayah Pesisir Dan Laut. ITS, Surabaya.

    Pavia, 2001. Introduction to Spectroscopy, Fourth Edition, Bellingham Washington.

    Pertamina. 2006. Material Safety Data Sheet Enduro 20W-50. Pertamina. Jakarta.

    Pertamina. 2007. Material Safety Data Sheet Biosolar. Pertamina. Jakarta.

    Richard, A.L., and Eric, J.W. 1994. Reaction mechanisms in environmental organic chemistry. Lewis Publishers. Sidney

  • Schwarzenbach, R.P., and Gschwend, P.M. 1993. Environmental Organic Chemistry.New York.Jhon Wiley & Sons, Inc.

    Smith, B. 1999. Infrared Spectral Interpretation A Systematic Approach. CRC Press. New York.

    Sudarman, R. 2009. Pengolahan Limbah Minyak Bumi. Universitas Haluoleo. Kendari.

    Syukri, S. 1999. Kimia Dasar 1. ITB. Bandung,

    Wise, H., and Sancier, K.M. 1991. Photocatalyzed Oxidation of Crude Oil Residue by Beach Sand. Catalysis Letters, 11, 277-284

    Wulandari, A. 2001. Laporan Hidrokarbon Teknik Kimia Unjani.Unjani.Cimahi.

    Yuliandari, W. 2002. Studi Literatur Penanggulangan Tumpahan Minyak Mentah (Crude Oil) di Lautan Menggunakan Dispersan Kimiawi.Teknik Lingkungan ITS.Surabaya.

    Ziolli, R.L., dan Jardim, W.F. 2001. Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 147: 205-212.